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ABSTRACT

ASPECTS OF REPRODUCTIVE BIOLOGY IN THE RED WOLF

(CANIS RUFUS)
Susan Lorene Walker Advisor:
University ot Guelph. 1999 Dr. K. Goodrowe
Co-Advisors:
Dr. C. Gartley
Dr. A. King

Dr. J. Leatherland

Reproductive endocrinology ot the red wolf (Canis rutus) was studied in captive
animals by tecal enzyme immunoassay. In cycling females. estrogen metabolites increased
through proestrus. reached maximal values during estrus and declined concurrent with
rising progestin metabolite values. Progestin metabolite levels remained elevated until mid-
to late luteal phase and then gradually declined to nadir levels. There was no significant
difference between pregnant and ovulatory non-pregnant hormone profiles. Acyclic
animals maintained basal ovarian hormone concentrations throughout the breeding season.
During the periovulatory period, serum and tecal hormone profiles exhibited comparable
trends.

In male red wolves. changes in testosterone metabolite concentrations were
consistent with photoperiod synchronization. Testosterone metabolite levels began to
increase prior to the breeding season (November-December). and reached peak levels
coincident with estrus in late winter (late February).

It was concluded that sex determination through fecal steroid ratios of
progestin/testosterone and testosterone/estrogen is possible only from late December to

early May.
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INTRODUCTION

In the last century extinction of animal species has been occurring at an unparalleled
rate (Flesness. 1989). Global biological diversity is eroding largely due to the spread of
mankind and our ‘innovative’ technological advancements. As a species. mankind has
altered ecosystems through: 1) habitat destruction and fragmentation. 2) introduction of
non-native species. 3) pollution and 4) over-exploitation of natural resources (Wilson.
1989: Tudge. 1992). It hus now become increasing clear that the world in which we live is
“poised on the edge of an unprecedented biological disuster” (Hutchins & Wiese. 1991).

The challenge to artificially preserve biological diversity is a daunting task.
However. success possibly can be achieved through the dedicated cooperation of numerous
individuals and organizations. One such organization is the American Association of
Zoological Parks and Aquariums (AZA). The foundation of their conservation efforts is
based on Species Survival Plans (SSP©): breeding programs which act to coordinate the
preservation of both a species and its habitat (Wiese & Hutchins. 1994). Each SSPe¢.
under the direction of a species coordinator. is responsible tor managing the demographics
and genetics of an endangered species’ population in a captive environment. The
cooperative actions of institutions that house the species ensure the genetic integrity of the
population.  Captive breeding programs serve as a genetic reservoir for future
reintroductions and maintenance of healthy. stable captive and wild populations through the
infusion of new genes. It is well recognized that the tightly managed captive population in
no way serves as a substitute for wild populations.

Over the past 2 decades, assisted reproductive technoiogies. such as arificial
insemination. embryo transfer, long-term storage of germplasm or non-invasive endocrine
monitoring have begun to play an ever increasing role in conservation programs. These
technologies allow for flexibility in a breeding program. escaping restrictions such as

limited holding space and transportation costs. while still presevering the genetic diversity



of the population. However, with only 20 years of experience and an ever increasing
number of animals in need of captive propagation programs (Soulé et al.. 1986), there is
still much to learn betfore these technologies become practical and repeatable on a large
scale. One important lesson that has been acknowledged is that what is eftective for one
species often may be totally unreliable for another. even in a given taxon (Goodrowe.
1997). Therefore. to apply these biotechnologies. basic research concerning reproductive
norms must be conducted to improve our tundamental knowledge of a4 given species.

In situ and ex situ conservation etforts for the red wolft (Canis rufus) have led tw
non-invasive endocrine studies in our laboratory at the Toronto Zoo. The goal ot this study
is to non-invasively acquire basic knowledge conceming this endangered canid’s
reproductive biology. The knowledge gained will help provide a resourceful strategy tor

more etfective management of captive and wild red wolt populations.



REVIEW OF LITERATURE

Reproduction in Canids
Female Reproductive Bjology
General Overview

In the female domestic dog (Canis familianis). sexual maturity ranges from 5 to 24
months of age (Wildt et al.. 1981; Feldman & Nelson. 1987: Concannon. 1991) with the
average age of puberty onset being dependent on breed (Christiansen. 1984). Fertility
progressively declines once a bitch is =7 years of age (Feldman & Nelson. 1987). The
number of ova present in the ovaries of a newborn bitch has been estimated at 700.000.
By puberty. this number declines to 250,000. and at S years of age there is a dramatic drop
to 30.000. By age 10, only a few hundred ova remain (Anderson & Simpson. 1973).
Beyond 6-8 years of age. there are progressive reductions in litter size. increases in the
interestrus interval, congenital birth defects. and problems at parturition (Feldman &
Nelson. 1987). Although bitches typically continue to cycle throughout their life-spun (as
they do not experience a menopause; Feldman & Nelson. 1987), the recommended age tor
breeding is between 2 and 6 years of age (Feldman & Nelson. 1987).

Captive female gray wolves (Canis lupus) have been reported to conceive at 10
months of age (Medjo & Mech, 1976: Zimen. 1976): however. most do not breed until at
least 22 months of age (Seal et al., 1979). Mech (1987) reported signs of reproductive
activity. including mammary development and pairing behaviour. in wild wolves during
their first breeding season. However. most do not breed until they are 4-5 years of age
(Mech. 1991). Captive gray wolves may live to 16 years of age and free ranging wolves
have been reported to live as long as 13 years (Sheldon. 1992). The reproductive age in
wild gray wolves has been estimated to extend to |1 years of age (Mech. 1988). Captive
temale red wolves (Canis rufus) also are capable of reproducing during their first breeding
season: however, breeding is generally more common during their second season (Nowak

1972: Parker. 1988. Waddell. 1995). Fecundity of the captive red wolt peaks at



approximately 7 years of age and declines to senescence at 12 years (Sparks database.
Waddell, 1996). Coyotes (Canis latrans) also are capable ot reproducing in their first year
{Kennelly & Johns, 1976): however, the percentage that does so is variable. ranging
between 10% and 70% (Gier. 1975). Longevity in the wild coyote is estimated to be 14-16
years (Sheldon. 1992).

Domestic dogs are monoestrus. ovulating one to two times a year at intervals of 5-
13 months (Concannon et al.. 1989). Several studies indicate that. as a group. domestic
dogs cycle on average every 7 months. and are nonseasonal breeders (Christie & Bell
1971: Stabenfeldt. 1977: Felman & Nelson. 1987: Concannon. 1991). It has been
demonstrated that domestic dogs housed outdoors cycle year round (Anderson. 1970). as
do dogs housed under constant lighting conditions of [2 hours light:12 hours dark
(Concannon. 1986a). With the exception ot some tox-like canids (Sheldon. 1992). and the
bush dog (Speothos venaticus; Bekoft. 1975: Porton ct al.. 1987), wild canids generally
are classified as monoestrus (Sheldon, 1992). However. unlike their domestic relatives.
they have well-defined breeding seasons: from February to March. for the red wolt (Carley
1979: Waddell. 1995). and January to April in the coyote (Hamlettt. 1938: Fowler. 1986)
and gray wolf (Sheldon, 1992; Busch. 1995). A trend shared among these species is that
animals from southern latitudes tend to breed earlier than their northern conspecitics (Mech.
1970: Paradiso & Nowak. 1971: Ensely. 1986: Fuller. 1989a: Fuller. 1989b: Waddell.
1995).
Ovarian Cycle

The classical stages of the canine estrous cycle ure anestrus. proestrus. estrus. and
metestrus (Heape. 1900). In recent years. the term diestrus has largely replaced the term
metestrus in the bitch (Olson et al., 1984a. Concannon. 1991). In wild canids for which
there is relevant information. the estrous cycle tollows the general trends observed in the

domestic bitch (Méller. 1973: Kennelly & Johns, 1976: Seal et al.. 1979: Stellflug et al..



1981: Seul et al.. 1987: Pauiraj et al.. 1992. Wasser et al.. 1995: Monfort et al.. [997:
Velloso et al.. 1998).

Anestrus is the period of apparent reproductive quiescence following diestrus
(Concannon, 1991). In the domestic dog. anestrus ranges trom 2-10 months. with an
average ot 4 months (Feldman & Nelson. 1987: Concannon. 1991).

Proestrus is a period of heightened follicular activity (Feldman & Nelson. 1987).
[n response to increasing levels of estrogen. proestrus is marked by a discharge of
serosanguinous fluid through the vagina. vaginal comification and bleeding. progressive
increases in vulval edema. and pheromonal attraction of males (Feldman & Nelson 19¥7:
Concannon. 1991). During the majority of proestrus. the bitch refuses to permit mounting
by turning and growling at the male. Near the end of proestrus the bitch may permit
mounting. but usually prevents intromission by lying or sitting down (Concannon. 1991).
Proestrus in the domestic dog can be as briet as 1-3 days or as long as 3 weeks: the average
duration is 9 days (Christie & Bell, 1972: Feldman & Nelson. 1987: Concannon 1983).
Physical signs of proestrus in wild canids. such as vaginal bleeding and swelling. appear to
be longer in duration compared to their domestic cousin. ranging in duration trom [-6
weeks in gray wolves (Seal et al.. 1979) to as long as 2-3 months in coyotes (Kennelly &
Johns. 1976: Stellflug et al.. 1981). However. studies indicate that the duration of
proestrus for the maned wolt (Chrysocyon brachyurus; mean 10.6 days. Velloso et al..
1998) and raccoon dog (Nyctereutes procyonoides: mean 7.6 days. Valtonen et al.. 1977)
fall within the range described for the domestic dog.

Estrous behaviour within the genus Canis is characterized by retlex or spontancous
stiffening and deviation of the tail, firmly standing to permit mounting, and a reflex
lordosis-like presentation of the vulva (Concannon et al.. 1979b: Seal et al.. 1979: Beach et
al.. 1982: Pauiraj et al., 1992, Monfort et al., 1997). In the domestic dog estrus may be as
short as 3 days or last for several weeks. but it is generally 4-12 days in length, with an

average of 9 days (Concannon, 1991). The duration of estrus in wild canids appears to be



highly variable: gray wolt (3-15 days; Seal et al.. 1979) coyote (mean of 10.2 days:
Kennelly and Johns, 1976) silver fox (Mulpes vulpes. 1.5-5 days: Lindeberg et al.. 1993)
raccoon dog (mean of 4 days: Valtonen et al.. 1977) dhole (Cuon alpinus, 14-39 days:
Pauiraj et al.. 1992) bush dog (1-12 days: Porton et al.. 1987) African wild dog (Lycaon
pictus, 6-9 days: Monfort et al., 1997). Characterization of red wolt behaviours associated
with courtship and breeding are currently under investigation (T. Wagner. personal
communication).

Estrous behaviours in domestic dogs are a response to a decline or withdrawal of
estrogen. and are facilitated by a rise in progesterone (Concannon et al., 1979b. Beach et
al.. 1982: Feldman & Nelson. 1987). This theory is supported by the administration of
estradiol alone followed by either the absence or administration of progesterone to
ovariectomized domestic bitches. Behavioural estrus was not displayed until after the
administration of estradiol was halted, and the onset of estrus was more synchronous when
progesterone was administered at the time of estrogen withdrawal (Concannon & Hansel.
1975). Estrous behaviours, including copulation. also have been observed during
declining estrogen and rising progesterone concentrations in serum samples from gray
wolves (Seal et al.. 1979) and fecal samples from African wild dogs (Monfort et al.. 1997)
and maned wolves (Velloso et al., 1998).

In the domestic dog it has been reported that intromission and mating may not oceur
until a few days after the onset of estrous behaviour. During estrus. the vulva must
progress through a turgid phase to become soft and tlaccid. therefore no longer providing a
difficult barrier for male penetration (Feldman & Nelson. 1987). Mating is usually 5 to 45
minutes in duration and usually results in a copulatory tie. during which the male
dismounts and stands beside or behind the bitch, with the penis locked in the vagina. The
lock withstands tugging and pulling. and is terminated by detumescence of the penis
(Concannon, 1991). The copulatory tie that is common among domestic canids also has

been observed in the maned wolf (Rodden. 1995). gray wolt (Busch. 1995). red wolf (S.



Behms personal communication), coyote (Sheldon. 1992). raccoon dog (Valtonen et al..
1977) and the dhole (Pauiraj et al., 1992). The tie appears to be slightly shorter in duration
in wild canids. perhaps as mechanism tor survival in the wild (Pauiraj et al.. 1992:
Sheldon. 1992; Busch. 1995)

Diestrus begins once the bitch stops accepting the male (Evans & Cole. 1931: Olson
et al.. 1984a) and is considered to last until the subsidence of the effects of luteal phase
progesterone.  Diestrus can be characterized by mammary gland development or
progesterone measurement in the nonpregnant or pseudopregnant bitch. There is no acute
luteolytic mechanism in the dog, and the transition from diestrus to anestrus is gradual
(Concannon, 1991). The luteal phase in a pregnant bitch ends with parturition
(Concannon, 1986b).

Follicular and Hormonal Changes

It has been suggested that developing follicles can occur in bitches of all ages.
breeds and stages of the estrous cycle (Durrant et al.. 1998).  Throughout much  of
anestrus. the ovaries of the domestic dog contain slow but continuously developing
follicles. with most becoming awretic (Feldman & Nelson. 1987). Follicles that develop
parallel to gonadotropin stimulation mature and attain the ability for estrogen synthesis and
secretion (Feldman & Nelson. 1987). During the onset of proestrus. follicular atresia
continues to overtake the majority of vesicular follicles. However. some remain viable and
continue to enlarge. A characteristic feature of the ovary at the onset ot proestrus is the
presence of several follicles 1.0-1.5 mm in diameter. During proestrus. antral follicles
increase in size and by late proestrus reach 3-4 mm in diameter. At the onset of estrus.
follicles appear much as they did in late proestrus except that they measure 3-5 mm in
diameter (Anderson & Simpson. 1973). In the domestic bitch preovulatory follicular
development has been detected as early as L1 days before ovulation. with the most rapid

follicular maturation occuring 2 to 3 days betore ovulation (Wildt et al.. 1977).



Although anestrus has been reterred to as the quiescent phase ot the canine ovarian
cycle. studies suggest that neither the ovary nor the pituitary gland are completely quiescent
during anestrus (Olson et al., 1982). Fluctuations have been identified in both pituitary
hormones and ovarian steroids (Feldman & Nelson, 1987).

Serum estradiol or estrogen levels in the domestic dog tluctuate throughout
anestrus, usually ranging between 5-20 pg/ml (Concannon. [991). Surges in estrogen (in
the range of 30-50 pg/ml) also have been observed (Olson et al.. 1982). and are assumed to
be derived trom waves of follicle development (Feldman & Neison. 1987). During early
proestrus. estrogen concentrations range trom [(-20 pg/ml (Concannon & Lein. 1989).
Peak concentrations of estrogens range from 50-100 pg/ml and are attained in late proestrus
or early estrus, generally 0-3 days before the preovulatory surge in luteinizing hormone
(LH: Edquist et al.. 1975. Concannon et al.. 1975: Hadely . 1975: Nett et al.. 1975: Wildt
et al.. 1979a: Chakraborty. 1987. Concannon. 1991). Estrogen levels decline during
estrus to concentrations of 5-20 pg/ml (Concannon. 1991). and represent the tinal follicular
maturation process prior to ovulation (Feldman & Nelson. 1987). Concentrations of serum
estrogens in the gray wolf and coyote during late anestrus. proestrus and the estrogen surge
have been reported to tall within ranges reported ftor the domestic dog (Seal et al.. 1979.
Stellflug et al.. 1981). Changes in estrone concentrations reported throughout most of the
domestic dog ovarian cycle tend to parallel those of estradiol (Wildt et al.. 1979:
Chakraborty. 1987).

Plasma progesterone concentrations in bitches increase during proestrus trom
baseline values of 0.4-0.6 ng/ml to values of 0.8-1.2 ng/ml at the time ot peak estradiol
levels (Concannon. 1986a. Concannon et al., 1977a). Progesterone increases rapidly
above 1.0 ng/ml during the LH surge as estrogen concentrations fall (Wildt et al.. 1979:
Chakraborty. 1987: Concannon et al.,, 1977a). Progesterone concentrations are ~ 4-¥
ng/ml at the time of ovulation. which occurs ~ 2 days after the LH surge (Wildt et al..

1979: Concannon. 1986a).



Plasma/serum LH concentrations have been reported to be low and variable during
anestrus, and low during proestrus and estrus except during the preovulatory surge (Smith
& MacDonald. 1974; Concannon et al.. 1975: Nett et al.. 1975: Concannon et al.. 1977a:
Chakraborty. 1987). Generally, LH serum concentrations during anestrus are well below
LH peak values. representing only 10-20% of peak values (Concannon. 1991). However.
LH pulses of 2-25 ng/ml have been detected at intervals of 2-8 hours throughout anestrus.
Inter-pulse levels were 0.2-1.2 ng/ml. Just prior to the onset of proestrus. pulse intervals
increase to 60-90 minutes and mean LH levels are elevated to 3 ng/m! (Concannen et al..
[986: Concannon. 1989: Concannon et al.. 1989). During proestrus. LH levels are low
and pulses are nondectecable. possibly due to estrogen negative feedback. LH
concentrations increase to peak levels, ranging trom 8-50 ng/ml during the preovulatory
surge (Concannon, 1991).

Unlike LH. follicle stimulating hormone (FSH) does not have wide fluctuations in
peripheral concentrations. This hormone varies only slightly throughout anestrus before
declining with the onset of proestrus. presumably due to negative feedback ettects of
estradiol and inhibin. Follicle stimulating hormone then rises with the LH peak (Reimers et
al.. 1978: Olson et al.. 1982. Concannon. 1993). Mean levels of FSH during anestrus
may surpass levels observed during the preovulatory surge. and concentrations have been
reported to be 50-100% of those of the periovulatory peak (Olson et al.. 1982: Concannon.
[991). Unlike that of LH. the pulsatile nature of FSH secretion during anestrus has not
been clearly demonstrated. probably because of the relatively small increases in magnitude
and the longer half-life ot this hormone (Concannon. 1993).

Compared to most domestic and laboratory animals. there is a paucity of
information regarding regulation of gonadotropin secretion or control of ovarian activity by
gonadotropins in the female dog (Concannon. 1991). It is likely a complex interaction
between environment. age. ovarian status, general health, and other yet unidentitied tactors

that dictate roles for FSH and LH (Feldman & Nelson. 1987).



Studies have demonstrated a pulsatile release of LH secretion in the bitch (Hegstad
et al.. 1993: Jettcoate. 1993: Hotfmann & Schneider. 1993). [t has been suggested that
anestrus may be naturally terminated by an increase of this episodic release, resulting in an
elevation of mean LH levels shortly before proestrus (Concannon et al.. 1986; Concannon.
1989). However, the mechanisms involved in altering the LH secretion pattern remain
unknown (Concannon, [991). A minor. but significant increase in estradiol has been
observed shortly before the onset of proestrus (Jeffcoate. 1993). Such elevations in
estradiol may result in an increased rate of pulsatile LH secretion and/or may also be the
result of increased LH secretion. Together. both mechanisms could be involved in a briet
positive feedback tor the initiation of proestrus (Concannon. 1993). This theory can be
supported by data that demonstrate the induction of proestrus by injections ot LH alone
(Concannon. 1993) and by administration of estrogen alone (Bouchard et al.. 1993).

As demonstrated in other species. gonadotropin-releasing hormone (GnRH)
routinely causes the release of LH and FSH in the domestic canid (McRae et al.. 1985:
Vanderlip et al.. 1987; Van Haaften et al. 1992: Concannon. 1993). The administration of
a GnRH agonist for 14 days in an anestrus bitch stimulated LH and FSH secretion and
resulted in the successful induction of estrus and the production of two pups (Concannon.
1993). It is possible that elevated LH concentrations at the end of anestrus involve an
increase in sensitivity to GnRH in addition to an increase in pulse frequency (Concannon.
1993). It also has been reported that the sensitivity ot the LH response to GnRH was
higher during late anestrus than during early anestrus (Van Haaften et al.. 1992). The
cause of the increase in sensitivity remains unknown (Concannon, 1993).

Concannon (1993) suggests that both FSH and LH are folliculotrophic hormones.
The administration of FSH alone or LH alone can cause follicular growth and induce
proestrus (Concannon, 1993). However. alterations in LH. not FSH secretion. may be
more significant in the initiation of a functional follicular phase. as FSH appears to be

elevated throughout most of anestrus and LH concentrations are usually low except near the
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end of estrus LH secretion. This assumes that the biopotency of FSH does not increase
during late anestrus. Therefore, either the start of a follicular phase does not require FSH.
or follicles acquire responsiveness to FSH at the end of anestrus. perhaps due to increased
concentrations of LH and estradiol (Concannon. 1993).

Prolactin also may play a role in the initiation of the ovarian cycle in the domestic
bitch. Suppression of prolactin with dopamine agonists causes an extensive shortening of
interestrous intervals (Okkens et al.. 1985a: van Haaften et al.. 1989) and induction of
estrus in temales with a prolonged anestrus (Arbeiter et al.. 1988: Jochle et al.. 1989).
However. no obvious alterations in prolactin concentrations have been observed in late
anestrus  (Olson et al.. 1982), suggesting modifications in prolactin receptors may be
involved (Concannon. 1993).

As with other species. endogenous opioids appear to modulate LH release in the
ovarian cycle of the domestic dog (Concannon & Temple. 1988). The responsiveness to
naloxone. an opioid antagonist. late in anestrus was c¢levated compared to the proestrus
phase. The authors suggest that there is an endogenous opioid tone inhibiting LH rlease
during late anestrus and a possible decline in opioidergic tone or decline in non-opioid
inhibitory mechanism which may causes the onset of proestrus.

Ovulation

It has been suggested that changes in sexual behaviour can be related to ovulation
(Christiansen. 1984). Holst & Phemister (1971) indicated that ovulation occurred 24-48
hours after the bitch first allowed mating. Later. studies demonstrated that ovulation may
occur over several days following the beginning of standing estrus (Wildt et al.. [978).
Penton et al. (1991) used circulating progesterone and LH to determine time of ovulation
and elucidate its relation with behaviour. Their results indicate that the time of ovulation
bore little relation to alterations in sexual behaviour. It also has been demonstrated that
signs of proestrus. such as vulval swelling or serosanguinous discharge, may occur 3

weeks to 3 days prior to the LH peak. while first acceptance of a male can occur as early as

11



4 days before or as late as 6 days after the LH surge (Concannon. 1983, Concannon.
1986a). In relation to behavioural estrus. the time of ovulation in the coyote is highly
variable. It may occur as early as the Ist day of estrus or as late as the 9th (Kennelly &
John. 1976). This suggests that the timing of ovulation is more precisely determined by
endocrine changes rather than by observations ot behavioural or clinical changes.

Declining estradiol concentrations with increasing progesterone concentrations are
associated with the LH surge in the domestic bitch (Smith & MacDonald. 1974: Concannon
et al.. 1975, Concannon et al.. 1977a: Concannon et al.. 1979b: Wildt et al.. 1979: Olson
et al., 1982). The pre-ovulatory LH surge has been demonstrated to occur concurrently
with elevations in progesterone concentrations: the two coincide on the same day or may
differ by only a single day (Concannon et al.. 1977a: Penton et al.. 1991). This
phenomencn also has been demonstrated in gray wolves. in which the initial increase in
progesterone concentrations from baseline values occurred during the LH surge (Seal et al.
1979).

In the domestic dog the preovulatory LH surge represents a 20-40 fold increase in
LH levels and a 2-4 fold increase in FSH levels. The LH surge may last tor 1-4 days and
generally occurs near the onset of estrus, (-3 days after the estrogen peak of late proestrus
(Smith & MacDonald. 1974: Nettet al., 1975: Concannon et al.. 1975. Concannon et al..
1977a. Wildt et al., 1978). Similar to the domestic dog. the gray wolf exhibits a
preovulatory LH surge which last for 3 days immediately tollowing the estrogen peak (Scal
et al.. 1979).

Ovulation. which is spontaneous in the bitch. has been reported to occur 1-3 days
following the LH surge (Wildt et al.. 1978). although others reported little variation in the 2
day interval between the LH surge and ovulation in the bitch (Phemister et al.. 1973:
Concannon et al., 1977a. Concannon et al.. 1989). Duration of ovulation has been
variably recorded as transpiring over only a few hours (Holst & Phemister. 1971:

Phemister et al.. 1973: Concannon et al.. 1977a: Anderson & Simpson. 1973). 12-72



hours (Graf. 1978) or even over several days (Wildt et al.. 1977: Wildt et al.. 1978).
Perhaps the discrepancy regrading the duration of ovulation is related to the technique used
(histologic or laprascopic). Unlike most species. the ovary of the domestic bitch is
completely surrounded with a fatty bursa which inhibits the direct examination of the ovary
(Wildt et al.. 1977).

Follicles which fail to ovulate following the LH surge undergo atresia (Feldman &
Nelson, 1987). The number of ova released is partially dependent upon the breed of the
bitch. Based on litter size. smaller breeds tend to ovulate tewer ova (2-10) than larger
breeds (5-20 ova: Feldman & Nelson, 1987). An approximation of the number of ova
released and corpora lutea (CL) formed tollowing an ovulatory surge of LH was
determined through examination of ova recovered after flushing either the oviduct or uterus
at different intervals post-ovulation. The number of CL identified on the ovary seldom
agreed with the number of ova collected. with the average numbers of ova and CL being
5.4 (range 2-9) and 7.6 (4-9). respectively (n=10) dogs: Penton et al.. 1991).

The timing of the LH surge can be supported by studies in which ovariectomized
bitches received estradiol-releasing implants and increasing doses of injected estradiol
benzoate. Ceasing injections. estradiol concentrations fell and patterns of LH secretion
were investigated with or without the simultaneous administration of progesterone. The
decline in estradiol caused preovulation-like surges in LH which were fturther tacilitated by
the administration of progesterone (Concannon et al.. 1977a. Concannon et al.. 1979a).
These temporal hormonal relationships have lead to the idea that in the bitch. elevated
estradiol concentrations maintain a negative feedback eftect on LH secretion. Further. the
preovulatory LH surge is initiated by a failure of an additional estradiol increase or decline
and is facilitated through an elevation in progesterone levels (Concannon et al.. 1979b).
Ovariectomy at any stage in the reproductive cycle results in a rapid and lasting increase in
LH and FSH concentrations. Estradiol appears to be the major, and perhaps only. ovarian

hormone involved in this negative feedback (Concannon & Hansel. 1975: Concannon at
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al.. 1979a). The administration of increasing estradiol concentrations to ovariectomized
bitches. even when above normal peak values. suppresses LH levels (Concannon et al..
1979a). In contrast, the administration of progesterone. or progesterone agonists does not
reduce LH in ovariectomized bitches (McCann et al.. 1987). As with LH. FSH secretion
in either ovariectomized or intact bitches is inhibited following the administration of
estradiol but not by the administration of the progestagen megestrol acetate (Colon et al..
1993: Concannon. 1993). The ability of progesterone to synergize with estradiol and
produce a negative feedback suppression of LH has been investigated in the anestrous
bitch. Basal LH levels maintained at low values by endogenous estrogen were not turther
reduced through the administration of megestrol acetate (Colon et al.. 1993).

Administration of LH or human chorionic gonadotropin (hCG) causes pro-estrual
follicles to luteinize or ovulate (Concannon. 1993). However. FSH. in addition to LH.
may serve as an ovulatory hormone. In the absence of a distinct detectable LH surge and
associated with a near-normal FSH surge. spontaneous fertile ovulations have been
observed in bitches induced with an agonist of GnRH tollowing proestrus (Concannon.
1989: Concannon. 1993). Factors regulating FSH concentrations in the periovulatory
period are likely to be similar to those which regulate LH (a decrease in the
estradiol:progesterone ratio), except that, as in other species. ovarian inhibin promotes the
suppression of FSH secretion during proestrus (Concannon. 1993). Although is has been
demonstrated that GnRH stimulates gonadotropin release in dogs (MacRae et al.. 1985:
Vanderlip et al.. [987: Van Haaften et al. 1992: Concannon. 1993). whether a preovulatory
surge in GnRH secretion triggers the surge releuse of LH and FSH has not been
investigated in the domestic dog (Concannon. 1993).
Pregnancy and Pseudopregnancy

Once released. oocytes (~120 um in diameter: Holst & Phemister. 1971) pass
through the bursal cavity into the proximal portion of the oviduct within a few hours

(Anderson & Simpson. 1973). The bitch ovulates primary oocytes (Evans & Cole. 1931:

14



Anderson & Simpson. 1973; Tsutsui, 1975). which may require 2-5 days tor the
completion of meiotic maturation (Tsutsui. [989). The tormation of polar bodies
complete meiosis occurs in the mid- and distal portions of the oviduct (Holst & Phemister.
1971: Anderson & Simpson, 1973; Phemister et al.. 1973). On average. oocyte maturation
is believed to occur within 2-3 days post ovulation and. theretfore 4-5 days after the LH
surge (Concannon et al., 1989). Significant oocyte maturation can transpire within 2 days
(Mahi & Yanagimachi. 1976): however. oocytes may remain fertile for an additional 2-3
days (Tsutsui & Shimizu. 1975) since fertile matings have occured 7-8 days after the LH
peak (Concannon et al.. 1989). Fertile matings earlier than 2 days betore or 9-10 days
after the LH peak are rare and result in reduced litter sizes (Concannon. 1986a. Concannon
et al.. 1989). Fertilization takes place in the distal portion of the oviduct (Anderson &
Simpson. 1973). Ova may remain quiescent in the oviduct of ditterent individuals tor
diftering periods of time prior to fertilization suggesting that individual variation may accur
with respect to the timing of fertilization (Tsutsui. 1975. Penton et al.. 1991). The embryo
of the bitch remains in the oviduct for ~9-10 days tollowing ovulation. then enters the
uterus either in the morula or early blastocyst stage (Anderson. 1927: Penton et al.. 1991).
Free tloating blastocysts ure present in the uterus between days 8 and 20. and during this
period edematous areas appear in the endometrium which represent future implantation sites
(Holst & Phemister. 1971). Implantation in the dog has been reported to occur 13-20 days
after ovulation (Griftiths et al., 1939: Thatcher. 1997).

Gestation length in the domestic dog from fertile mating to parturition has been
reported from 55-68 days: however, gestation length recorded trom the preovulatory LH
peak to parturition is 64-66 days (Concannon et al.. 1983, Concannon et al.. 1989). In
wild canids it has been reported that gestation length tends to increase with adult size.
ranging from 48-58 days in the smaller tox-like canids (Sheldon. 1992) to 58-65 days in
the larger wolf-like canids (gray wolves, 60-65 days. Seal et al. 1979: Lentfer & Sanders.
1973: maned wolves. 65 days, Brady & Ditton. 1979: Vellero et al.. 1998: dhole. 62.7
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days. Pauiraj et al.. 1992; coyote, 58-61 days: Gier 1975). Litter size in the domestic canid
ranges trom 1-23 pups: in most breeds the average litter size is between 4 and 8 pups
(Christiansen. 1984). Reported litter sizes in the gray wolf (1-13. average 6: Sheldon.
1992), coyote (2-12. average 4-7; Gier. 1975). and red wolf (2-8. average 3-4. Riley &
McBride. 1972: Parker 1988) are similar to that of the domestic dog. [In general, litter size
in wild canids is reported to increase with increased adult weight (Moehlman. 1992).

Post-implantation pregnancy can be detected by palpation (Concannon. {983)
and/or ultrasound (Bondestam et al., 1983). To date there are no readily available
endocrine methods tor the early diagnosis of pregnancy in the domestic bitch. However.
reluxin is detectable in plasma by radioimmunoassay after the third week of gestation
(Steinetz et al.. 1987; Steinetz et al.. 1989) and total urinary estrogens are elevated 21 days
after mating (Richkind. 1983). Both have been suggested as possible pregnancy diagnostic
tools and just recently a relaxin assay became commerically available (Repro Chek.
Synbiotics).

The long luteal phase of the nonpregnant ovarian cycle has been termed a
physiological pseudopregnancy (Stabenteldt & Shille. i1977). Unlike the terret or cat.
which experience a pseudopregnancy. the long luteal phase in dogs occurs spontaneously
and is not dependent on mating-induced ovulation or activation of luteal function. Overt or
clinical pseudopregnancy varies with breed and individual and is characterized by extensive
mammary gland development and behavioural changes typical of pregnancy and lactation
(Concannon. 1991).

Endocrinology

Litle or no significant difference has been reported in circulating plasma
progesterone levels for pregnant and nonpregnant bitches (Hadely. 1975: Nett et al.. 1975:
Austad et al.. 1976: Reimers et al., 1978: Concannon et al.. 1989: Onclin & Verstegen.
1997). However. the presence of secondary increases in progesterone following

implantation have been suggested (Smith & MacDonald. 1974; Concannon et al.. 1977b).
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Concannon (1991) outlined that during pregnancy. progesterone concentrations reach peak
levels of 15-80) ng/ml ranging trom days 12-30. slowly decline to values ot 2-10 ng/ml by
day 45. and less than | ng/ml by days 60-110. Estradiol values reach values of 5-20 pg/ml
in the early luteal phase. followed by a slight increase before returning to low variable
concentration during anestrus (Concannon. 1991). Most studies report that mean estradiol
or total estrogen levels are not significantly different during the last halt of pregnancy when
compared to the nonpregnant bitch (Edqvist et al.. 1975: Hadely. 1975: Nett et al.. 1975:
Austad et al.. 1976: Graf. 1978; Reimers et al.. 1978). Estone levels follow similar
patterns to those of estradiol. except that a pregnancy-specitic increase in estrone levels has
been suggested (Chakraborty, 1987). It also has been reported that mean levels ot serum
sex steroids were higher in the nonpregnant bitch than in pregnant bitches during weeks |
through 6. and weeks | through 3 tfor progesterone and estradiol. respectively
(Chakraborty. 1987). With the exception of a few studies. differences in progesterone and
estrogen concentrations between nonpregnant and pregnant bitches may not be obvious as
pregnancy is associated with: 1) an increase in blood volume diluting concentrations in
serum and plasma. and 2) a possible increase in clearance rate due to an elevated
metabolism (Concannon et al., 1977b). However. pregnancy related ditferences in both
progesterone and estrogen fecal metabolites have been found in the domestic dog
(Gudermuth et al.. 1998) and the maned wolf (Wasser. 1995: Vellero. 1998).

Luteal Maintenance and Life Span

Secretion ot progesterone and maintenance ot luteal tissues during pregnancy we
dependent on pituitary secretion of luteotrophic hormones since pregnancy can be
terminated at any stage by hypophysectomy (Concannon. 1980). The two main
luteotrophic factors involved in regulation of the canine CL are LH and prolactin (Okkens et
al. 1986: Concannon et al.. 1987; Okkens et al.. 1990). It has been suggested that LH and
prolactin may exert their activities through different mechanisms (Hoffman & Schneider.

1993). The removal of LH, using anti-LH serum. leads only to a temporary decrease in
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progesterone. The removal of prolactin. using bromocriptine. results in an irreversible
decrease in progesterone concentrations (Concannon et al.. 1987).

Luteotrophic control of the dog CL appears to shitt trom the first to second half of
the luteal phase (Olson et al.. 1989). Corpora lutea are more resistant to luteolytic tactors
during the early luteal vs. late luteal phase (Concannon. 1989). Observed decreases in
progesterone levels tollowing hypophysectomy were more pronounced during late rather
than early stages of diestrus in the nonpregnant bitch (Concannon. 1980: Okkens et al..
1986). Following administration of a LHRH antagonist. it was determined that the CL in
the pregnant dog may be independent of pituitary luteotrophins up until ~Day 0 of
pregnancy and dependent upon pituitary luteotrophins after Day 22 (Vickery et al.. 1987).
The luteotrophic hormone requirements of the carly developing CL have yet to be
determined (Concannon. 1995).

Pregnancy-specific increases in prolactin (~25 days after the LH surge) have been
reported in the domestic dog (Knight et al.. 1977: Concannon et al.. 1978: De Coster et al..
1983: McCann et al.. 1988: Concannon ¢t al.. 1989. Onclin & Vertegen. 1997). It has
been suggested that prolactin is the main luteotrophic tuctor during the second half of
pregnancy. but its mode ot action remains unknown (Onclin & Verstegen. 1996). The low
prolactin concentrations observed during the luteal phase of the nonpregnant bitch suggests
that its role in the nonpregnant bitch is less significant than in pregnancy (Onclin &
Verstegen. 1997).

Progesterone may be the only ovarian steroid required for maintenance of
pregnancy. since synthetic progestins can maintain pregnancy in the ovariectomized bitch
(Sokolowski. [971: Concannon et al., 1977b). However. progesterone alone may not be
the only hormone necessary for all aspects of pregnancy. as mammary enlargement did not
occur in ovariectomized bitches during the maintenance of pregnancy by administration of a
synthetic progestagen (Steinetz et al.. 1989). The concentrations of progesterone during

pregnancy appear to be in excess. as bitches treated with doses of prostaglandins (which
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produce an incomplete luteolysis) have been able to maintain pregnancy despite reductions
in progesterone levels to < 2 ng/ml for several days (Concannon & Hansel. 1977: Vickery

& McRae. 1980: Jackson et al. 1982). Corpora lutea remain the main source of
progesterone and are required tor maintenance of the entire pregnancy (Concannon et al..
1977b). Ovariectomy at any stage results in the termination of pregnancy (Sokolowski.
197 1; Anderson & Simpson. [973). Histochemical studies of the dog placenta suggest that
there is little if any de-novo placental steroidogenesis (Kiso & Yamauchi. 1984).

Estrogens do not increase dramatically during pregnancy. This appears to be
critical. since abnormally high estrogen levels can terminate a fully established post-
implantation pregnancy (Concannon. 1977b). However. the presence of estrogens is
essential during pregnancy. as they contribute to the synthesis and/or availability of
progesterone receptors (Concannon et al.. 1989).

To date. no luteolytic mechanism has been demonstrated in the dog (Hotfman &
Schneider. 1993). Mechanisms allowing luteolysis may be: 1) reduced responsiveness to
luteotrophic stimuli and/or 2) a decrease in luteotrophic support.  Studies have
demonstrated concentrations of LH and prolactin may increase in the serum ot pregnant and
nonpregnant bitches during late diestrus. Therefore. luteal regression likely occurs
independently of the availability of LH and prolactin (Olson et al.. 1984a: Chakraborty.
1987: Hoffman & Schneider. 1993). It also hus been demonstrated that prolactin and LH
receptor formation remain constant during diestrus. making endogenous control of
luteolysis difficult to explain (Fernandes et al.. 1987: Hottman & Schneider. 1993).

As with some other species. the CL of pregnant and nonpregnant bitches are
responsive to the luteolytic effects of prostaglandin (PG) F-2a. Experiments have
demonstrated that the CL of pregnant dogs in the late luteal phase may be more sensitive to
PG-induced luteolysis than during early luteal phase (Concannon & Hansel. 1977: Paradis
et al., 1983). However. dogs in general appear to be less sensitive to the luteolytic eftects

of exogenous PGF-2a than most domestic species. Prolonged administration of relauvely
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high doses. often resulting in severe side effects. is required to acheive luteolysis
(Concannon et al.. 1989). In many species. the uterus may be involved in regulating luteal
regression (Olson et al. 1989): however, hysterectomy does not influence luteal function in
the dog (Olson et al.. 1984¢: Okkens et al.. 1985b).

In the nonpregnant bitch there appears to be no acute luteolytic mechanism
(Concannon. 1995). There is a slow regression of the CL resulting in an undramatic
decline of progesterone to near basal levels 60-90 days after ovulation (Concannon et al..
1989). In the bitch. it hus been suggested that pregnancy is normally terminated by an
acute prepartum luteolysis and abrupt tall in progesterone over the 24 hour period prior to
parturition. The mechanisms involved are speculated to involve the maturation ot the fetal
pituitary adrenal axis. etfects of fetal glucocorticoids on placenta/uterus. and release of
luteolytic levels of PGF-2a into the circulation (Concannon et al.. 1988. Concannon.
1995). The mechanism by which endogenous PGF-2a depresses progesterone
concentrations is unknown (Concannon et al., 1989).

Artificial Insemination

As canids are generally monoestrus. detection of the time of peuk fertility is critical
to breeding management. As mentioned previously. tor the domestic dog. oocyte
maturation is believed to occur within 2-3 days of ovulation and 4-5 days atter the LH
surge (Concannon et al.. 1989). Dog sperm have been reported to remain fertile tor up to
6-7 days in the female reproductive tract (Doak et al.. 1967: Concannon et al.. 1983):
however. the average is probably only 2-3 days. since fertility decreases in breedings
which occur more than 1 day prior to the LH surge (Holst & Phemister. 1974: Holst &
Phemister. 1975).

Natural mating of the bitch usually results in a conception rate of greater than 90%
(Holst & Phemister. 1974: Farstad, 1984: Johnston. 1995). Vaginal artificial insemination
(AI) using fresh semen can give comparable results to natural matings when the timing is

right and the semen quality is high (Linde-Forsberg & Forsberg. 1989). The pregnancy
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rate from frozen semen varies considerably (25%-809%: Olar. 1985: Linde-Forsberg &
Forsberg: 1989: Farstad. 1984; Farstad & Anderson-Berg: 1989; Fontbonne & Badinand.
1993: Linde-Forsberg & Forsberg, 1993: Wilson. 1993) and is dependent upon a number
of factors. such as site of semen deposition. timing of insemination. semen quality. sperm
dose and frequency of insemination (Wilson. 1993). Repeated inseminations using frozen
semen have been reported to result in higher conception rates compared to single
inseminations (Farstad & Anderson, 1989: Linde-Forsberg & Forsberg. 1989: Linde-
Forsberg & Forsberg. 1993). Investigators also have reported significantly lower
pregnancy rates with vaginal insemination than with intrauterine deposition of frozen
thawed semen (Anderson. 1972; Anderson, 1974: Smith & Graham. [984: Olar. 1985).
Theretore. a high Al success rate with frozen-thawed semen requires deposition of semen
into the uterine body (Fontbonne & Badinand. 1993) by either cervical cannulation or
surgical insemination. Post-thaw longevity of frozen spermatozoa is usually short-lived:
therefore. insemination must be timed so that the ova present in the uterus or oviduct are
mature. The peak time for Al in the domestic bitch with frozen-thawed sperm is 4-5 days
after the LH peak (Battista et al.. 1988; Concannon & Battista. 1989).

There are very tew accounts of successtul assisted reproduction in wolves. Seager
et al. (1975) reported a successful pregnancy in a gray wolt using trozen-thawed semen.
Timing for the 4 vaginal inseminations was based on vaginal cytology and bleeding. A
single litter of red wolf pups also has been produced using tresh semen, obtained by
electroejaculation, and surgical deposition into the uterine horns (Waddell & Platz. personal
communication). Timing for the 2 surgical inseminations was determined through daily
vaginal cytology and serum progesterone concentrations.

Male Reproductive Cycle
Endacrinology and Spermatogenesis
Pituitary gonadotropins are the major controiling mechanisms in spermatogenesis

and androgen production (Eik-Nes. 1962: DePalatis et al.. 1978: Kawakami et al.. 1997).
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In most species. regulation of FSH and LH is controlled by secretions of gonadal steroids.
peptides (e.g. inhibin) and ultimately, GnRH (England. 1997). As with other species.
GnRH stimulates the release of LH (Jones & Boyns. 1976: Jones et al.. 1976) and a
subsequent rise in serum testosterone levels within the male domestic dog (Lacoste et al.
1988: Knol et al.. 1993: Purswell & Wilcke. 1993). Knol et al. (1993) were able to
demonstrate a dose dependant relationship between GnRH and LH response. However the
lack of relationship between GnRH and testosterone response. suggests that GnRH does
not directly etfect Leydig cell tunction in the male dog. Follicle stimulating hormone levels
also have been shown to increase following the administration of u GnRH analogue:
however. the response was not as dramatic as was observed for LH (Purswell & Wilcke.
1993). These authors suggest that the slow elevation of FSH over a 72 hour period may be
due to a delayed reponse to the GnRH analogue or merely a normal diurnal variation. To
date. very little information is available regarding FSH in the muale or temale dog
(Concannon, 1993; Puswell & Wilcke. 1993).

In the domestic dog. castration elevates the mean concentration of plasma LH. but
does not etfect the rhythm of LH secretion (DePalatis et al.. 1978). Luteinizing hormone
secretion is episodic in the male dog with peaks occuring at intervals of 1.5 to 5 hours.
tollowed by surges in testosterone 60 minutes later (DePalatis et al.. 1978). In the
domestic dog there is little information regarding the effects of gonadal steroids on
suppressing spermatogenesis and sexual behaviour (England. 1997). Studies that have
been conducted. using exogenous progesten and androgens. have demonstrated minimal
etfects upon semen quality and libido (Wright et al.. 1979: Taha. 1980: Paramo et al..
1993). A recent study suggests that the sensitivity ot the pituitury-hypothalamus to
progestogen feedback in the male domestic dog may be different from that of other species.
Progestins may have a direct action upon sperm quality by ucting on the epididymal phase
of development (Engiand. 1997). In contrast, androgens have an indirect action upon

sperm quality. causing the suppression ot gonadotrophs (England. 1997). It also has been



demonstrated that LH secretion is inhibited more by estradiol than by testosterone (Jones et
al.. 1976; Winter et al.. 1982) and that aromatization of androgens to estrogens in the brain
regulates LH secretion (Aman. 1986).

One cycle of the seminiferous epithelium in the domestic dog has a duration of 13.6
days (Foote et al.. 1972). while spermatogenesis ranges trom 52-70 days (Ghosal et al..
1983: Shille & Stabenfeldt. 1986). The transit ime of sperm cells through the epididymis
has been estimated at 14 days (Austin & Short. 1972). The duration of spermatogenesis
and epididymal transport time have also been estimated in the coyote and closely resemble
that of the domestic dog (Kennelly. 1972). One cycle of the seminiterous epithelium was
13.6 days. arrival in the caput epididymis ranged from 37-40 days. and epididymal
transport time was estimated at 14 days.

Seasonality

Male domestic dogs are sexually active year-round (Concannon 1991). producing
sperm throughout the year with unchanged efficiency (Aman. 1986). However. Kuroda &
Hiroe (1972) have reported that sperm production in the domestic dog declines during the
summer. Falvo et al. (1980) also suggest the possiblity of ancestral seasonality in male
mongrel dogs. Measurements of serum LH and testosterone indicated an alteration in the
annual cyclic pattem of LH secretion and a significant rise in testosterone during late
August/early September.

In contrast. most non-domestic canid species experience strict reproductive
seasonality [red tox. Lloyd & Englund. 1973: blue fox (Alopex lagopus). Smith et al..
1987: Mondain-Monval et al.. 1988: gray wolf, Mitsuzuka. 1987: raccon dog. Yongjun et
al.. 1994: coyote. Hamlett. 1938; Green et al. 1984: red wolf. Waddell. 1995]. There is a
period. corresponding to the mating season, when spermatogenic and androgenic functions
of the testes reach a maximum. Beyond this period. regression of the testes renders the
male infertile. Typically full sexual capability in the male is achieved some weeks betore

temales are receptive (Lincoln, 1989). For the female red wolf. which is annually
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monestrus. receptivity towards the male is between February and March (Carley. 1979.
Riley & McBride, 1972, and Waddell, 1995). a period similar to that observed in the gray
wolf (Gensh, 1968. Seal et al.. 1979 and Seal et al.. 1987) and the coyote (Gipson et al..
1975. Hamlett. 1938 and Stellflug et al.. 1981). Seasonality in sperm production has been
documented through the collection of viable sperm from Junuary to April in the gray wolf
(Mitsuzuka. 1987; Seager et al.. 1974), and from November to April in the coyote (Gipson
et al.. 1975, Green et al.. 1984 and Hamlett 1938). In a study by Gipson et al. (1975).
one red wolf x coyote hybrid actively produced mature sperm from November Sth-March
22nd. For all species. including the red wolt (W.Waddell. personal communication).
mature sperm have been collected weeks prior to and tollowing the suspected estrus period
of the female.

Seasonal changes in the testes are dictated by the hypothalamus and the anterior
pituitary gland through gonadotropin secretions. Many species have a mechanism that
responds to specific cues from the environment. including changes in day length. food
supply and temperature to regulate hypothalamic activity (Lincoln. 1989). Wild canids
such as the gray wolf are known to reproduce seasonally. The timing of reproduction in
the gray wolf varies with latitude. occurring later at higher latitudes (Seal et al.. 1983: Seal
etal. 1987). Fluctuations in the secretory capacity of testosterone and LH in response w
LHRH stimulation were closely related to temperature and photoperiod cycles. suggesting
that spermatogenesis and androgenesis are seasonally regulated (Seal et al.. 1987). It also
has been documented that the cape hunting dog (Cunningham. 1905) and maned wolf
(Ewer. 1973) all shift their breeding season 6 months when translocated across the equator.
All of these events are consistent with photoperiod synchronization. It has been well
documented that the photoperiodic message within most animals is conveyed by the pineal
hormone. melatonin (Bartness & Goldman, 1989: Morgan & Mercer. 1994). However.
despite evidence of photoperiod influence within the canid tamily. it has been suggested by

Asa et al. (1987) that the gray wolf may rely on a system other than the pineal for
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controlling seasonal reproduction. Pinealectomy and superior cervical ganglionectomy in
male and female prepubertal wolves did not alter the age at which puberty was attained. In
addition, animals were monitored for a minimum ot 3 years post surgery for serum levels
of tesosterone/LH and progesterone/estradiol. in males and females. repectively. All
wolves exhibited normal reproductive cyles when compured with sham- and unoperated
animals. It also has been suggested that a prolactin rthythm may be involved in the
regulation of seasonal breeding (Mirarchi et ai.. 1978: Schulte et al.. 1981: Bubenik et al..
1985). Prolactin levels can be altered by the administration of melatonin (Adam &
Atkinson. 1984). Kreeger et al. (1990) demonstrated that pinealectomy of gray wolves
does not alter the prolactin circannual rhythm. while. melatonin feeding significantly
depressed prolactin levels. Together. the results obsereved by Kreeger et al. (1990) and
Asa et al. (1987) suggest that in the gray wolf. melatonin may be a primary messanger
mediating the effect of photoperiod on reproductive events. but that the main source of
melatonin is not the pineal gland.

For many species. changes in the endocrine activity ot the testes in relation to cues
from the environment have been observed by measuring testicular content/volume and/or
serum levels of testosterone (Audy et al.. 1985; Ben Saad & Bayle. 1985: Lincoln. 1989:
McGuckin & Blackshaw. 1991ab: Atkinson & Gilmartin. 1992: Wieser et al.. 1992:
Garshells et al.. 1994: Johnson et al.. 1994: Kaplan & Mead: 1994). Seasonal changes in
testicular size also have been recorded tor some non-domestic canids including the gray
wolf (Mitsuzuka. 1987) coyote (Hamlett, 1938: Gipson et al.. 1975: Green et al.. 1984)
and blue fox (Smith et al.. 1984; Smith et al.. 1985). Goodrowe et al. (1998) also have
recorded the testis size and combined testicular weights of red wolves. This study tound
that there was a decreasing trend trom February and March. with patterns beyond this time
period remaining unknown. In addition to testicular measurements in wild canids, seasonal
variations in fecal testosterone metabolite concentration in the Atrican wild dog (Monfort et

al.. 1997) and serum testosterone concentrations in the blue fox (Smith et al.. 1985) have
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been documented. The results in both studies indicated that peuak testosterone
concentrations were related to peak mating activity. [t should be noted that although peak
testis size and testosterone concentrations can be correlated with the breeding season.
circulating testosterone levels may not always be a reliable index of normal
spermatogenesis as testosterone concentrations fluctuate throughout the day (DePalatis et
al.. 1978). Similar testosterone concentrations can be tound in domestic dogs with

impaired and normal spermatogenesis (Feldman & Nelson. 1987).

Stress and Reproductive Function

All stressors, whether physical or emotional. are perceived by the central nervous
system (CNS). The intimate relationship of the pituitary with the CNS suggests that
pituitary hormones play a central role in an animal’s strategy to cope with stress. dictating
which of the physiological systems must respond to maintain homeostasis. Under acute
stress. the sympathetic-adrenal medullary system is activated, resulting in the release of
catecholamines and a rapid increase in arousal and muscular activity. Chronic stress
stimulates the release of adrenocorticotrophic hormone (ACTH) from the pituitary.
activating the adrenal cortex to release various steroids. which in tumn allows for energy
availability over prolonged periods (Moberg 1985).

Indicators such as behaviours and endocrine physiclogy trequently are used to
define levels of “stress’ experienced by an animal. However. behavioural expression
varies both between and within species and there are inconsistencies with regards to what is
recorded by observers as stress-related behaviours. On the other hand. increases in
plasma. fecal. urine and saliva concentrations of corticosteroids in wild and domesticated
species have been successtully used as physiological indices for stress (Franzmann et al..
1975: Wildt et al.. 1984: Hamilton & Weeks. 1985: Moberg, 1985: Wiidt et al.. 1986:
Milleretal.. 1991: Carlstead et al., 1992 Vincent et al.. 1992: Morton et al. 1995: Graham

& Brown. 1996: Monfort et al., 1997). Futhermore. the non-invasive nature ot monitoring
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fecal and urine steroid concentrations makes them particularly inviting for use in wildlife
species. Longitudinal monitoring can occur without manipulation of subject animals
thereby eliminating their exposure to potentially ‘stresstul’ restraint episodes tor blood
sampling and allowing for a more accurate picture of endocrine status (Lasley &
Kirkpatrick. 1991).

Because the neuroendocrine system is an essential component of reproduction. it is
logical to assume that any response of this system to stress may influence fertility (Moberg.
1985). In the reproductive process. stress primarily aftects those steps where
neuroendocrine control is essential (i.e. ovulation). Therefore. a high priority for captive
breeding programs is to interpret if stress impacts on a temale’s reproductive physiology
during the peri-copulatory period and pregnancy. Although both male and female fertility
may be compromised by stress. the female appears more vulnerable. Her reproductive
success is centered upon a series of carefully orchestrated neuroendocrine events. It one of
these events is disrupted. reproductive failure can occur (Moberg. 1985).

The negative impact which acute and chronic stress have upon the reproduction ot
serveral animals has been extrensively reviewed (Ramaley. 1981: Collu et al.. 1984:
Maberg. 1985: Liptrap 1993: deCantanzaro & MacNiven. 1992). Numerous studies have
shown that environmental stressors can influence ovulation and estrous cycles in mammals.
The incidence of estrus in ewes is reduced upon exposure to severe cold. wind and rain
(MacKenzie et al.. 1975) and dairy cows subjected to high temperature and humidity
exhibit an abnormal estrous cycle (Stott & Williams. 1962).  Social stress from
overcrowding shortens estrous cycles in domestic bovines (MacMillan and Watson. 1971:
Wagon et al.. 1972). Stress associated with social status in talapoin and marmoset
monkeys intfluences the physiological mechanisms essential tor ovulation (Bowman et al..
1978: Abbott et al.. 1981). The stress associated with transportation can alter the length of
the estrous cycle or delay ovulation in cattle. sheep and swine (Lamond. 1962: Braden et

al.. 1964: Nalbandov 1964). In the rat. surgical stress and chronic restraint have been
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shown to alter ovulation patterns (Schwartz. 1964: Nequin & Swartz. [971) and delay
estrus (Euker and Riegle. 1973), respectively. A new management routine can result in a
drop in the ovulation rate of ewes (Doney et al. 1973. Doney et al.. 1976). Together the
combined evidence of these studies supports the idea that the estrous cycle is vulnerable to
the influences of a variety of physical and emotional stressors (Moberg, 1985).

Although most experimental evidence indicates that folliculogenesis and ovulation
are the phases ot reproduction most vulnerable to stress. implantation and development of
the embryo may be equally at risk (Moberg. 1985). Heat stress reduces implantation
success and embryo development in ewes (Dutt. 1963) and dairy cows (Putney et al..
1988: Liptrap 1993: Ulberg. 1967). Young sows stressed by boar harassment at the time
of mating exhibit higher levels of embryo mortality (Rich et al.. 1986). Physical restraint
(Euker & Riegle. 1973). human handling (Runner. [959). exposure to predators
(deCantanzoaro. 1988) and exposure to strange males and their odours (Parkes & Bruce.
1962) have been shown to depress pregnancy rates in rats. Overcrowding mice results in a
general failure of reproduction either through impertect (Christian & LeMunyan. [958).
delayed (Dickson. 1964) or blocked implantations (Weibold et al.. 1986) in mice.
Mechanisms of ss |

A physiological mechanism by which stress may influence fertility is through a
disruption in gonadotropin regulation and action by influencing the hypothalmic-pituitary-
adrenacortical axis (Moberg, 1985). Experiments have shown stress-induced elevations of
cortisol or corticosterone for a variety of species. such as exposure to loud noise in rats
(Zondek & Tamari. 1960). handling in monkeys (Elvidge et al.. 1976). restraint in gerbils
(Fenske. 1986). white-tailed deer (Wesson et al.. 1975). impala. zebra and giratte (Morton
et al.. 1995). repeated venipunctures in rabbits (Fenske. 1981). and social dominance in
captive gray wolves (McLeod et al., 1996). red foxes (Hartley et al.. 1994) and Afncan

wild dogs (Creel et al., 1996).
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In stress related research. the administration of exogenous ACTH or corticosteroids
has been used to evaluate physiological responses to stressors. It has been demonstrated
that the administration of either ACTH or cortisol can block the preovulatory release of LH
in cattle (Stoebel & Moberg. 1982), swine. (Barb et al.. 1982) and monkeys (Moberg et
al.. 1982). Injections of ACTH can disrupt estrous cycles in sheep (Doney. 1976). and
rats (Hagion et al.. 1969) and menstrual cycles in baboons (Rowell. 1970). Exogenous
ACTH or corticosteroids can also disrupt implantation and fetal development in sheep and
rats (Velardo. 1957; Howarth & Hawk. 1968).

Elevations of corticosteroids frequenty are used as @ measure of stress but there also
are stresstul conditions in which corticosteroid secretion is unaltered or the eftects of
stress-induced adrenal secretions are minimal (Mason. 1968). Hensleigh & Johnson
(1971) demonstrated that adrenalectomy in pregnant rats did not reverse the adverse effects
of heat stress. However. removal of the ovaries. followed by progesterone and estrogen
replacement. eliminated any effects of such stress on fetal development. They suggested
that the stressor may have a direct etfect on pituitary-gonadal tunction. resulting in
pregnancy disruption. and that the effects ot adrenal secretions were only minor.

The adrenal axis also secretes sex steroids. There is extensive evidence that these
steroids can have a profound effect on pituitary responsiveness to GnRH. primarily
decreasing sensitivity to GnRH (Moberg. 1985).  Androgens. androstenedione and
dehydroepiandosterone. which are released from the adrenal during stress events (Fuller et
al.. 1984) can expel ftertilized eggs from the female’s reproductive tract (Harper. 1967:
Harper 1969). These androgens are believed to act primarily through their conversion to
estrogens (Fenske. 1986: deCantanzaro & MacNiven. 1992). Elevations of exogenous
androgens and estrogens have demonstrated a complete disruption of early pregnancy in a
variety of mammalian species (Deansley. 1963: Stone 1964: Smith & Biggers. 1968:
deCatanzaro et al.. [991) and have been found to have adverse effects on the migration of

tertilized ova. It also has been demonstrated that large doses of exogenous androgens and
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estrogens cause acceleration of ova transport and smaller doses result in the retention of ova
in the fallopian tube and subsequent degeneration (Parkes & Bellerby. 1926: Whitey &
Burdick. 1936: Burdick & Whitney, 1937; Greenwald. 1965; Chang & Yanagimachi.
1965). Coinciding evidence suggests that administration of ACTH cuan increase
endogenous estrogen levels in sheep (Strott et. al.. 1975) and androgen levels in the
domestic dog (Wasserman et al. 1978).

The viability of pregnancy is dependant on a specific matio of estrogen to
progesterone. These two hormones act synergistically to control the rate of embryonic
travel and development through the tallopian tubes and the precise time of implantation
(Smith & Biggers. 1968: Roblero, 1979: Liptrap, 1993). Any disruption of this balance
can result in pregnancy loss (Gidley-Baird. 1981: Gidley-Barid et al.. 1986). Therefore
any disturbance in the maternal hormone enviroment by stress-induced elevation of

androgens and estrogens could contribute to the early demise of pregnancy.

Red Wolf

Taxonomy

Within the order Carnivora. the family Canidae consists of approximately 35
species that are categorized into 15 genera. The genus Canis consists of 6 species.
including varying species of jackals, the coyote. the gray wolt and the red wolf (Sheldon.
1992).

The first recorded description of the red wolf by Batram (1791) was in the
southeastern state of Florida. However. it would not be until 1851 that the tirst valid
scientitic name tor the red wolf (C lupus rufus). commonly known then as the “red Texan
wolf”, would be published by authors Audubon and Bachman (1851). The authors
suggested that all wolves tfound throughout the southern United States (US) were only
variations or subspecies of the commonly known gray wolf (C lupus). During the late
1800’s and early 1900’s significant revisions were made regarding the taxonomy of the

phenotypically ditferent “red Texan wolf”. Bailey (1905) recognized the red wolf as its
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own distinct species and renamed the “red Texan wolt”™ C rufus. Years later. Goldman
(1944). who examined a large number of canid specimens in the US. determined that the
red wolt found in Texas posed similar characteristics. including key cranial and dental
teatures. to other canids in the southeastern US. Goldman theretfore assigned all of the
wolves of the southeastern US to one species (C rufus) and recognized three subspecies: C
r rufus. the western Texas form: C r gregoryi. the central Mississippi Valley red wolf: and
C r floridanus. the eastern subspecies. Goldman’s classitications were generally well
accepted until 1967 when authors Lawrence and Bossert (1967) suggested. based on skull
measurements of several North Americun Canis, that measurements from red and gray
wolves overlapped and that the red wolf should be considered only a subspecies of the
latter. Paradiso and Nowak (1971) suggested Lawrence and Bossert’s sumple size was too
small and by sampling a larger number of skulls they came to the conclusion that the red
wolf was indeed a distinct species. However, this would not be the end of the debate
regarding the taxanomic status of the red wolf.

Although some authorities consider the red wolf to be a distinct species and others
consider it to be only a subspecies of the gruy wolt there is a third and controversial
suggestion that the red wolf is a hybrid, or cross-breed of the coyote and the gray wolf. To
date. the issue regarding the evolution and taxanomic validity of the red wolf as a distinct
species is still widely debated and extends tar beyond the scope of this review (Atkins &
Diilon. 1971: Dowiing et al.. 1992; Elder & Hayden. 1977: Ferrell et al.. 1978: Kurten &
Anderson. 1980: Nowark. 1972: Nowark. 1979: Nowark. 1992: Phillips & Henry. 1991:
Roy et al.. 1994a: Roy et al.. 1994b: Wayne & Jenks. 1991: Wayne. 1992; Wayne &
Gittleman: 1995). Despite taxonomic squabbling. the red wolf, as it exists today in captive
populations is now considered by most authorities to be a true species. However. the red

wolf’s place in the evolutionary ladder of the Canidae family may always remain uncertain.
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Historical Perspective

Very little is known about the natural history of the red wolt. Based on physical
appearance it is intermediate in size between the larger gray wolf (C lupus). tound in the
northern and western ranges of North America. and the smaller coyote (C latrans). a
historically western canid. The red wolf™s most distinguishing teatures are its cinnamon
coloured pelage. long ears and long legs. [t has been suggested that the species’ long
slender legs were an adaptation to long distance running and pursuing prey in coastal
prairies and river bottom swamps where it was especially abundant.

The red wolf was tormerly distributed north to the Ohio River Valley and
Pennsylvania. south to Florida and west to centrul Texas (Carley. 1979: Nowak. 1972.
Nowak [996). It is believed that human persecution played a major role in the steady
reduction of the species’ range that would eventually contine them to the coastal regions of
southwestern Louisiana and southeastern Texas (Carley. 1979: McCarley & Carley: 1979.
Nowak. 1972: Riley & McBride: 1972). In the ecarly 1900°s. increasing human population
and subsequent changes in land use resulted in an encroachment on red wolf habitat and a
decline of prey species. Red wolves were forced to approach man and agricultural lands.
Deeply rooted fears and a gross misunderstanding of wolves led to indiscriminate killing
and predator control programs that would eventually lead to the removal of the red wolf
trom its former range. It has been suggested that this was the final blow that eliminated C ¢
floridanus around 1920 (USFWS. 1990: Goldman. 1944). Deforestation in eastern Texas
and Oklahoma between 1920 and 1930. allowed for an eastern surge by coyotes. The
coyote was a much more adaptable and opportunistic species than the larger. more easily
caught red wolt (Pimlott & Joslin, 1968). As red wolves were being extirpated tfrom their
former habitats. coyote populations were expanding and spreading into these now
uninhabited areas (Paradiso & Nowak. 1971). Human interference had created a situation
that permitted interbreeding between coyotes and red wolves and as a result tfurther diluted

the population of pure red wolves (Gipson et al.. 1974). Today C r gregoryii is believed to
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be the only “pure” red wolf subspecies remaining. as it is believed that C r rufus became
extinct in the late 1960’s (Carley, 1975).

It was not until 1962 that the scientific community was informed by McCurley
(1962) that the red wolf was in danger of extinction. The red wolf population continued to
be persecuted by man and the ever-expanding coyote population threatened to overwhelm
the species unless dramatic actions were taken (USFWS. 1990).

Recovery Plan and Reintroduction

In 1967. the red wolf was listed as an endangered species under provisions of the
Endangered Species Preservations Act of 1966 and in 1973 was one ot the first species to
receive attention under the US Endangered Species Act. The initial recovery program that
was established for the red wolf was based on information which indicated that a pure
population of red wolves still existed in southeast Texas and adjacent areas of Louisiana
(Pimlott & Joslin. 1968). However. field work demonstrated that ¢ hybrid “coyote-wolf™
swarm had formed and was spreading eastward (Carley. 1975). As a consequence of this
finding. the recovery program was redirected from an objective of local preservation to one
of planned extirpation of the species in the wild. The decision to remove the last red
wolves trom the wild could only be justified through the development of a long-range
objective to eventually return the species to its native range.

In the fall of 1973, a formal recovery plan was completed and all remaining tree-
ranging red wolves were to be captured and placed in a captive breeding/certitication
program. To identify “pure” red wolves indicators included skull x-rays. skull length.
brain to skull ratio. weight. total length, hind foot length. ear length and shoulder height
(USFWS. 1990). Canids determined to be possible wolves were placed in the
breeding/certification program or released with radio collars on public or private lands
where landowners gave permission. Canids determined not to be red wolves were
euthanized.  The captive-breeding/certification program was organized through a

cooperative agreement between the US Fish and Wildlife Service (USFWS) and the
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Metropolitan Park District of Tacoma at the Point Defiance Zoo and Aquarium (PDZA) in
Tacoma. Washington. The specific goals of the program were to: 1) determine the purity
of wild wolves 2) increase the number of genetically pure red wolves in captivity and 3)
maintain the gene pool for the reintroduction of the species in the wild and for distribution
among zoo populations (USFWS, 1984). From the fall of 1973 to July 1980. over 400
canids were examined through the recovery program. From this pool only 43 canids met
the morphological standards used to identify red wolves (Carley. 1975: McCarley &
Carley. 1979). Final proot of the genetic integrity of the animuals was determined by
breeding experiments and examining first and second generations for evidence ot hybrid
litters (USFWS. 1990). In the end 14 individuals. were certified as pure red wolves.
However. because ot unsuccesstul breedings of certain otfspring, 2 genetic lines have been
lost and the founding population of red wolves today is based on 12 individuals (Waddell.
1999). The last certified red wolf was removed in 1979 and the species was declared
extinct in the wild by 1980 (USFWS, 1990).

In 1984. the American Association ot Zoological Parks and Aquariums (AAZPA)
approved the red wolf tor a species survival plan (SSP©) which would involve 4
participating facilities and 63 animals. As captive husbandry techniques were refined and
reproduction increased. preparations to initiate a reintroduction program progressed
(Waddell. 1996). By 1987. the first reintroduction attempt was conducted at Alligator
River National Wildlite Retuge in northeastern North Carolina. As of 1998, there are a
minimum of 75-80 red wolves considered to be tree ranging. 175 animals remaining in

captivity and 33 institutions participating in the red wolt SSPO© (Waddell. 1999).
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RATIONALE

The red wolf recovery program is considered to be one of the Endangered Species
Acts’ success stories (Waddell & Henry. 1996). Since the first reintroduction of the red
wolf to its former range. wild populations have continued to grow and reproduce
successfully on their own. However, although red wolves have proven themselves in the
wild. the entire red wolf population is founded on only 12 individuals (Waddell. 1999) and
as discussed at a recent population habitat viability assessment (PHV A) meeting. red wolf
hybridization with coyotes is evident among wild populations (W. Waddell. personal
communication). Theretore. the tightly controlled genetic management of the captive
population acts as a buffer, ensuring the future of wild populations in terms of genetic
integrity and availability of individuals for future reintroduction areas.

In recent years. the growth of the captive population has siowed due to restricted
reproduction as a result of a limited number of holding areas. This presents a problem for
the long-term maintenance of the captive population. With limited holding areas. and an
ever decreasing number of breeding age animals. the conservation of the genetic integrity of
the population is at risk. Upon recommendation by the red wolf recovery team. assisted
reproductive technologies such as artificial insemination and sperm banking ure being
investigated to help overcome this problem and to allow for more tlexibility in the breeding
program. By using these technologies. geneticaily valuable individuals could reproduce
even if they are located in different areas of the country. are behaviourally incompatible or
even if they are deceased. Assisted reproductive technologies have the potential to become
valuable management tools, ensuring a genetically diverse population in the future.

Repeated attempts at artificial inseminations (Al) using fresh and frozen-thawed
sperm have resulted in little success in red wolves. A factor impeding the potential success
of Al may be the trequent restraint episodes used to acquire bload samples for hormone

analysis and timing Al [t has been demonstrated in several domestic species that stress
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may alter reproductive success (Liptrap. 1993). Theretore. an zlternative non-invasive
approach for monitoring ovarian status was desired. In addition to females. knowledge of
the basic reproductive characteristics of the male red wolf is limited with the exception of
three studies conducted to define semen characteristics (Koehler et al.. 1994: Goodrowe et
al.. 1998: Koehler et al.. 1998). As sperm banking is a major tocus of the breeding
program. a detailed endocrine evaluation detining normal annual reproductive parameters
may prove to be advantageous.

In response to concerns of the red wolf recovery program. our laboratory proposed
to conduct endocrine studies that would not only increase the knowledge regarding the
basic reproductive physiology of both males and females but potentially enhance
reproductive success. Previous studies have shown that long-term evaluation of steroid
metabolite concentrations in feces is effective tor evaluating ovarian. testicular and adrenal
activity in numerous carnivores including the mink (Mustela vison: Mostl et al.. 1993).
cheetah (Acinonyx jabatus: Brown et al.. 1994: Graham et al.. 1995: Brown et al.. 1996a).
domestic cat (Felis catus: Czekala et al.. 1994: Graham et al.. [995: Brown et al.. 1996b:
Jurke et al.. 1997). clouded leopard (Neofelis nebulosa: Brown et al.. 1995) maned wolf
(Chrysocon brachyurus: Wasser et al.. 1995: Velloso et al.. 1998). and African wild dog
(Lycaon pictus: Monfort et al. 1997). Compared to blood sampling. tecal monitoring
permits longitudinal non-invasive studies of steroid excretion and allows tor a more
complete characterization ot reproductive events for a given species.

The hypothesis of this study was that ovarian and testicular steroids could be
quantitatively and qualitatively measured in the feces of the temale and male red wolf.
respectively. The first objective was to develop a non-invasive technique tor monitoring
ovarian and testicular steroidogenic activity in canids by validating an extraction protocol to
measure fecal progestin. estrogen and testosterone metabolites by enzyme immunoassay

(EIA).
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The second objective was to establish a database of endocrine noims for both males
and females. In general. a detailed examination of the normal patterns and their range of
variation would allow for the recognition of disturbances in these patterns in future
analyses. These longitudinal analyses could potentially diagnose cases of infertility. test
effectiveness of contruceptive treatments or determine intfluences of external factors such as
husbandry. nutrition and environment on reproductive tunction. In temales. by describing
endocrine changes during pregnancy and pseudopregnancy. early pregnancy detection or
insight into failed conception might be possible. From a husbandry perspective. the ability
to detect pregnancy would fucilitate the requirement of special care for pregnant animals. In
males. longitudinal monitoring would allow for investigation of the relationship between
changes in fecal testosterone concentrations and photoperiod.

The third objective was to elucidate the relationship between fecal estrogen and
progesterone metabolites during the periovulatory period. If fecal steroid patterns were
similar to those observed in serum. fecal monitoring could be used as a reliable altemative
to blood sampling tor indexing ovarian function and timing Al

The fourth objective was to develop a non-invasive technique to monitor adrenal
activity in red wolves through the validation of an extruction protocol to measure cortisol
metabolites by EIA. Monitoring cortisol as a measure of “stress’ may allow future
investigations to determine stressful situations for the wolves. Removing or limiting these
stressful situations may improve reproductive efticiency.

The fifth objective was to evaluate the potential use of fecal steroid analysis in
gender determination. This technique would facilitate the tracking and reproductive
monitoring of animals in the wild. Each of these goals have great potential as valuable
tools towards the management ot red wolt population and would improve the reproductive

success for this species.
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METHODS AND MATERIALS

Fecal Study Animals and Sample Collection
Animals

Intact adult (n=16. age range 4-13 years) and immature (n=1. yearling) female red
wolves were maintained in facilities across the United States during the 3 year study period
(1996-1998). The fuacilities and their relative geographical locations were: Burnet Park
Zoo. NY. 43.0°N 76.1"W: Great Plains Zoo. SD. 43.5'N 96.7"W: Knoxville Zoo, TN,
36.0°'N  83.9"W: Oglebay’s Good Zoo. WV, 40.1"N  82.6"W: Point Defiance Zoo &
Aquarium and Red Wolf Breeding Facility, WA. 47.2"'N 122.5°W: Racine Park Zoo. WL.
42.7°N 87.8°W: Ross Park Zoo. NY. 42.1°'N 75.9"W: Western North Carolina Nature
Center. NC. 35.6°N 82.6°W.

[ntact adult (n=5. age range 4-8 years) and immature (n=1. yearling) male red
wolves were maintained during the the | year study peroid at the following institutions:
Burnet Park Zoo. NY: Knoxville Zoo. TN. 36.0"N 83.9"W: Mill Mountin Zoo . VA.
37.3"N 80.0"W: Point Defiance Zoo & Aquarium and Red Wolt Breeding Facility. WA:
Trevor Zoo. NY. 41.8'N 37.7°W.

Depending on space availability and red wolt SSP© breeding recommendations.
wolves were housed either individually. with potential partners or in a tamily unit.  All
wolves were housed outdoors in chainlink pens (no less than 5000 square feet) which
included a dry den structure. Since all animals were considered potential release candidates.
a ‘hands-oft” policy was implemented to avoid wolf habituation to humans. Therefore.
wolves were subjected to a minimal number of disturbances other than daily husbandry
routines. All wolves were ted 1-2.5 pounds of a high quality commercial dry dog food 6
times a week and were fasted | day per week. During the whelping period. a temale’s
food intake was monitored and additional food was provided if warranted. All wolves had

ad libitum access to fresh water.
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Fecal Collection

Fecal samples from females were collected during the breeding season. mid-
December until the end of May (1996. 1997. 1998). on average 4 times per week from
each individual during daily husbandry routines. Fecal samples from males were
conducted on average 4 times a week over a | year period beginning mid-November. 1997.

The entire tecal sample was retrieved into a zip-lock plastic bag. labeled with the
date and animal’s studbook number. shipped frozen to the Toronto Zoo and then stored at
-20"°C until steroid extraction. In cases where a study individual could not be isolated trom
other wolves, fecal samples were marked with small 0.5 ¢cm x 0.5 ¢m pieces of coloured
surveyors tape (Hanson Co.. Franklin Park. [L) or by locally purchased green vegetable
food colouring. The study animal would be fed a smail meatball made trom ground meat
which contained the labeling substance. The labeling substance was subsequently excreted

enabling for animal identification.

Serum Study Animals and Sample Collection
Animals

Blood samples were obtained trom intact female red wolves (n=12: age range 3-11
years) housed at the Red Wolf Breeding Facility in Grahum. Washington from 1992-1997.
From 1992-1997 wolves were monitored tor rising progesterone levels to time Al. The
husbandry and housing of all animals were the same us described above.
Bload Collegtion

To obtain blood samples. wolves were allowed/directed to retreat into their dens or
a holding/shifting area. The entrance was blocked with a net to prevent the animal from
escaping. Personnel familiar with the wolves then had controlled access into the confined
area. A noose (5 foot pole. Ketch-All Company. San Deigo. CA) was slipped around the
wolf’s neck and the animal secured. The wolves were manually restrained and blood

samples taken from the cephalic vein from late February through early March. The process
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was repeated every 1 to 2 days until blood progesterone levels were tound to be above 5.5
ng/ml. On average. each wolf was restrained 11 times. Blood samples (3-6 mis) were
placed into red top vacutainers® (Becton Dickinson Vacutatner Systems. Franklin Lakes.
NJ) and allowed to coagulate for ~ 15-20 mins. Samples were then centriftuged for 10
minutes at 3500 rpm and the resultant serum traction was removed and stored in cryogenic

vials (Fisher. Fair Lawn, NJ) at -20°C until hormonal analyses.

Fecal Steroid Hormonal Analyses
Fecal Steroid Extruction
Progesterone. Estrogen and Testosterone metabolites

Method 1

Fecal progestin (P4). estrogen (E2) and testosterone (T) metabolites were extracted
from all samples according to a method described by Graham et al. (1995). To ensure
uniformity of hormonal metabolites within fecal samples. thawed samples were thoroughly
mixed within their plastic storage bags. A wet weight of (.5 g of feces was combined with
4.0 ml methanol. 0.5 ml distilled water and 1.0 g aluminum oxide in a clean 15 ml glass
tube (VWR/Canlab. Missisauaga. ON). Samples were then tuther mixed manually with a
metal stir rod. A teflon-lined cap was then screwed onto the tube and the sample was
vortexed for 30 seconds. Samples were mixed at room temperature for 1 hour on a rotator
and then centrifuged tor 10 min at 3500 rpm. The methanol fraction was decanted into a
labeled 5 ml polypropylene tube (VWR/Canlab. Missisauga. ON) and stored at -20°C undil
hormonal analysis.

Method 2

As part of the assay validation process. exogenous P4 and E2 were extracted from
fecul samples according to methods modified from Graham etal. (1995). The method was

identical to that of method | with the exception that aluminum oxide was deleted.
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Method 3

As part of the assay validation process. in addition to methods | and 2. exogenous
steroids (P4 and E2) were extracted from fecal samples using a moditied method trom
Shideler et al. (1993). Once frozen samples were thawed. (1.5 g wet feces were combined
with 2.5 ml of extraction buffer (aqueous solution of ().IM phosphate buffer containing
0.149 M NaCl. 0.1% BSA. 10% methanol and 0.29% Tween) in a 5 ml polypropylene
tube. The mixture was homogenized by hand with a stir rod then capped and vortexed for
I min. Tubes were placed on a rotating shaker overnight ( ~ I8 h) at room temperature.
Following centrifugation for 10 min at 3500 rpm. the supernatant was transterred into u
labeled 5 ml polypropylene tube. sealed with a cap and stored at -20°C until analysis.
Cortisol

The protocol for extraction of cortisol differed from that of ovarian and testcular
steroids as it has been demonstrated that the removal of the aluminum oxide trom the
extraction process greatly improved corticosteroid extraction ettictency in another carnivore
species (black-footed ferret: Young, 1998). To ensure sample uniformity, thawed tecal
saumples were thoroughly mixed within the sample bags. For extraction. 0.5 g wet feces
were added to 2.5 ml of 90% methanol in a 5 ml polypropylene tube. The mixture was
then mixed with a stir rod. capped and vortexed for | min. The sample tubes were then
placed on a rotator and shaken tor 2 h followed by centritugation for 10 min at 3500 rpm.

The supernatant was transterred to a clean. labeled polypropylene tube. capped. and stored
at -20°C. Prior to hormone analysis. 20 pl of extract was aliquotted into 12 x 75 mm glass

culture tubes (VWR/Canlab. Missisauga, ON). submersed in a 34°C waterbath and dried

down under a light flow of nitrogen gas. Samples. accounting for the [:35 diluton
required for hormonal analysis. were then reconstituted in 700 pl enzyme immunoassay

(EIA) buffer (0.1 M phosphate bufter, 0.1% bovine serum albumin. pH 7.0).
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Enzyme Immunoassays

Fecal extracts were analyzed for steroid hormone concentrations by EIA as
previously described (Munro and Stabenteldt. 1985: Munro et al.. 1991) and as adapted tor
use in our laboratory with wood bison and black tooted-ferrets (Matsuda et al.. 1996:
Young., 1998: Othen., 1999). Feces collected from female red wolves (n=17) were
quantified for P4 and E2 concentrations while those collected from males (n=6) were
analyzed for T metabolites. As a pilot study. fecal cortisol metabolite concentrations were
measured in 2 temale red wolves: one female that endured repeated restraint episodes for
blood sampling to time tor Al and one temale that was not restrained and became pregnant
naturally. Randomly selected male and female tecal sumples (n=960) were analyzed for
P4. E2 and T metabolites for the gender determination study.

Progesterone

The polyclonal antiserum raised in rabbits to progesterone (R4861) was provided
by C.J. Munro (University of California. Davis). The cross-reactivities for the antibody
(Appendix I A) were provided by Munro and Stabenfeldt (1985).

A primary antibody stock of 1:20 was prepared by dilution in 530 mM sodium
bicarbonate coating bufter (pH 9.6) and stored at -20°C until required. One day prior to
running the assay. the primary antibody stock was further diluted in coating buffer to a
working stock of [: 6.000. Microtiter plates (96 wells) were coated with SOul/well of
working antibody stock and tapped slightly to settle the antibody. Plates were covered with
an acetate plate sealer (VWR/Canlab, Missisauga. ON) to prevent evaporation and
incubated overnight (14 - 18 h) at 4°C in a styrofoam container. The first column on these
plates was not used because of high variability in antibody binding.

Progesterone controls. standards and sample extructs were prepared in glass culture
tubes by dilution in EIA buffer immediately prior to running the assay. The progesterone
standard curve ranged 2-fold from 9.75-2500 pg/well. plus *(' wells consisting of EIA

buffer only. Progesterone control stock was prepared by extructing feces. using the
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protocol of Schideler et al. (1993), from a pregnant lowland gorilla. The two internal
controls were prepared by diluting the control stock 1:1¢} and 1:100. Based on ~50%
binding from parallelism resuits, sample extracts were diluted 1:7.

After overnight incubation, the microtiter plates were rinsed 5 times with a wash
solution (0.15mM NaCl. .05% Tween 20) in a Dynatech Ultrawash Il mircoplate washer
to remove unbound antibody. Plates were then patted dry to ensure the removal of excess
wash solution. After washing. standards. controls and samples were loaded in 50 pl/well
aliquots onto the plate. Diluted extracts and controls were pipetted in duplicate and
standards in triplicate; a pair at the beginning of the plate and a third aliquot at the end to
account for any time lag or drift across the plate. Once all known and unknown samples
had been added. 50 ul progesterone-horseradish peroxidase (progesterone-HRP: working
stock 1:60.000 dilution in EIA butfer: primary stock supplied by C.J. Munro. University
of California. Davis) was added to each well. Two wells in the first column of the plate
served as blanks for calibration purposes and were loaded with HRP only.

After loading. plates were covered with an acetate plate sealer and incubated for 2 h
at room temperature. After incubation, unbound material was removed from the wells by
washing 5 times with wash solution and patting the plates to dryness. One hundred ul of
freshly prepared substrate solution [0.4 mM azino-bis (3-ethyl-benzthiazoline-6-sultonic
acid). pH 6.0 and 1.6 mM H,0, in 0.05 M citrate butter. pH 4.0} was then pipetted into
each well. Plates were sealed with acetate plate sealers and slowly shaken on a tlat rotator
at room temperature tor approximately 15-30 minutes. The optical density ot each well
was read using a Dynatech 700 plate reader (test filter 405 nm and reterence filter 630 nm)
interfaced with a MacIntosh computer. Mid-study. this plate reader was updated with a
Dynex Technologies MRX plate reader intertaced with a PC computer. Standards. controls
and unknown values {pg/well) obtained from reading across plates on both plate readers

were comparable.
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Estradiol

Fecal E2 was quantitied with an EIA, using a polyclonal antibody (R4972) raised in
rabbits and HRP conjugate supplied by C.J. Munro (University of California, Davis). The
antibody cross-reactivities (appendix [ A) were supplied by C.J. Munro (University of
California. Davis).

The working antibody and HRP conjugate were diluted 1:10.000 and 1:50.000 in
coating and EIA buffer. respectively. Standards were serially diluted 2-fold [.95-500
pg/well in EIA butter, plus "0° wells consisting of EIA bufter only. Using EIA butter
tfecal sarnples were diluted 1:4. while internal controls were diluted [:10) and 1:50 trom the
control stock. The estrogen control stock was prepared trom the supernatant of extracted
teces (method of Schideler et al. 1993) trom a pregnant lowland gorilla. With two
exceptions. the estradiol EIA was identical to the progesterone EIA: 1) following the initial
wash to remove unbound antibody. plates were coated with EIA buffer SOul/well and then
incubated for 2 h at room temperature before any sumples were loaded onto the plates and
2) 20 ul/well of the stundurds. samples and controls were loaded onto the plates.
Testosterone

The polyclonal testosterone antibody (R156/7). HRP conjugate and cross-
reactivities of the antibody (appendix II A) were supplied by C.J. Munro (University of
California. Davis). The antibody and HRP conjugate were diluted 1:10.000 and 1:15.000
in coating and EIA butfer respectively. Standards were prepared 2-fold. 4.8-1250 pg/well
in EIA buffer. plus "0’ wells consisting of EIA buffer only. Fecal samples were diiuted
1:40. while internal controls were diluted 1:65 and 1:650 from stocks. all in EIA butter.
Testosterone control stock was prepared from the supernatant collected after extracting
feces from male red wolves during the breeding season by extraction method 1. With one
exception. the testosterone protocol is identical to the progesterone EIA: following the

initial wash to remove unbound antibody. 50ul of EIA bufter were aliquoted to each well



and the plates were incubated for 30 minutes at room temperature before the addition of
standards. controls. samples and HRP.
Cortisol

The cortisol polyclonal antibody (R4972). HRP conjugate and antiserum Cross-
reactivities (appendix [I A) were supplied by C.J. Munro (University of California. Davis).
The antibody and HRP conjugate were diluted 1:8500 and 1:50.000 in coating and EIA
bufter respectively. Standards 3.9-1000 pg/well were prepared 2-told in EIA bufter. plus
(" well consisting of EIA bufter only. Fecal sumples were diluted 1:35 with EIA buffer.
while internal controls were diluted. in EIA buffer. 1:2 und 1:4 from stocks. The control
stock was prepared from a neat urine sample collected trom a single male wood bison
during the fall rut. This assay was conducted in a similar manner to that ot the
progesterone assay except plates were incubated for | hour at room temperature tollowing
the loading of the standard. samples. controls and HRP.

Assav Validation

Parallelism

Females

Fecal samples taken pre. during and post breeding season (6 wolves. 10 fecal
samples each) were extructed (method 1) to evaluate parallelism of P4. E2 and T
metabolites in the feces to a standard curve. Pooled fecal extracts (20 ul from each extract)
were serially diluted 2-fold in EIA bufter to yield a range of dilutions from neat to 1:2048.
The dilutions were analyzed against progesterone. estradiol and testosterone standard
curves.

Fecal samples from 2 temale wolves that were undisturbed (20 fecal samples ecach)
and from 2 female wolves that were subjected to restraint episodes tor blood sampling (20
fecal samples each) were used to evaluate parallelism with a cortisol standard curve. Fecal

samples were extracted using the methods of Young (1998) us described carlier. The
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resulting extracts were pooled (20 ul from each extract). serially diluted 2-fold neat to
1:2048 and analyzed against a cortisol standard curve.

Males

Male fecal samples (2 wolves, 50 tecal samples each) collected trom November to
March were extracted (method 1) to evaluate parallelism of P4, E2 and T metabolites in the
teces to a standard curve. Fecal extracts were pooled (20 ul from each extract). serially
diluted from neat to 1:2048 and analyzed against a progesterone. estradiol and testosterone
standard curve.

In all cases. the mean percentage bindings observed trom the standard curves were
plotted against their expected logarithmically transtormed concentrations (pg/well) on the x-
axis. Mean percentage bindings observed from the diluted pooled extracts were plotted 2-
told against the transformed concentrations on the x-axis.
Recovery - Progesterone and Estradiol

To compare extraction methods 1. 2. and 3. the percent recoveries of exogenous
estradiol and progesterone tfrom fecal extracts were examined. The tecul extracts were
produced by thoroughly mixing together 4 entire wet fecal sumples obtained from anestrus
female wolves (n=4). The pooled fecal sample was then divided. and for each method (1.
2 and 3) six 0.5 g extractions were made. The resultant supernatants from each extraction
method were pooled together. producing 3 separate pools (=27 mls each. one for each
extraction protocol). One ml aliquots from each of the pools were spiked with increasing
amounts of exogenous progesterone and estradiol standards to obtain expected
concentrations, 0 (unspiked). 19.5. 39, 78. 156. 312. 625. 1250 and 0, 3.9. 7.8. 15.6.
31.2. 62.5. 125. 250 pg/well. respectively. Sample duplicates were then analyzed for the
appropriate steroids as described above to obtain the observed pg/well value.
Extraction Efticiency - Progesterone and Estradiol

Feces collected trom anestrus adult female wolves (n=4) were pooled as described

above, and used to assess methods 1. 2 and 3 for exogenous steroid extraction efficiency
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from fecal samples. Increasing levels of steroid standards were added to (0.5 g aliquots of
pooled wet feces prior to extraction with methods 1. 2 and 3. The expected spiked
concentrations of progesterone and estradiol were (). 19.5. 39. 78. 156. 312. 625. 1250
and 0.3.9. 7.8, 15.6. 31.2, 62.5. 125. 250 pg/well. respectively. Sample duplicates of
the fecal extracts were assayed for the appropriate steroids as previously described above to
obtained the observed pg/well value.

Extraction Efficiency - Testosterone

An endogenous T source was used to assess extraction efficiency from fecal
samples. The endogenous source was obtained from adult male (n=2) tecal sumples during
the breeding season (late February to early March). The fecal samples were extracted
(method 1) and the supernatants were pooled together and analyzed for T concentration
(pg/well). Because of the low T concentration in the pooled extract. three ditferent
volumes of the pooled extract were placed in glass tubes. dried down under a light flow of
nitrogen gas and resuspended in an equal amount of EIA butfer allowing for expected
concentrations of 155. 519 and 950 pg/well.

Feces collected from anestrus adult female wolves (n=4) were pooled and used to
assess the endogenous testosterone extraction etticiency trom tecal samples.  Aliguots of
(0.5 g of pooled wet feces were added to the 3 spiked glass tubes containing the different
levels of expected concentrations along with 1 unspiked tube and allowed to sit at room
temperature for 24 h prior to extraction (method 1). Sample duplicates of the extracts were
assayed for the testosterone as described above to obtained the observed value pg/well.
Extraction Efficiency - Cortisol

An endogenous cortisol source was obtained trom a series of tecal samples
collected from manually restrained. adult females (n=4). Samples were extracted using the
cortisol extraction protocol. pooled together. then serially 2-tfold diluted and analyzed on

the cortisol assay to determine expected concentrations of 4(). 103. 167 pg/well.
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Feces collected from anestrous adult female wolves (n=4) were pooled and used to
assess the endogenous cortisol extraction etficiency from fecal samples. Aliquots of (0.5 ¢
of pooled wet teces were spiked with the expected concentrations and along with |
unspiked sample. allowed to sit at room temperature tor 24 h prior to extraction using the
cortisol extraction method. Sample duplicates of the fecal extracts were analyzed for
cortisol metabolites as previously described above to obtained the observed pg/well value.

In all examples. the calculation of percent extraction etticiency or recovery was
equal to amount observed minus the background (unspiked sample) divided by amount
expected.

High Pertormance Liquid Chromatography

Fecal extracts (n=7) chosen for high performance liquid chromatography (HPLC)
included: | during the follicular phase and | during the luteal phase from two ovulatory
nonpregnant female wolves. | elevated cortisol sample trom a temale woif and 2 elevated T
concentrated samples from two male wolves.

Steroids in fecal extracts were recovered tor separation on HPLC by solid phase
extraction with Sep-Pak C,, cartridges. Cartridges were primed with 5 ml methanot
followed by 5 ml distlled water. Fecal extracts were dried under nitrogen flow.
resuspended in 5% methanol/water and allowed to percolate through the cartridge. The
cartridge was washed with 5 ml distilled water and the steroids were eluted with 5 ml
diethyl ether (unconjugated steroids) and 5 ml methanol (conjugated steroids).
successively. After evaporation of the ether under nitrogen tlow. the residue (unconjugated
fraction) was dissolved in 100 ul acetonitrile tor HPLC. Separation of steroids was
accomplished by injecting a sample (25 ul for progesterone and estrogen: 50 ul for
testosterone and cortisol) on @ HPLC system consisting of two Water Model 510 pumps
(Waters Associates Miltord. MA), a WISP 710B autoinjector. and a dual channel model
441 absorbance detector. For optimum seperation of steroids. Waters Baseline 810

Controller Software was used to create a binary solvent gradient of acetonitrile-water on a
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Waters Nova.Pak C, (8 mm x 100 mm. 4um) column. In total. 21 steroid standards were
eluted at room temperature over 35 min at a rate of 2 ml per min. The multistep gradient
mobile phase consisted of 29.5. 35, 39. and 75% acetonitrile in water at ime 0. 10. 12.5.
and 32 min. respectively. in the run. Retention times for each steroid were determined by
injecting 20 ng of each standard. with absorbance monitored at 254nm and 280nm.
Fractions (0.5 min. progesterone and estrogen: | min. testosterone and cortisol) were
collected automatically with an LKB RediFruc fraction collector.  Aliquots (200 ul) from
each traction were then dried under nitrogen gas. resuspended in an equal amount of EIA

butter and assayed in duplicate as described earlier to evaluate immunoreactivity.

Blood Steroid Hormonal Analyses
Radioimmunoassays

Appropriate  radioimmunoassays (RIA) were used to determine steroid
concentrations in serum samples. Blood samples collected from temales (n=23) during
breeding seasons (1991-1997) were quantified for progesterone. estradiol. and luteinizing
hormone (LH) concentrations.

Serum progesterone and estradiol were measured using progesterone and estradiol
1231 RIA Kits (Coat-a-Count®. Diagnostic Products Corporation. Los Angeles. CA). All
samples were analyzed at neat concentration. Methods and cross-reactivities were provided
by kit literature (Coat-a-Count®., Diagnostic Products Corporation. Los Angeles. CA).
Serum LH concentrations were quantified with a LH RIA developed by Dr. J.L. Brown
(Brown et al.. 1991; National Zoological Park Conservation and Research Centre. Front
Royal. VA). All samples were analyzed at neat concentration with the exception of samples
taken during the LH peak. These samples were analyzed at a 1:50 dilution in RIA butfer
{In 1 L pink PBS (0.01M phosphate buffer. 0.9% NaCl. 0.01% thimerosal) add 0.05%
BSA. 2 mM EDTA. pH 7.4]. Serum LH was measured using a monoclonal mouse LH

antibody (518-B7) and an ovine LH standard (NIH-LH-S18) and LH label (LER-1374A).
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The cross-reactivities for the antibody were supplied by Dr. J.L. Brown and are listed in
appendix I B (Matteri et al.. 1987).

A primary antibody stock of 1:10.000 was prepared by dilution of the antibody in
RIA buffer and stored at -20°C until required for use in the assay. The LH standard curve
ranged 2-fold from O, 0.08-20ng/mi diluted in RIA buffer. Each standard dilution was
stored at -20°C until required.

Just prior to conducting the assay. the primary antibody stock waus diluted in RIA
butfer to a working concentration of 1:1.000.000 with [:4({) normal mouse serum (NMS).
After thawing. samples (in duplicate) and standards (in triplicate) were aliquoted (100 ul)
to 12 x 75 mm disposable culture glass tubes followed by the addition of 100 ul of the
working antibody to each tube. Duplicate glass tubes also were set aside for total counts
and non-specific binding (NSB). The NSB twbes were incubated with 100 ul of 1:400
NMS diluted in RIA buffer. The tubes were agitated (~3 min) and left at room temperature
overnight. The tubes then received 100 ul '*1 labeied ovine LH which was diluted in RIA
butfer (~20.000 ¢.p.m./100 ul}. The tubes were mixed and re-incubated overnight at room
temperature. On the final day of the assay. antibody-bound complexes were precipitated by
incubation for | hr with | ml aliquots of goat anti-mouse gamma globulin (GAM: prepared
1:400 in pink PBS with 5% polyethylene glycol). Tubes were centrituged at 3000 g for 25

min. decanted (except tor totals) and each counted in a gamma counter tor | min.

Gender Determination

Fecal samples collected from males {1998: 5 profiles trom 5 animals) and temales
(1996-1998: 15 profiles from [3 animals) from December 21st (winter solstice) to June
2 Ist (summer solstice) were used in the gender determination study. To test the ability of
fecal steroid analysis to distinguish between sexes during the selected time period. samples
were divided into 4 periods (Dec. 21- Feb. 3. Feb. 4-March 20. March 21-May 5. May 6-

June 21). From each wolf. tour fecal samples within each period were randomly selected
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and analyzed tor P4. E2 and T. Six variables (P4. T. E2. P4/E2. P4/T. E2/T) were
compared within each time period among 4 classes (males n=5. pregnant n=3. ovulatory
nonpregnant n=9 and nonovulatory females n=3) using factorial ANOV A (Statview version

4.5, Abacus Concepts. Inc.. Berkley CA).

Data Evaluation
Fecal Profiles

Females were assigned to | of 3 classes according to the occurrence of birth
(pregnant: P) and presence (ovulatory nonpregnant: NP) or absence (non-ovulatory or
acyclic;: AC) of a continued rise in P4, which presumably reflected ovulation. Profiles
from individual female red wolves (P. NP) were aligned to a rise in P4 (day () tfrom
baseline values using the following criteria: a baseline value for each wolf was determined

by calculating each individual’s mean P4 value from samples collected mid December until

19

mid February. Day 0 was recognized as the value that was elevated above baseline by
standard deviations (SD). with subsequent levels remaining elevated for 1 minimum of 3
consecutive samples. For AC animals. day 0 was assigned based on the location of the
individual animal (Southeastern. Northeastern and Northwestern United States) and the
mean estimated date of estrus for all wolves in that location (Waddell. 1995). Since tecal
samples were not always available on a daily basis. fecal hormone levels were pooled into
3 day means. Reproductive profiles were then divided into 9 cycle stages: pre-ovulatory
(days -30 to -13). periovulatory (days -12-8). luteal phases (days 9-17. 18-26. 27-35. 36-
44, 45-53 and 54-65) and post (66-71). Comparison of P4 and E2 levels within each
cycle stage between the 3 classes (P. NP. and AC) was determined by ANOVA with
repeated measures using Statview (version 4.5. Abacus Concepts. Inc.. Berkley CA) on a
Macintosh computer. Comparison of P4 and E2 levels across all cycle stages within each
class (P. NP. and AC) were conducted using a factorial ANOVA analysis (Statview

version 4.5, Abacus Concepts, Inc.. Berkley CA). All p values reported are derived from
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the Fisher’s protected least significant difterence test. Descriptive data are reported as
means £ SEM within a cycle stage.

During the periovulatory period, daily mean P4 and E2 values from NP wolves
were compared to basal concentrations using a Student’s t-test. [nsufficient sampling trom
P animals did not permit the analysis ot duily means. Descriptive data are reported as daily
means + SEM.

Over the | year sumpling period. male fecal T levels were pooled into weekly
means. Comparisons among weekly means and daylength were determined using
correlation analysis (Statview version 4.5. Abucus Concepts. Inc.. Berkley CA).
Descriptive data are reported as weekly means + SEM. Daylength data was downloaded
from the The United States Naval Observatory (www.usno.navy.mil/home.html).

Blood Profiles

As baseline progesterone values in red wolves have never been characterized.
alignment of datz was determined in a similar manner to that of fecal samples. Individual
serum protiles were aligned to a rise in progesterone (day ()). Because of the small number
of pre-ovulatory samples. day 0 for each individual was the value that was elevated uabove u
mean baseline (mean progesterone concentration from all wolves February 2nd-22nd) by 2
SD. with subsequent levels remaining elevated tor a minimum of 3 consecutive samples.
Luteinizing hormone and estradiol protiles were normalized by aligning the serum hormone
values of individual animals to the day of progesterone rise. A Student’s t test was
employed to detect a significant elevation in daily means above basal concentrations of

progesterone. estradiol and luteinizing hormone. Values are reported as daily means *

SEM.
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RESULTS

Validation of Fecal Assays
Parallelism

The curves generated from the serially diluted pooled fecal extracts from females
tor P4, E2. T and cortisol were parallel to their respective standard curves (Figures la. 2a.
3a. and 4). Serial dilutions of fecal extracts from males gave displucement curves parallel
to the standard curves for P4. E2 and T (Figures 1b. 2b. and 3b).
Recovery - Progesterone and Estradiol

The mean percent recoveries of an exogenous source of progesterone from fecal
extracts for extraction methods [, 2 and 3 were 71.2% (range 62.8%-78.5%). 40.9%
(range 25.6%-48.8%) and 60.8% (range 58.0%-88.9%). respectively. For estradiol. the
mean percent recoveries tor the 3 protocols were 78.5% (range 64.1%-92.9%). >100%
(range 90.4%-118.3%) and >100% (range 128.0%-173.1%). respectively.
Ex ion Efficiency - Progesterone and Estradiol

For progesterone. the mean percentages of exogenous hormone detected trom tecal
samples for extraction methods 1. 2 and 3 were 77.1% (range 32.09%-89.9%). 64.6%
(range 59.8%-71.6%) and 14.9% (range 7.7%-23.1%). respectively. For estradiol the
mean extraction etficiencies tor the 3 protocols were 76.9% (range 64.1%-92.9%). 74.1%
(range 64.0-89.7%) and 31.6% (range 12.2%-51.3%). respectively. Based on the results
of the recovery and extraction efficiencies tor progesterone and estradiol. extraction method
| was used to monitor ovarian activity.
Ex ion Efticiency - Testoster isol

The testosterone assay detected a mean of 94.8% (range 92.2%-95.4%) of the
endogenous T added to tecal samples. The mean extraction efficiency of an endogenous

source of cortisol from fecul samples was 93.8% (range 85.6%-95.4%).
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Figure 1. Parallelism curves resulting from anaylsis of serially diluted

progesterone standards and pooled fecal extracts from female (A) and male
(B) red wolves.
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Assay varigtion

Assay variation was monitored using 4 individually prepared lots of controls for
each EIA type. The inter-assay coefficients of variation (CV) for the progesterone assay
were 12.78% and 7.64% (n=86). at meun percent bindings of 32.4% and 67.1%.
respectively. The intra-assay CV were 5.2% (n=12) and 7.9% (n=12). at mean percent
bindings of 30.1% uand 62.1%. respectively.

For the estradiol assay. the inter-assay CV were 13.4% und 16.0% (n=8S5). at mean
percent bindings of 42.3% and 77.1%. respectively. The intra-assay CV were 3.2%
(n=12) and 3.6% (n=12). at mean percent bindings ot 40.1% and 75.4%. respectively.

For testosterone. the inter-assay CV were 13.7% and 13.7% (n=49Y). at mean
percent bindings of 24.7% and 67.0%. respectively. The intra-assay CV were 9.3%
(n=12) and 5.6% (n=12). at mean percent bindings of 23.4% and 60.8%. respectively.

The inter-assay CV of the cortisol assay were 11.1% and 8.9% (n=12). at meuan
percent bindings of 52.6% and 69.8%. respectively. The intra-assay CV were 2.1%
(n=12) and 4.9% (n=12). at mean percent bindings of 50.0% and 72.0%. respectively.
High Performance Liquid Chromatog
Progesterone/Estradiol

The resultant P4 immunoreactive profiles of fecal extracts subjected to HPLC from
nonpregnant females during the follicular and luteal phases of the estrous cycle are
illustrated in Figures Sa and 5b. respectively. Using this HPLC system. progesterone is
known to elute within fraction 32 (Figure 8). There were several unconjugated
immunoreactive peaks measured by this antiserum: however. the majority of
immunoreactive metabolites were found to be less polar progesterone (fractions 33 to 35) in
both the follicular and luteal phase. Several minor immunoreactivity peaks were observed
in both phases within fractions more polar than progesterone.

The resultant E2 immunoreactive profiles of tfecal sumples subjected to HPLC trom

nonpregnant females during the follicular and luteal phases. are illustrated in Figures 6a and
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Figure 5. Immunoreactive profiles of fecal extracts from temale red wolves
during the follicular (A) and luteal (B) phases after fractionation with HPLC and
EIA of the tractions obtained with progesterone antiserum (R4861).
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6b. respectively. The resultant profiles revealed a large unconjugated immunoreative peak
in 3 of the 4 profiles that had a retention time comparable to estradiol in the standard
(Fraction 15; Figure 8). In addition. minor immunoreactivity was detected within fractions
known to have u similar retention time as estrone in the standard (Fraction 20: Figure 8).
The profile from wolft 278 (Figure 6b) suggested that no estradiol was present.  This is not
unexpected. as the tecal sample was obtained during the luteal phase. however we have no
explanation for the large immunoreactive peak that was observed within traction 5.

[n general. with exception of relative amounts of immunoreactivity. the
progesterone and estrogen immunoreactive profiles obtained did not dramatically difter
between the follicular and luteal phases. Minor individual variation between profiles did
exist. However. with the exception of the estrogen profile obtained during the luteal phase
from one wolf. the patterns of immunoreactivity detected within profiles were similar
between animals.

Cortisol

The resultant cortisol immunoreactive profile of an elelvated cortisol fecal sample
subjected to HPLC from a female red wolf is illustrated in Figure 7a. Fraction 6 was
comparable to cortisol in the standard (Figure 8). Analysis ot the HPLC fractions on the
cortisol EIA illustrated a large immunoreactive peak more polar than cortisol (tfraction 4-5)
and a minor peak less polar than cortisol (fraction 9).

Testosterone

Two elevated T concentration fecal extracts obtained trom male wolves during the
breeding season were subjected to HPLC. The resulting fractions analyzed with the T EIA
revealed several immunoreactive peaks (Figure 7b). Fraction 17 was comparmable to
testosterone in the standard (Figure 8). The largest amounts of immunoreactivity were
detected in peaks less polar than testosterone (between fractions 19 and 27). Two small
unidentified immunoreactive peaks also were observed in fractions more polar than

testosterone.
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Female Profiles
Longitudinal Fecal Profiles

Concentrations of tfecul P4 and E2 metabolites were analyzed for 19 cycles (n=17
animals). Of the 19 cycles examined 3 were eliminated due to poor sumple collection and
theretore could not be classified. Figure 9 illustrates the longitudinal 3 day mean compostite
tecal P4 and E2 excretory profiles for pregnant (P: n=3). ovulatery nonpregnant (NP: n=9)
and nonovulatory or acyclic animals (AC: n=3). Data are aligned by a rise in P4 (day 0).
The ovarian steroids and cortisol concentrations dunng the reproductive cycle of two
temale wolves. one which endured repeated restraint episodes (wolt 607) and one that did
not (wolt 545) appear in Figure 10.
Within Classes of temales

Mean P4 and E2 values (Table I) were compared across cycle stages within each
class (P. NP, and AC) based on factorial ANOVA uanalysis. Progestins remained at low
levels in all females sumpled until the periovulatory period. when a steep increase in P4
levels was observed in the profiles of cycling (P and NP) animals. During the luteal phase.
mean P4 levels in P (runge. 49.1-2961.0 ng/g feces: p<0.003) and NP (runge. 52.9-
3541.0 ng/g teces: p<0.006) animals remained significantly elevated above baseline levels
(pre) untl the mid- to late luteal phase. Mean P4 concentrations reached maximum values
later in P tfemales (days 18-26) than NP temales (days 9-17). Following day 54. mean P4
levels were not significantly different from baseline levels in either P (p=0.347) or NP
(p=0.190) animals. Mean P4 AC concentrations during the ditferent cycle stages did not
significantly differ from mean AC baseline values (p=0.060).

Mean E2 levels in P animals were significantly elevated above mean P baseline
levels during the periovulatory period (p=0.034). days 27-35 (p=0.007) and days 36-44
(p=0.041). Mean E2 NP levels were significantly elevated above mean NP baseline levels

during the periovulatory period (p<0.001) and days 27-35 (p=0.014). Meun AC E2
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!regnant

CE e 30t0-13 65.7 6.6 44.6 5.0
-12t0 8 163.5 2%.0 76.6 129
9t 17 409.9 9Y3.x 38.4 0.5
I8 to 26 68(.2 813 60.1 12.2
27 to 35 581.5 1113 91.9 19.0
360 44 435.7 51.7 80.3 13.%
4510 53 223.2 42.5 66.4 6.6
5410 65 158.5 139 61.7 7.1
66 to 71 178.0 10.6 72.5 1.2
30to-13 116.5 8.2 56.5 2.6
-i12t0 8 302.2 29.5 98.9 9.7
9to 17 705.7 97.0 68.6 5.2
18 to 26 541.8 63.4 73.9 6.6
27to 35 492.0 472 83.1 7.8
36 t0 44 317.6 38.5 66.5 40
451053 288.2 33.9 70.6 7.5
55 to 65 197.3 20.6 56.7 4.6
66071 163.3 37.6 61.3 8.7
Nonovulatory
30t0-13 218.2 249 94 8 12.5
-12t0 8 213.6 225 929 11.8
9to L7 266.7 32.8 107.1 248
18 to 26 251.1 69.5 90.1 22.0
27to 35 188.6 19.5 88.4 23.2
36to 44 152.6 17.9 72.9 17.5
4510 53 170.6 18.7 63.1 134
54 to 65 133.9 20.1 45.7 79
66t071 81.6 8.2 18.1 3.3

Table I. Mean *+ SEM fecal progestin and estrogen metabolite concentrations tor all cycle
stages. pre-ovulatory (days -30 to -13), periovulatory (days -12-8). luteal (days 9-17. 18-
26. 27-35. 36-44. 45-53 and 54-65) and post (66-71) for pregnant. ovulatory nonpregnant
and nonovulatory red wolves.
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concentrations tfrom all cycle stages did not significantly differ from meuan AC baseline
values (p=0.066).
Between Classes of females

Concentrations of P4 and E2 within each cycle stage were compared between the 3
classes (P. NP and AC) of females by ANOVA with repeated measures. During the pre-
ovulatory period (days -30 to -13) P4 concentrations between P and NP wolves were
relatively low and did not differ (p=0.234. Figure 9). Progesterone concentrations trom
AC animals during this time period were elevated in comparison to P and NP wolves
(p20.017). Fecal progestin concentrations did not significantly differ between P and NP
animals during any stage of the luteal phase (days 9-65: p=0.270). Progesterone values
remained elevated above AC values longer in P animals (days 36-44: p=(0).035) than in NP
animals (days 27-35: p=0.017). Insufficient samples precluded comparison of post-
sampies.

Fecal estrogen metabolite concentrations during the pre-ovulatory phase (days -30)
to -13) did not differ between NP and P animals (p=0.824). However. during the pre-
ovulatory phase. E2 concentrations in AC animals were significantly greater than E2 values
in NP animals (p=0.034) but not P animals (p=0.088). During the periovulatory and luteal
phase (days -12-65) E2 concentrations did not significantly differ among the three clusses
(P. NP and AC) of females (p=20.130). Similar to P4. insufficient samples precluded
comparison of E2 post-samples.

In addition to the analysis of adult wolves. | yearling wolf. housed within a family
unit (with mother. tather and 2 brothers) was examined tfor evidence of cyclicity.
Appendix [T A(a) illustrates that the young wolf did experience a surge in E2 tollowed by a
dramatic rise in P4. Concentrations of P4 and E2 were within ranges observed for cycling

adult temales.
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Periovulatory Protfiles

For consistency. days -16 to -12 were used as baseline values for comparison
between daily means in both fecal and serum profiles [day -16 corresponds to the earliest
samples collected in the baseline time frame for serum samples (February 2nd-22nd)|.
Fecal

In addition to the calculation and statistical analysis of 3 day means. daily mean P4
and E2 concentrations were calculated for 9 cycles (n=7 NP animals) to more specitically
evaluate endocrine trends occuring in the periovulatory period (Figure 11). Limited data
tfrom P females did not allow for the calculation of daily means during the periovulatory
period. Progesterone metabolite values rose steadily above mean basal values (days -16 to
-12: 1422 + 15.6 ng/g feces: range 37.8 - 453.6 ng/g teces) from day 0 (399.7 = 89.1
ng/g feces: range 2222 - 1033.2 ng/g feces: p=0.010). reaching maximum daily mean
concentrations by day 16 (1157.8 £ 348.0 ng/g teces).

Basal E2 values (day -16 to -12) ranged from 25.4 - 153.0 ng/g feces (mean 72.2 +
6.1 ng/g feces). Daily mean E2 values demonstrated a gradual increase from day -12.
achieving peak levels at day -5 (187.20 + 51.89 ng/g feces). tollowed by a gradual decline
from days -4 to 3. However. at no point were daily mean E2 values significantly elevated
above mean basal E2 values (p=20.068). Of the 9 cycles examined. 6 exhibited a single
marked elevation in E2 [Day -7 (n=1), Day -6 (n=3). Day -5 (n=1) and Day -4 (n=1)} with
peak values ranging from 169.9 - 1032.9 ng/g feces.

Serum

Daily mean concentrations of serum progesterone (P4s). estradiol (E2s) and
luteinizing hormone (LH) were calculated and analyzed tor 23 cycles from 12 NP animals.
Figure 12 illustrates the endocrine relationship of P4s and E2s to LH. Lack of data on
specific days (days -7 and -1) was due to infrequent sample collection and small amounts

of serum obtained. In all cases, priority was given to P4s analysis.
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Figure [ 1. Daily mean +/-SEM (n=9 cycles) tfecal progestin and
estrogen metabolite concentrations from ovulatory nonpregnant
temale red wolves (n=7).
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The mean serum profile demonstrated that there was minimal variation in mean
baseline P4s concentrations values (days -16 to -12: 0.7 ng/ml £ 0.1 ng/ml. range 0.2-1.1
ng/ml). Despite the initial alignment of each individual profile to a rise in P4s [day 0 =
basal values (P4s values from all wolves February 2nd to 22nd) + 2 SD|. statistically. the
first significant increase in mean P4s concentrution from mean baseline concentrations
(days -16 to -12) occurred at day -2 (1.3 = 0.1 ng/ml: p<0.05). which corresponded with
the onset of the LH surge. Serum progesterone levels rose sharply until duy 5 (20.8 = 2.0
ng/ml). and ranged from 8.9 - 33.6 ng/ml between days 6-10. The greatest mean value

measured was on day 9 (26.0 + 4.6 ng/ml).

[ndividual basal E2s values (days -16 to -12) ranged from 10.0-20.1 pg/mi (mean
11.9 £+ 0.7 pg/ml). Estradiol began an apparent rise on day -11. Daily mean E2s
concentrations continued to gradually increase and were significantly greater by day -4
(p<0.05) when compared to basal values. Significant elevations of E2s above basal values
were detected over an ~ 7 day interval (day -4 to 2: p<(.05) with a peak mean value of 30.4

+ 4.8 pg/ml measured on day -3. Possibly due to infrequent blood sampling. only 13 of

the 23 cycles examined exhibited a marked elevation in E2s. Examination of these 13
individual cycles revealed that E2s peaked on day -6 (n=2). day -5 (n=1), day -4 (n=2).
duay -3 (n=3) and day -2 (n=5) with values ranging tfrom 7.9 - 52.1 pg/ml. Mean estradiol
values declined coincidentally with the onset of the LH surge. By day 3. mean E2s
concentrations returned to basal values and remained at nadir concentrations through until
day 10 (p>0.05).

Baseline LH concentrations (days -16 to -12) ranged trom 0.3-3.2 ng/ml (mean 0.9
+ (.1 ng/ml). The first significant rise from baseline was observed on day -2 (p<0.05)
reaching a peak mean value of 11.0 £ 5.5 ng/ml. Daily mean LH values remained above
baseline until day 1 (P<0.05). From day 2 through day 0. daily mean LH levels remained

at nadir levels (p>0.05). Of the 23 cycles examined. 15 exhibited a peak in LH with
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values ranging from 4.0 - 70.7 ng/ml. Individual peaks occurred on day -4 (n=3). day -2
(n=6) and day () (n=6).
Male Profile

Concentrations of fecal T were analyzed for S intuct adult male red woives. Figure
13 illustrates the weekly mean longitudinal fecal T excretory profile over a | year period.
Between mid-spring and early autumn. T concentrations were at their lowest values (May -
late October: mean 103.1 £ 6.3 ng/g feces: range 3.6-507.7 ng/g teces). Levels increased
above mean baseline values (p=0.001) as daylengths were declining during late autumn

(November-December: weekly mean range 136.3 £ 214 w0 259.7 £ 48.5 ng/g feces:

individual range 31.2 to 840.1 ng/g feces). During Autumn [September 21st (Autumn
Equinox) to December 2 1st (Winter Solstice)] weekly T concentrations and daylength were
inversely related (r= -0.749: p=0.006). From the winter solstice until mean peak T
concentrations were reached in late February (838.2 + 243.8 ng/g teces). meun weekly T
concentrations and daylength were positively related (r= 0.921: p<0.001). Thereatter. T
concentrations declined steadily to basal concentrations and from early March to the
summer solstice (June 21st) T concentrations and daylength were inversely related (r= -
0.865. p<0.001).

Fecal samples were collected (January - June. [998) from one intact yearling
(February - March was his first breeding season). housed in a family unit (mother, tather.
sister and brother). and were analyzed tfor T concentrations. Results for this animal
demonstrate the occurrence of seasonality in T secretion in a pattern similar to adult animals

[Appendix [II. A(b)].

13



Fecal testosterone metabolites

(ng/g feces)

1250
- 15
1000
750 — - 125
500 =
- 10
250
0 7.5
N D J F M A M ! J A S O N D
Month —e— T
Daylength

Hours of daylight

Figure 13. Weekly mean (+/- SEM) changes in fecal testosterone metabolite
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over a ane year peroid.
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Gender Determination

ANOVA was performed to determine which of 6 variables (P4. E2. T. P4/T. P4/E2
and T/E2) demonstrated signiticant ditferences among the classes (P. NP. AC and mules)
within the four different time periods (December 2 I st - February 3rd. February 4th - March
20th, March 21st - May Sth. May 6th - June 21st). To test the ability of fecal steroid
analysis to distinguish between the sexes. only significant ditferences detected between the
3 classes of females and males were of interest. Meun = SEM for each variable within each
period for P. NP. AC and male animals are presented in Table II.  Shaded areas represent
temale variables that were significantly ditterent (p<0.005) from the respective male
variable. [n all four periods. ditferences among temak and male variables were detected.
However only 3 of the 4 periods (from December 21st - May Sth) demonstrated a variable
that was signiticantly ditferent from males tor all 3 classes of temales. The ratios P4/T and
T/E2 were the two most informative variables during these 3 time periods (December 21st
to May Sth). Testosterone also was an informative variable to characterize between the
sexes: however. signiticant differences from males tor ail 3 classes of temales were only
demonstrated from February 4th to May 5th (Table [1). Among the 6 variables. P4 and E2
concentrations along with P4/E2 ratios were the least informative to compare male and

female hormone levels.
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Acyclic Nonpregnant Male
+SEM +SEM +<SEM =SEM
December 21st to
February 3rd
P4 - 218.7 3719 7.1 18.2 86.1 139
E2 - 7.7 103 28 70 47.3 73
T 170.5 633 592 - 269 355.0 e¢626
P4/T - 3.8 14 - 03 1.4 0.3 o6
P4/E2 3.1 o5 0.2 0.5 2.2 0.3
T/E2 2.1 06 1.2 04 7.5 0.7
February 4th to
March 20th
P4 296.6 367 49.6 35.2 96.1 117
E2 90.5 169 11.2 23.8 5§5.4 6.7
T 61.9 175 100.2 120 657.9 789
P4/T 8.1 15 .09 “ 1.0 0.2 0.1
P4/E2 4.4 10 .09 1.2 1.9 0.2
T/E2 6.8 02 10 0.2 11.9 1.0
March 21st to
May Sth
P4 221.8 558 379 725 200.6 1137
E2 80.3 132 45 10.9 54.9 85
T 94.8 334 13.2 279 197.1 229
P4/T 4.2 o9 0.8 19 i.0 0.4
P4/E2 2.8 02 0.6 1.4 2.6 0.6
T/E2 1.4 04 0.3 0.6 4.1 04
May 6th to
June 2ist
P4 210.1 302 16.3 322 95.3 213
E2 36.0 55 43 1.1 41.3 5.0
T 82.0 277 320 343 141.0 305
P4/T 6.9 a0 0.6 06 2.0 08
P4/E2 5.8 16 0.3 0.5 2.4 04
T/E2 3.9 20 0.5 0.9 3.4 0.6

Table I1. Mean = SEM concentrations and ratios of fecal progestin (P4), estrogen (E2) and
testosterone (T) metabolites for acyclic, nonpregant, pregnant and male red wolves during
4 time periods surrounding and including the breeding season. Within rows, shaded areas
represent significant differences (p<0.005) between the variables for the female

reproductive class(es) and males.



DISCUSSION

Validation

One of the main objectives of this study was to develop a non-invasive method to
endocrinologically monitor the reproductive status of both male and temale red wolves. In
addition. the adaptation ot a method to non-invasively monitor adrenocortical activity was
investigated. Progestins and estrogens have been successtully measured for a number of
carnivores in ftecal (felids: Shille et al.. 1991: Graham et al.. 1993: Brown et al.. 1994:
Czekala et al.. 1994: Brown et al.. 1995: Graham et al.. 1995: Brown et al.. 1996b.
canids: Wasser et al.. 1995: Hay. 1996: Monfort et al.. 1997: Gudermuth et al.. 199K:
Velloso et al.. 1998) and urine samples (canid: Batchelor et al.. 1972. Monfort et al..
1997). Testosterone metabolites also have been quantified in urine (felid: Brown et al..
1996a) and feces (telid: Brown et al., 1996a. canid: Monfort et al.. 1997 Velloso et al..
1998). as have corticosteroids (urine; felids: Carlstead et al. 1992: Curlstead et al.. 1993:
canid: Jones et al, 1990, feces: felid: Graham & Brown. 1996. canid: Creel et al. 1996 ).
In this study. fecal samples were chosen as the substrate for analysis based on the
following: 1) feces were readily available and easily collected during the daily husbandry
routine, while urine was rapidly absorbed into the ground or masked by bushes and wees
within the holding area. and 2) in previously studied carnivore species. it has been
demonstrated that feces is the primary route of excretion for the steroid metabolites of
interest in this study (progestins and estrogens: Shille et al.. 1984: Shille et al.. 1990
Gross. 1992: Brown et al.. 1994: Monfort et al.. 1997. cortisol: Graham & Brown. 1996.
testosterone: Brown et al.. 1996a; Velloso et al.. 1998).

Achievement of the first abjective required the adaptation and validation of tecal
extraction procedures for use with our laboratory’s enzyme immunoassays. Results
obtained from the dose-response experiments indicated that ovarian hormone (method 1)
and corticosteroid extraction protocols were effective at removing exogenous

progestin/estrogen and endogenous cortisol metabolites. respectively. from the feces of the
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temale red wolf. Similarly, the androgen hormone extruction protocol (method 1) was
efficient at removing endogenous testosterone metabolites from the feces of the male red
wolf. Comparison between different progestin and estrogen extraction protocols
demonstrated that exogenous progestin and estrogen removal was improved through the
addition of aluminum oxide (Method 1 vs. 2). The addition of aluminum oxide aided in the
removal of background pigments. resulting in more consistent percent recoveries and
extraction efticiencies (Lucas et al.. 1991: Graham et al.. 1995). [n ull but one case. the
removal of ovarian fecal metabolites was greater utilizing methods | (~90% methanol) than
method 3 (~20% methanol). These results are not unexpected as Palme et al. (1996) and
Young (1998) demonstrated that the recovery of steroids was improved by utilizing
increasing amounts of methanol.

Tests of parallelism suggested that extructed steroids from both males and females
behave in an immunologically similar manner to steroids used in the standard curve and are
present in quantities which are measurable by the assay systems. A more detailed
examination of unconjugated steroids present in fecal samples was facilitated by HPLC
analysis. Caution should be exercised when interpreting the data. as only a few samples
were subjected to HPLC analysis. However. results trom this study suggest that there is
littte variation between individuals or stage of the reproductive cycle regarding which
progestin and estrogen metabolites are excreted into the feces. Examination of the
immunoreuactive estrogen profile suggested that estradiol and estrone are the major torms of
metabolites present in the teces of the red wolt. These results are in agreement with
previous HPLC based studies in which it has been demonstrated that estradiol (Brown et
al.. 1994: Graham et al.. 1995: Montort et al.. 1997: Velloso. 1998) and estrone (Brown et
al.. 1994; Monfort et al.. 1997) constitute the major forms of estrogen metabolites excreted
in carnivore feces. In contrast to estrogen. the majority of tecal progesterone metabolites in
canids do not appear to be in the native form of progesterone (Montort et al.. 1997: Mostl

& Brunner. 1997: Velloso et al.. 1998). This appears to be true of the red wolt as well.
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Although progesterone appears to be present in the feces. the majority of immunoreactivity
was detected in tractions that were less polar than progesterone. suggesting the presence of
pregnanes. This result is not unexpected. since recent publications in the domestic dog
(Mostl & Brunner. 1997) and African wild dog (Monfort et al.. 1997) identity 20-oxo-
pregnanes as the major torm of progestin metabolites. The numerous minor peaks also
observed in red wolf feces suggest the likelihood of metabolism of progesterone to several
more  polar  products.  possibly  including [ IB-hydroxyprogesterone.  20a-
dehydroxyprogesterone and |7a-hydroxyprogesterone.  Collectively. this information
suggests that an antibody with a broader range of cross-reactivities and/or higher cross-
reactivity with pregnanes would increase the efﬁci'ency of monitoring ovarian activity in the
red wolf.

[t also appears that the majority of cortisol-like immunoreuctivity in carnivore teces
is not trom the native steroid. but rather trom other metabolite forms. The physiological
relevance of cortisol-like metabolites in the feces of the African wild dog (Creel et al..
1996) and domestic cat (Graham & Brown. [996) have been demonstrated using a
corticosterone RIA: however, neither cortisol nor corticosterone were present in their
native torm in the feces. Data from the present study provide similar results. tndicating that
cortisol is not excreted in its native form in the feces of the red wolf. Although the cortisol-
like metabolites in the teces of the red wolf act immunologically similar to a cortisol
standard. as evidenced from parallelism results. and repeated restraint episodes appeared to
increase corticosteroid metabolites in one wolf, turther investigation into the validation of
this assay system is required before it can be applied to study “stress” events in this species.

In one canid species. the African wild dog. HPLC uanalysis suggests that
testosterone is present in the feces (Monfort et al.. 1997). Separation of radiolabelled
metabolized testosterone in the maned wolt revealed that several testosterone metabolites
exist. with free testosterone constituting only a small percentage of the total metabolites

(Velloso et al., 1998). In contrast. although several radiolabelled tecal testosterone
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metabolites were detected in the teces of the male domestic cut. none were associated with
free testosterone (Brown et al.. 1996a). The results in this present study agree with the
observations made by Brown et al. (1996a). as no tree testosterone appeared to be excreted
in the teces of the red wolt. Although testosterone was not observed. the presence of
several large immunoreuactive peaks less polar than testosterone suggests the possiblity of
Sa androstanediol. 17B-hydroxy-Sa-androstan-3one and 3p-hydroxy-5a-androstan-17one

(standards not shown) crossreacting with the testosterone antibody used in this study.

Female Reproductive Cycle
Longitudingal Profiles

Another goal of this project was to establish a database of normal endocrine profiles
for the temale red wolt. The findings of this study indicate that the major hormonal events
which occur during the reproductive cycle of the red wolf are reflected in fecal steroid
concentrations. Patterns observed are comparable o those reported for severai canid
species. including serum steroid profiles in the domestic dog (Smith & MacDonald. 1974:
Concannon et al.. 1975: Concannon et al.. 1977a: Wildt et al.. 1978: Wildt et al.. 1979:
Olson et al.. 1982: Concannon et al.. 1989) coyote (Steliflug et al.. 1981) and the gray
wolf (Seal et al.. 1979: Seal et al., 1987). as well as fecal steroid profiles in the maned
wolf (Wasser et al.. 1995: Velloso et al.. 1998). African wild dog (Montort et al.. 1997)
and domestic dog (Gudermuth et al.. 1998).

The measurement of reproductive hormones in the teces of the red wolf has a
practical application for detecting the presence or absence of ovulation. In contrast to
pregnant and nonpregnant animals. progesterone and estrogen concentrations did not
fluctuate throughout the breeding season in acyclic red wolves. In tact. concentrations
were elevated above cyclic animals prior to the onset of estrus. In domestic dogs the
administration of a progestin treatment as a means of contraception. maintains gonadotropin

secretion in an anestrual state. This prevents the elevation ot gonadotropin secretion which
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would normally terminate anestrus and initiate proestrus (Concannon. 1995).  Although
several potential explanations exist (age. health. genetic variability. stress) it is possible that
the elevated progesterone levels present in acyclic red wolves prior to the breeding season
acted in a similar manner. thereby maintaining the wolves in an anestrual state.

One objective for the female red wolf longitudinal study was to examine ditferences
that occurred between the endocrine profiles of pregnant and non-pregnant animals.
Gestation length in the red wolf. as determined from a rise in progesterone. was 64-65
days in duration. This is comparable to gestation lengths reported in the gray wolf (60)-65:
Seal et al., 1979). maned wolf (65 days: Velloso et al.. 1998) and domestic dog (64-66
days: Concannon et al.. 1989). The detection of pregnancy-specitic differences post-
implantation (~day 20 in the domestic dog: Thatcher et al.. 1994) in serum and plasma
ovarian hormone concentrations is controversial. Plasma or serum concentrations of
progesterone (Smith & MacDonald. 1974) and estrogen (Concannon et al.. 1977b) have
been reported to be greater in pregnant animals than in the nonpregnant luteal phase of
domestic dog. However. most studies have not observed these pregnancy-specific
differences in either progesterone (Hadely. 1975: Nett et al.. 1975: Austad et al.. 1976:
Reimers et al.. 1978: Concannon et al.. 1989: Onclin & Verstegen. 1997) or estrogen
(Edqvist et al.. 1975: Hadely. 1975: Nett et al.. 1975: Austad et al.. 1976: Grat. 1978:
Reimers et al.. 1978). In general. pregnancy-specific increases may not be clearly
observed in plasma and serum steroid concentrations because of the increased
hemodilution. metabolism and clearance associated with pregnancy (Concannon et al..
1977b). However. it is possible that differences in ovarian steroid hormone production
during pregnancy could be evident in fecal samples. In recent reports tor the domestic dog
(Gudermuth et al.. 1998) and maned wolf (Velloso et al.. 1998). pregnancy-specific
differences in progestin and estrogen metabolites were observed in the feces. [n the present
study, although fecal progestin and estrogen metabolite levels remained elevated slightly

longer in pregnant than non-pregnant animals. a dramatic difference between the
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concentrations of fecal ovarian steroids in pregnant and non-pregnant animals was not
detected. Perhaps a larger group of pregnant study animals and/or an antibody more
etficient at monitoring changes in progestin concentrations would allow for the detection of
pregnancy-specific endocrine changes in the red wolf

Although not observed in this study. pregnancy-specific differences in ovarian
steroid concentrations following implantation are believed to be ot luteal origin as there is
no evidence of placental steroid secretion in the domestic dog (Concannon. 1986b). It also
hus been suggested that. although the stimulus for increased steroid production by the
corpus luteum is unknown. prolactin is likely involved (Gudermuth et al.. 1998). Prolactin
is a required luteotrophin in the dog (Concannon et al.. 1987). and it has been
demonstrated that following implantation there is u pregnancy-specific elevation in serum
prolactin between days 25-30 (Graf et al.. 1978: DeCoster et al.. 1983: Onclin &
Verstegen. 1997). Gudermuth et al. (1998) demonstrated that when prolactin rises in
serum. pregnancy-specific elevations in tecal ovarian steroids occur. Perhaps. pregnancy
diagnosis could be achieved through the validation of a sensitive immunoassay (RIA or
EIA) to non-invasively monitor urinary prolactin. similar to previous success with LH
(Czekala et al.. 1988: Brannian et al.. 1989: Robeck et al.. 1993: Jettcoate & England.
1997) and FSH (Walker et al.. 1988).
Periovulatory Profiles

A final objective of the study concerning temale red wolves was to describe the
endocrine relationships between ovarian steroids during the periovulatory period.
Characterization of the periovulatory period through fecal and serum steroid hormone
analysis indicated that the red wolf is very similar to the domestic dog (Concannon et al..
1975: Concannon et al.. 1977a: Wildt et al.. 1979) and gray wolf (Seal et al.. 1979).

The mean serum profile demonstrated that hormone values in the red wolf were
within similar ranges reported for the gray wolf (Seal et al.. 1979) and domestic dog

(Edqvist et al., 1975: Austad et al., 1976: Concannon et al.. [975: Concannon et al..



1977a; Wildt et al.. 1979: Olson et al.. 1982). The proestrous surge in estradiol began
prior to the surge in LH and occurred over a ~7 day period attaining peak values 3 days
prior to a rise in progesterone. Mean estradiol values declined coincidentally with the onset
of the LH surge and then slowly returned to basal values. Similar wends have been
reported for the gray wolf (Seal et al.. 1979) and domestic dog (Concannon et al.. 1975:
Nettetal.. [975: Austad et al.. [976: Wildt et al.. [979: Olson et al.. 1982). In addition.
the preovulatory LH surge was similar in magnitude and duration (~4 days) to other canid
species (Seal et al.. 1979: Concannon et al.. 1989) and occurred on the same day as the
first significant increase in mean progesterone concentrations. As blood samples could not
be drawn on a daily basis. no conclusive evidence could be drawn regarding the range in
which LH and estradiol surges occurred in relation to a rise in serum progesterone.
However. based on the data obtained. LH peaks generally occurred within -2 days prior
to a rise in progesterone and peak estradiol levels were observed 2-6 days before a rise in
progesterone.

Examination of the mean tecal profile for red wolves during the periovulatory
period of the nonpregnant animal revealed similar endocrine trends to that of the serum
profile. Peak estrogen concentrations were observed S days (range 4-7) before u rise in
progesterone and although values were not significantly elevated above basal
concentrations. the estrogen surge appeared to last for ~8 days. Compared to serum
samples. fecal progesterone and estrogen concentrations were ~I14) to 10 told higher
during basal concentrations. respectively. and ~40 to 10 fold higher at peak levels of
steroid concentrations. respectively. This is not unexpected. since fecal concentrations tend
to be much more concentrated than steroid levels in the blood (Hay. 1996: Méstl &
Brunner. 1997). Behavioural observations. although not reported. indicated that overt
estrous behaviours. including il deflection. presentation of ano-genital area  and

mounting. were generally observed during falling estrogen levels and rising progesterone
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values. similar to that of the domestic dog (Concannon et al.. 1979b: Beach et al.. 1982:
Feldman & Nelson. 1987).

Results from this study suggest that because serum and fecal ovarian steroid
profiles in the red wolf exhibit similar trends and are similar 1o reproductive patterns
observed in the domestic dog. the measurement of ovarian hormones in the feces of the red
wolt has a practical application tfor detecting the approximate timing ot ovulation. Although
mean fecal concentrations increased ~2-10 fold between busal and peak levels of steroid
concentrations. elevations in fecul steroids concentrations during the estrogen surge and the
rise in progesterone were only clearly observed in comparison to concentrations during the
early stages of the breeding season in a given animal. These results are similar to a recent
report in the domestic dog (Gudermuth et al.. 1998). Theretore. the application of fecal
steroid monitoring to detect ovulation must be applied on an individual basis. requiring the
daily collection of fecal samples several weeks prior to the anticipated time of estrus to
accurately estimate ovulation.

When using teces as an alternative to serum for monitoring steroid concentrations. a
time lag between circulating steroid levels and concentrations measured in the feces is
expected. In the domestic dog. fecal steroid concentrations have been demonstrated to be
positively correlated within a ~24 hour period with serum concentrations (Hay. 1996:
Gudermuth et al.. 1998). Although serum uand fecal concentrations were not collected
simultaneously in this study. we would expect to see similar trends in the teces ot the red
wolt. Although one must be careful in assuming that the time it takes for food ttems to
pass through the gut closely retlects the lag between steroid secretion in blood and its
excretion rate in the feces. the transit time of small pieces of surveyors tape or food
colouring within a meatball occurred within an ~12-16 hour period in the red wolf (S.
Berhns. personal communication). Based on observations in the red wolf and those

described for the domestic dog. it is suggested that steroid concentrations within red wolf
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teces most likely represented a pool of circulating steroid concentrations from the previous
12-24 hours.

Studies in the domestic dog have suggested that the peuk tertility period is estimated
to be 4-5 days following the LH surge (Concannon et al.. 1989) based on ovulation
occurring within 1-3 days following the LH surge (Phemister et al.. 1973: Concannon et
al.. 1977a: Wildt et al.. 1978) and 2-3 days for oocyte maturation (Holst & Phemister.
1971: Anderson & Simpson. 1973: Phemister et al.. 1973: Concannon et al.. 1989).
Studies have demonstrated that declining estrogen concentrations concomitant  with
increasing progesterone concentrations are associated with the LH surge in the domestic
bitch (Smith & MacDonald. 1974: Concannon et al.. 1975. Concannon et al.. 1977a:
Concannon et al.. 1979b: Wildt et al.. 1979: Olson et al.. 1982) and that the initial sharp
elevation in progesterone concentrations occurs coincidentally with the LH surge
(Concannon et al.. 1977a: Penton et al.. 1991). Theretore. timing tor Al in the domestic
dog is routinely based on circulating progesterone concentrations (Linde-Forsberg &
Forsberg. 1993: Wilson. 1993: Fontbonne & Badinand: 1993). Previous attempts at Al
tfor the red wolf required manual restraint of temales tor blood sample collection and
vaginal cytology. Results from the present study indicate that non-invasive fecal steroid
monitoring could be used as an alternative to blood sampling to estimate ovulation and time
Al. Blood sumpling trom a stress-susceptible non-domestic animal such as the red wolf
has the potential to negatively impact on Al success. Stress may interrupt normal endocrine
patterns. and possibly disrupt fertilization. implantation or embryonic development
(Moberg. 1985: Liptrap. 1993: deCanranzaro & MacNiven. 1995). The application of
monitoring ovarian steroid concentrations through fecul samples has the potential to
improve Al success rate and possibly aid in the genetic and conservation management of

this endangered species.
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Male Reproductive Cycle

For the male red wolt. one objective of this study was to investigate the relationship
between changes in fecal testosterone levels and photoperiod. Previous work in male non-
domestic canids has demonstrated events consistent with photoperiod synchronization
(Green et al.. 1984: Smith et al.. 1985: Asa et al.. 1987: Mitsuzuka. 1987: Seal et al. 1987:
Montort et al.. 1997: Velloso et al.. 1998). Similar to other non-domestic canids. the
results of this study demonstrated changes in tecul testosterone metabolite concentrations in
relation to photoperoid and further support seasonal regulation of androgenesis and
spermatogenesis in the male red wolf.

[t has been suggested that the gray wolt cannot be clearly clussitied into either a
spring (long-day) or fall (short-day) breeder (Asa et al.. 1987). This appears to be true of
the red wolf as well. As observed in this study. the peuk breeding periods in red wolves
occurs during mid- to late winter as days are lengthening. However. fecal testosterone
levels began to rise in late autumn, reaching peak levels coincident with estrus in late
winter. Thus. although peak breeding occurs during lengthening days. the early phases of
sexual recrudescence occur when days are becoming shorter.  As with the gray wolt. it is
not known which of these photoperoidic phases is more dominant or important. or it both
have equally significant roles in the annual cycle (Asa et al.. 1987).

[n addition to the measurement of fecal steroid concentrations trom adult wolves.
fecal samples also were collected from two wolves entering their tirst breeding season (1
male and | female). The wolves were housed in a family unit. consisting of the mother.
father and 2 young males and | young temale. Their steroid profiles indicated that the
young animals did in fact exhibit seasonal changes in reproductive hormones and the
concentrations observed were within ranges reported for adult wolves. These endocrine
data support the observation that young wolves can produce pups in their first breeding

season {(Medjo & Mech. 1976: Zimen. 1976; Waddell. 1995).
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Management and Conservation Applications

Overull. this project demonstrates the ability to non-invasively monitor ovarian and
testicular endocrine function in the female and male red wolf. respectively. The knowledge
gained from this study greatly improves our understanding ot the basic endocrinology of
the endangered red wolt and has direct application towards the management of both cuaptive
and wild populations.

The fact that fecal samples are readily available. easily collected and reflect changes
which occur during the reproductive cycle in the temale has important implications for the
captive breeding program. Fecul samples can provide crucial information on peuk fertility
periods and could therefore be used to time Al. The establishment of endocrine norms for
male and female red wolves over a long-term period allows for recognition of any
disturbances in these patterns in future analyses of individual reproductive function.
Therefore. fecal steroid analysis may aid in the diagnosis of possible cases of infertility or
test the effectiveness of difterent contraceptive treatments. This kind of information is
important with regard to management decisions such as future relocations and/or pairing of
animals. In addition. the non-invasive nature of this technique eliminates any undue
*stress’ that animals would endure if blood samples were required to achieve the same
objectives and therefore may more accurately retlect ovarian function.

For tree-ranging red wolves. information gained trom this study could serve as an
indicator of normal reproductive patterns. Additionally. results from the present study
suggest that gender determination through tecal steroid analysis can be achieved during the
breeding season trom late December until the beginning of May and could possibly be used
in certain aspects of wild population studies such as sex ratio and sample identitication
within a territory. However. due to individual variation a larger database is needed betore
this technique could be used in practical studies.

Further validation of the cortisol assay is required before adrenal endocrine function

can be non-invasively monitored in the feces of the red wolf. However. the potential
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application of this technique could be used to determine if potential “stressors’. such as
daily husbandry routines or other environmental tactors. negatively impact on the well-

being of the wolves and possibly intertere with reproductive success.
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SUMMARY AND CONCLUSION

In light of recent concerns of hybridization of wild red wolves and coyotes. the
importance of and reliance on a genetically healthy and viable captive population is crucial
for the future management of this endangered camivore. This investigation was undertaken
primarily as a means to improve our basic knowledge of red wolf reproductive biology.
The fundamental biological data accumulated from this study will prove to be an effective
aid in refining and improving the captive breeding management of this species.  Although
red wolves have been maintained in captive populations for almost 20 years this is the first
report to examine female and male endocrinology. While it is generally assumed that
reproductive aspects of the red wolt would mimic those ot the domestic dog. it is necessary
to document all aspects of reproductive biology prior to undertaking assisted reproduction.
Studies have demonstrated that the reproductive biology ot a non-domestic species can
differ from its domestic model [sperm charucteristics difter between red wolves and
domestic dogs (Goodrowe et al.. 1998). clouded leopards (Neofelis nebulosa). although 3-
8 times the body weight. require the same dosage of gonadotropin as the domestic cat

(Felis domesticus) to elicit comparable tollicular growth (Howard et al.. 1992)].

To ftacilitate the non-invasive monitoring of ovarian. testicular and adrenocorticoid
steroids within the teces of the red wolf. validation of enzyme immunoassay systems used
in our laboratory. through dose response and parallelism experiments. was required.
Results from these experiments demonstrated that extraction protocols selected for use in
this study were effective at removing progestin. estrogen. testosterone and cortisol
metabolites from fecal sumples in this species. Facilitated by HPLC. a more detailed
examination of unconjugated steroids present in fecal samples revealed that it is best to use
antiserum specitic for estradiol to detect follicular activity. but for monitoring products of
luteal and testicular steroidogenesis. antiserum with a broader spectrum of cross-reactivities

would be more tavourable. Although cortisol-like metabolites in the feces of the red wolf
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behaved immunologically similar to a cortisol standard and repeated restraint episodes
appeared to increase cortisol metabolites in one wolf. HPLC results indicated cortisol is not
present in its native form but rather as other cortisol-like metabolites.  Further investigation
into the validation of this assay system is required betore it can be applied to study ‘stress’
events in this species.

Longitudinal monitoring of ovarian steroids was conducted on female red wolf fecal
samples collected during the breeding season. In general. the mujor hormonal events
which occurred during the adult reproductive cycle were reflected in steroid concentrations
in the feces. Similar reproductive patterns also were observed in u single female red wolf
experiencing her first breeding season. Mean estrogen metabelite values in pregnant and
ovulatory non-pregnant female red wolves peaked prior to a rise in progestins and were
significantly elevated above mean baseline concentrations during the mid-luteal phase.
Mean progesterone metabolite values were significantly higher than baseline concentrations
until the mid- to late luteal phase in pregnant and ovulatory non-pregnant wolves.
Although mean fecal progestin and estrogen metabolite concentrations in pregnant temales
remained elevated longer during the luteal phase than those measured in ovulatory non-
pregnant females no significant difference between the two profiles. for either progesterone
or estrogen. was demonstrated. Therefore. pregnancy detection using the techniques
outlined in this study is not possible. However. measurement of reproductive hormones in
the teces is useful for the detection of normal reproductive patterns. by evaluating the
presence or absence of ovulation through a significant rise in progesterone. In some
females. fecal progestin and estrogen concentrations remained at baseline concentrations
throughout the breeding season and were theretore considered to be acyclic.

The traditional method of timing Al in the female red wolt involved physical
restraint for vaginal cytology and blood sampling for progesterone analysis. Females were
generally subjected to Al procedures 2-3 times (beginning 5-6 days after progesterone

levels became elevated above 1.0 ng/ml) and were restrained on average |1 times before the
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suspected period of ovulation could be determined.  Although serum and fecal values were
not simultaneously monitored in this study. the serum and fecal profiles obtained during the
periovulatory period exhibited similar trends and were similar to those observed in the
domestic dog. This suggests that the non-invasive measurement of ovarian steroids in the
tfeces could serve as a practical application tor the detection of the approximate time of
ovulation. Unfortunately. due to individual variation. there wus no defined concentration
that coincided with ovulation. Therefore. the use of non-invasive hormonal monitoring to
detect a rise in progestin concentations trom baseline values must be applied on an
individual basis. Perhaps the development of a more appropriate antiserum to progestin
metabolites excreted in the feces of the temale red wolt would minimize individual variation
allowing for a broader application and possibly pregnancy detection.

Longitudinal monitoring of testicular steroids was conducted on male red wolt tecal
samples coliected over a | year period. The changes in hormonal patterns demonstrated
events consistent with photoperiod synchronization. turther supporting seasonal regulation
of androgenesis and spermatogenesis in the red wolf. Testicular steroid measurements in a
single male red wolf experiencing its tirst breeding season exhibited similar patterns to
those observed adult males. Adult fecal testosterone concentrations remained at baseline
levels throughout the summer months until late autumn (November-December) when levels
significantly rose above baseline values and were negatively correlated with shortening
daylengths. From the winter solstice (December 21Ist) until peak concentrations were
attained during a period coincident with estrus (late February) testosterone metabolites were
positively comrelated with increasing daylength.  Thereatter. testosterone metabolite
concentrations declined back to nadir levels.

Experiments from this study also demonstrate the ability to sex red wolves through
fecal steroid analysis. Although practical application ot this technology is yet to be
implemented. results trom this study indicate that gender determination tfrom unknown

fecal samples is possible because of the difterences that exist between female and male tecal
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progestin, estrogen and testosterone metabolite concentrations.  Unfortunately. this
technology can only be utilized during the breeding season (late December - early May) as
concentrations of steroids beyond this period do not contrast sufficiently to detect
difterences between the sexes.

In summary. this study demonstrates the capability to non-invasively monitor
ovarian and testicular function in female and male red wolves. respectively. through tecal
steroid analysis. It has greatdly enhanced our basic knowledge of the hormonal events
which occur during the reproductive cycle of this species.  Although the techniques
described in this study are adequate tor practical application. future investigations should
focus on the development of assays more specific to metabolites excreted in the feces of
this species. In addition. non-invasive fecal steroid analysis should be used to time future
Al attempts. thereby eliminating stresstul restraint episodes and possibly improving Al
success rate. Improving the management of the captive breeding program by utilizing
techniques developed in this study has the potential to greatly improve the reproduction of
genetically valuable individuals for reintroduction and ensure the continued existence of red

wolves in the wild.
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APPENDIX LA

CHEMICALS

Acetonitrile

ABTS 2.2' - Azino-bis
(3-ethylbenzthiazoline-6-sultonic acid)

Aluminum oxide powder
Bovine serum albumin (Fraction V)
Citric acid

Cortisol antiserum (R4866)
Cortisol/horseradish peroxidase
Diethyl ether

EDTA

Estradiol- 17§ antiserum (R4972)

Estradiol-17p standard (1.3.5 [10]-
Estratriene-3.173-diol)

Estradiol- 17 /horseradish peroxidase

Hydrocortisone standard (11§, 17¢, 21-
Trihydroxypregn-4-ene-3. 20-dione)
Hydrogen peroxide

Lutenizing hormone antiserum (518-B7)

Lutenizing hormone ovine standard

Caledon Laboratories Ltd.. Georgetown,
Ont.. Canada

Fisher Scientific. Unionville Ont.. Canada

BDH Lutd.. Burlington. Ont.. Canada
Sigma Chemical Co.. St. Louis. MO. USA
Fisher Scientific. Unionville Ont.. Canada

C.J. Munro. University ot California.
Davis. USA

C.J. Munro. University of California.
Davis. USA

Caledon Laboratories Ltd.. Georgetown.
Ont. Canada

Sigma Chemical Co.. St. Louis, MO. USA

C.J. Munro. University of Calitornia.
Davis. USA

C.J. Munro. University of California.
Davis. USA
C.J. Munro. University ot California.

Davis. USA
Sigma Chemical Co.. St. Louis. MO. USA

Fisher Scientitic. Unionville, Ont.. Canada

J.Brown, National Zoological Park
Conservation Research Center, Front Royal
VA, USA

J.Brown. National Zoological Park
Conservation Research Center. Front Royal.
VA.USA
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Lutenizing hormone ovine tracer

Methanol

Normal Mouse Serum

Phenol red

Polyethylglycol (PEG)
Progesterone uantiserum (R4861)
Progesterone/horseradish peroxidase
Progesterone standard (4-pregnen-3.20-
dione)

Sodium carbonate

Sodium chloride

Sodium hydrogen carbonate

Sodium phosphate monobasic
Sodium phosphate dibasic

Testosterone antiserum (R156/7)

Testosterone/horseradish peroxidase

Testosterone standard (17B-hydroxy-4-
androsten-3-one)

Thimerosal
Tween 20

J.Brown. National Zoological Park
Conservation Research Center. Front Royal.
VA.USA

BDH Inc.. Toronto. Ont.. Canada

Sigma Chemical Co.. St. Louis. MO. USA
Sigma Chemical Co.. St. Louis. MO. USA

Fisher Scientitic. Nepean. Ont.. Canada

C.J. Munro. University ot California.
Davis. USA

C.J. Munro. University of California.
Davis. USA

Sigma Chemical Co.. St. Louis. MO. USA

Fisher Scientific. Nepean. Ont.. Canadua
Fisher Scientific. Nepean. Ont.. Canada
Fisher Scientitic. Nepean. Ont.. Canada
BDH Ltd.. Burlington. Ont.. Canada
BDH Ltd.. Burlington. Ont.. Canada

C.J. Munro. University of California.
Davis. USA

C.J. Munro. University of Calitornia.
Davis. USA

Steraloids. New Hampshire. USA

Sigma Chemical Co.. St. Louis. MO. USA
Sigma Chemical Co.. St. Louis. MO. USA

119



APPENDIX I.B

EQUIPMENT

Centrifuge. Labofuge 400

Dynatech Ultrawash I Microplate Washer
Dynatech 700 Plate Reader

Dynex MRX Plate Reader

Fisher Platelet Mixer Model 348

LKB RediFruac fraction collector

Nunc-Immuno 96F Maxisorp plates

Gamma Counter

Gilson P200 Diamond tips

Radial compression column

Rotator American Instruments R4140)

Sep-Pak C,; cartridges

Waterbath 180 Series

VWR/Cunlab. Mississauga. Ont.. Canada
VWR/Canlab. Mississauga. Ont.. Canada
VWR/Canluab. Mississauga. Ont.. Canada
Dynex Tecnologies. Chantilly. VA, USA

Fisher Scientitic Co.. Ltd.. Guelph. Ont..
Cuanada

LKB Wallac, Turku. Finland

Mandel Scientitic Co.. Ltd.. Guelph. Ont..
Canada

Isodata ICN Pharmaceuticals. Costa Mesta.
CA. USA.

Mandel Scientific Co.. Ltd.. Guelph. Ont..
Canada

Waters Scientific. Mississauga. Ont..
Canada

VWR/Canlab. Mississauga. Ont.. Canada

Waters Scientific. Mississauga. Ont..
Canada

Lab-Equip. Markham. Ont.. Canada



APPENDIX I.C
ENZYME IMMUNOASSAY SOLUTIONS

Coating Buffer

Na,CO, 1.52 ¢
NaHCO, 293 ¢
distilled H_O (dH,0O) 1000 ml pH t0 9.6
EIA Buffer
Stock A: 0.2M NaH,PO, 27.8 g/ 1000 ml dH,O
Stock B: 0.2M  Na,HPO, 28.4 ¢/ 1000 mi dH,0
Stock A 195 ml
Stock B 305 ml
dH,O 500 ml
NaCl 8.7¢
BSA (Fraction V) 1.0g pHto7.0
Wash Solution Concentrate
NaCl 87.66 g
Tween 20 50ml
dH,O 1000 ml
Substrate Buffer
Citrate bufter Citric Acid 9.6l g
dH,O 1000 ml pH to 4.0
40 mM ABTS ABTS 0.55 ¢
dH.,O 25 ml pH to 6.0
0.5M H,O, H,0, (30%) 500 ul
dH,O 8 ml
Fecal Extraction Solution
Wash conc 10 X NaCl 87.66 ¢
Tween 20 5.0 ml in 1000 ml dH,0
20% Methanol wash wash conc 10 X 100 ml
methanol 200 ml in 700 mi dH,O
Stock A: NaH,PO, 27.8 /1000 ml 20% methanol wash
Stock B: Na,HPO 28.4 2/1000 ml 20% methanol wash
Extraction buffer Stock A 195 ml
Stock B 305 mi
NaCl 87 ¢
BSA 1.0 g
20% Methanol wash 500ml pHto 7.0



APPENDIX LD

RADIOIMMUNOASSAY SOLUTIONS

Pink PBS

(0.5 M monobasic NaPO4 19.54 ml

(.5 M dibasic NaPO4 83.31 ml

NaCl 4085 ¢

Thimerosal 05¢

Phenol red a few drops

distilled H,O (dH,O) S litres pHto 7.4
RIA Buffer

Pink PBS L litre

EDTA (non free acid) 0.672 ¢

BSA (fraction V) 05¢g pHto 7.4
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APPENDIX

LA

EIA ANTIBODY CROSS-REACTIVITIES
PROGESTERONE (R4861)

progesterone
Sa-pregnane-3.20-dione
20a-hydroxyprogesterone
pregnanediol

estradiol-178

testosterone

estradiol-178
progesterone
androstenedione
dihydrotestosterone

testosterone
androstenedione
dehydroepiandrosterone
B-estradiol
pregnenolone

cholic acid

cholic acid methyl ester
deoxycholic acid
glycholic acid
taurochenodeoxycholic
acid

taurocholic acid

cortisol
prednisone
corticosterone
21-deoxycortisone
progesterone
pregnenolone
androstenedione
androsterone
aldosterone
estrone
dehydroisoandrosterone-
3-sulfate
cholesterol

100 %
12.19 %
0.13 %

< 0.01 %
< 0.01 %
<0.01 %

| la-hydroxyprogesterone
17a-hydroxyprogesterone
20B-hydroxyprogesterone
pregnenolone

estrone

cortisol

ESTRADIOL (R4972)

100 %
0.8 %
1.0 %
< 1.0 %

gstrone
testosterone
cortisol

TESTOSTERONE (R156/7)

100 %
0.27 %
0.04 %
0.02 %

< 0.02 %
<0.02 %
< 0.02 %
< 0.02 %
< 0.02 %
< 0.02 %

< 0.02 %

Sa-dihydrotestosterone
androsterone

cholesterol

progesterone
hydrocortisone
chenodeoxycholic acid
dehydrocholic acid
lithocholic acid
taurodeoxycholic acid
glycochenodeoxycholic acid

CORTISOL (R4972)

100.0 %
6.3 %
0.7 %
0.5 %

2 %

1%

\"f &\‘?BQQBQ

l

0.
0.
0.
0.
0.
0.
0.1
0.1

prednisolone

cortisone
deoxycorticosterone

1 1-deoxycortisol

| 7a-hydroxyprogesterone
| 7a-hydroxypregnenolone
testosterone
dehydroepiandrosterone
estradiol-17p

estriol

spironolactone
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40 %
0.38 %
0.13 %
0.12 %

<0.01 %
0.04 %

3.3 %
1.0 %
< 1.0 %

5737 %
0.04 %
0.03 %

<0.02 %
< 0.02 %
<002 %
<0.02 %
<0.02 %
<0.02 %
< 0.02%
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APPENDIX ILB
RIA ANTIBODY CROSS-REACTIVITIES

LUTEINIZING HORMONE ANTIBODY (518-B7)

equine LH 100 %
equine CG 39 %
ovine LH 195 %
bovine LH 264 %
porcine LH 200 %
teline LH 45 %
canine LH 138 G
rabbit LH 83 %
rat LH 191 %
equine FSH 1.4 %
equine TSH 3.8 %
ovine FSH 2.1 %
ovine prolactin 0.9 %
bovine FSH 0.09 %
bovine TSH 0.23 %
bovine growth hormone 0.04 %
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Fecal progestin and estrogen metabolite concentrations from a yearling
temale red wolf (A) and fecal testosterone metabolite concentrations in

relation to daylength tfrom a yearling male red wolf (B).
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