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ABSTRACT 
 

Understanding habitat needs of animal populations is critical for their effective 

management.  In recent years, technological advances have increased the range of 

methods available to examine habitat selection patterns.  However, available habitat data 

are often either limited to small geographic areas or are of coarse resolution, resulting in a 

gap in data to model habitat selection at landscape scales.  I explored a method of 

processing Landsat data, the at-satellite reflectance tasseled cap, to address this data gap 

using black bears in south central Louisiana as a case study.  As I showed, this case was 

particularly instructive because these bears occupy two very different habitat matrices.  I 

examined the information content of resource measures derived from tasseled caps and 

determined that they contain substantially more information than is represented in coarse 

habitat maps such as available from the USGS GAP program.  Additionally, this process 

could be applied over large areas and time frames, during different times of the year, and 

across sensors to produce consistent results that avoid the need to categorize land 

cover/habitats.  I used logistic regression and the information theoretic approach to 

examine: the spatial scale at which habitat measures were derived, model complexity, and 

the relative value of groups of derived habitat measures.  I grouped derived habitat 

measures to examine the information content in: images captured in two seasons, 

measures based on mean and standard deviation filters, and combinations of tasseled cap 

functions.  My work suggests that researchers should consider multiple summary 

statistics derived over a range of scales, use multi-temporal data, and use all three 

tasseled cap functions to derive habitat measures.  I calculated resource selection 

functions (RSF) for black bears in south central Louisiana and examined model 
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calibration and discrimination.  Mahalanobis distance has been proposed as an alternative 

to RSF because it does not require delineation of available resources, although results 

from the two approaches have not been compared.  In this study, habitat quality 

predictions from RFS models more accurately depicted bear habitat preference than those 

of Mahalanobis.  I propose an alternative use of Mahalanobis distance to direct model 

extrapolation beyond the boundaries of modeled populations. 
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CHAPTER 1:  INTRODUCTION 

 

Effective management of wildlife populations is dependent on our understanding 

of the animal�s habitat requirements.  Habitat selection models have been used 

extensively in recent years to address management questions for species of interest, 

particularly important game species and species listed under the U.S. Endangered Species 

Act of 1972.  Habitat quality has long been recognized as one of the primary influences 

in determining animal use and abundance in a given area, with habitat selection models 

as the primary tool for identifying those relationships.  Aspects of habitat modeling, 

including the proper use of established methods, and criticism of perceived fatal flaws 

(White and Garrott 1990, Garshelis 2000) and limitations (Alldredge and Ratti 1986, 

White and Garrot 1990, Alldredge and Ratti 1992, Aebischer et al. 1993, Manly et al. 

1993, Alldredge et al. 1998) have been the subject of much debate.  However, in spite of 

their limitations, habitat models remain one of the most accepted tools for reserve 

selection and design, species management and recovery planning, environmental impact 

assessment, or other planning or management decisions that rely on evaluations of habitat 

suitability or quality.  

The Louisiana black bear (Ursus americanus luteolus) is a federally listed 

threatened species with extant populations occurring within the Mississippi River alluvial 

plain.  The U.S. Fish and Wildlife Service identified the development of a habitat model 

as a key element for recovery and management of the species (USFWS 1995, BBCC 

1997).  Rudis and Tansey (1995) developed a coarse black bear habitat model for the 

southeastern U.S., which includes the range of the Louisiana black bear, but the authors 
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of that study recommended finer scale modeling for management of specific 

subpopulations.  Within the range of the Louisiana black bear, finer scale analyses are 

limited to Nyland�s (1995) evaluation of habitat selection by bears occupying coastal 

Louisiana, and site-specific habitat evaluations using ad hoc methods.  None of these 

analyses provide a mechanism to predict habitat suitability beyond the area considered.  

Finer scaled models evaluating the subspecies� extant range have yet to be developed.  

This is primarily due to the difficulty in developing a model (or models) that spans the 

diverse range of occupied habitats, and in selecting the appropriate analysis approach. 

To assist resource managers with developing black bear recovery plans in 

Louisiana, I develop resource selection functions (RSF) for two isolated Louisiana black 

bear populations in South central Louisiana, identified as Coastal and Inland populations 

(Figure 1.1).  A RSF is a function of characteristics measured on resource units such that 

its value for a unit is proportional to the probability of that unit being used (Manly et al. 

1993).  From the study area RSF models, I extrapolated model predictions beyond study 

area boundaries to a larger area being managed for recovery.  I used readily available 

remote sensed data to develop habitat layers as the primary set of predictor variables 

using a new image processing technique, the at-satellite tasseled cap function.  I 

examined the relative value of habitat variables derived from images captured during 

different seasons, and for individual and combinations of tasseled cap functions.  I also 

examine the value of using multiple measures of habitat derived at different scales and 

based on different summary statistics.  I critically examined the model building and 

hypothesis test strategy, and present methods that are compatible with current theory and 

recommendations. 
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Figure 1.1.  Location of extant black bear populations and telemetry study areas in 
southeastern Louisiana from which resource selections functions were developed.  The 
resource selection function was extrapolated throughout the area indicated within the 
Mississippi River flood plain. 

 

RESOURCE SELECTION CONCEPTS AND METHODS 

Habitat has been defined as the type of place where an animal normally lives, 

specifically the collection of resources and conditions necessary for its survival.  This 

definition has been extended, by common usage, to mean a set of specific environmental 

features, that for terrestrial animals, is often equated to a plant community or cover type 
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(Garshelis 2000).  Habitat use is typically understood as the extent to which different 

vegetative associations or environmental features are used (Garshelis 2000).  It is 

assumed that high quality resources will be selected more than low quality ones, that 

availability is not uniform, and that use may change with availability (Manly et al. 1993).  

When resources are used disproportionately, selection has taken place.   

Resource selection occurs in a hierarchical fashion from the species� physical or 

geographic range (first order), to selection of individual home ranges within the 

geographic range (second order), to the animal�s usage of features within its home range 

(third order), to selection of particular elements such as food items (Johnson 1980).  

Three designs for resource selection studies have been identified (Thomas and Taylor 

1990; Manly et al. 1993), which differ in the level that resource use and availability are 

measured (population or individual animal).  In design 1, measurements are made at the 

population level (individual animals are not identified), and used, unused or available 

resource units are sampled or censused.  Design 1 studies assume a relationship between 

density and relative preference, an assumption that is violated if detectability of animals 

varies among habitats (Thomas and Taylor 1990).  With design 2, individual animals are 

identified and use is measured for each, but availability is measured at the population 

level.  With design 3, individuals are identified as in design 2, but both used and available 

(or used and unused) resources are sampled or censused for each animal.  Inference from 

designs 1 and 2 are at the population level, or second order selection, where design 3 

results in conclusions about selection within home ranges or feeding sites (Thomas and 

Taylor 1990).  Aggregating results across many animals studied under design 3 can result 

in population level inference about the variability of third order selection among 
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individuals.  However, design 3 does not address the critical question of why the home 

range was selected (Thomas and Taylor 1990), because the animal�s home range 

represents some prior selection; that is, the animal has already selected a particular area 

(White and Garrot 1990).   

Resource selection studies either categorize habitats or categorize locations 

(Alldredge et al. 1998).  Design 1 studies use categorized habitats, which are typically 

specific vegetative communities.  The challenge in defining discrete habitats is 

partitioning them into features that animals select, which may not be the ones researchers 

discern.  Sufficient habitat categories must be delineated to ensure that the truly important 

types are not lumped with less important types that dilute discrimination, while at once 

avoiding too many types that diminish the power to discern selection (Garshelis 2000).  

Designs 2 and 3 use either categorized habitats or categorized locations.  Categorized 

location studies use a multitude of habitat-related variables and attempt to identify those 

variables and their values that best characterize used sites.  Landscape scale models have 

often been limited to a few simple habitat variables, such as land cover type or habitat 

type (i.e., categorized habitats), but wildlife-habitat relationships are multidimensional 

and are best studied with multivariate techniques (Morrison et al. 1992).  Methods that 

categorize locations allow testing of hypotheses of habitat characteristics rather than 

habitat categories and have clearer biological meaning (Alldredge et al. 1998).  

Regression approaches have predictive capabilities but have additional constraints 

(Pendleton et al. 1998).   

Methods that categorize habitats include Neu et al. (1974), Johnson (1980), 

Friedman�s analysis of variance (Alldredge and Ratti 1986), and compositional analysis 
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(Aebisher et al. 1993).  Methods that categorize locations include logistic regression, 

linear discriminate function analysis (LDFA), log-linear models, proportional hazard 

models, and ad hoc methods such as Mahalanobis distance (Manly et al. 1993).  

Alldredge et al. (1998) reviewed methods of resource selection and concluded that 

studies that characterize locations seem to require logistic regression, or more generally, 

resource selection functions (Manly et al. 1993), in which the probability of a resource 

unit being used is proportionate to the value of characteristics measured for the unit.  

Resource selection functions provide a model-based approach that is preferable to 

previously used ad hoc methods (Alldredge et al. 1998).  Logistic regression allows 

exploratory analyses, provides information about the characteristics of habitats that are 

selected (Alldredge et al. 1998), and allows modeling of both discrete and continuous 

variables.  Disadvantages include the difficulty of incorporating animals as sampling 

units (Pendleton et al. 1998), problems with highly correlated variables (collinearity), and 

greater complexity of model fitting relative to the more commonly used ad hoc goodness-

of-fit test for categorical data.  LDFA is also commonly used in studies that characterize 

locations.  However, LDFA assumes multivariate normality and is limited to use with 

continuous variables, but it alleviates concerns of collinearity.   

Logistic regression and LDFA require measurements of used and available (or 

unused) resources.  The difficulty of defining �available� resources and the impacts on 

subsequent data analysis has been the subject of considerable discussion (Johnson 1980, 

White and Garrott 1990, Alldredge and Ratti 1992, Aebischer et al. 1993, Manly et al. 

1993, McClean et al. 1998, Garshelis 2000).  Including habitats that are unavailable to 

animals increases chances for Type I errors of resource selection, but excluding habitats 
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that are available to animals increases chances of Type II errors (McClean et al. 1998).  

To avoid the difficulty of defining availability, North and Reynolds (1996) used 

polytomous logistic regression by assigning locations to categories of use intensity.  

Rather than solving the problem, this approach leads to the question of how to properly 

define intensity of use, and then how to assign the continuous variable to multiple 

discrete categories.   

In an effort to avoid the problem altogether, Clark et al. (1993) based their habitat 

model on Mahalanobis distance.  The advantage of Mahalanobis distance over other 

techniques for categorizing locations is that only the set of used resources needs to be 

correctly defined, eliminating the problems in binary classification techniques caused by 

misclassification of available habitats (Clark et al. 1993).  Mahalanobis distance is 

determined for a set of derived uncorrelated variables, thus eliminating problems of 

collinearity among variables found in multiple regression techniques.  Multiple habitat 

configurations can have equal Mahalanobis distance, or dissimilarity to the mean habitat 

vector, allowing analysis of an infinite variety of habitat measures within a study area.  

However, Mahalanobis distance does not provide a mechanism for testing which 

explanatory variables should be included in the model, nor does it provide a mechanism 

for testing hypotheses about differences in selection among groups or among individuals.  

Model dependent variables must be selected using other statistical techniques, such as 

goodness-of-fit (GOF) tests (Clark et al. 1993).  GOF testing requires conversion of 

continuous variables to discrete values, and each type of variable is analyzed separately 

(e.g., habitat type, distance class from roads).  Multiple testing inflates type I error rates 

and fails to consider the multivariate nature of the selection process.  In spite of these 
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limitations, Mahalanobis distance is an attractive method for developing GIS based 

habitat maps because it avoids the issue of defining availability and its comparatively 

easy to implement in GIS. 

In addition to error sources previously discussed, measurement of habitat use and 

data processing may also introduce bias into the analysis.  Measurement of habitat use 

can introduce bias into the analysis of habitat selection if differential detection 

probabilities exist among habitats (Neu et al. 1974, Schooley and McLaughlin 1992), or 

if radio-telemetry is used to obtain used locations, especially triangulation (White and 

Garrott 1986, 1990).  Estimated animal locations must be precise relative to the scale of 

resource selection.  As location error increases relative to the scale of selection, power to 

detect selection decreases (White and Garrott 1986).  Further, if misclassification error 

rates are not constant among habitat types, both power and type I error rates are not 

predictable (Pace 1988).  Several methods have been proposed to improve estimates of 

use from locations with telemetry errors (White and Garrott 1986, Nams 1989, Samuel 

and Kenow 1992).  Waller and Mace (1998) accounted for telemetry error by reduced 

habitat complexity.  They assigned the dominant cover type within a surrounding moving 

window equal to the size of the error.  This process is easy to accomplish in GIS but can 

risk missing identification of small patches and linear features that may be very important 

to the animal.   

Bias may also result from inappropriate data pooling during sampling or analytic 

procedures.  The appropriate subjects of design 2 and 3 studies are the individual animals, 

not each location.  Analysis involving more than one animal must allow for among-

individual differences, assume that animals select resources similarly, or draw inferences 



9 

about average selection at the population level (Aebischer et al. 1993, Alldredge et al. 

1998).  Pooling data among animals may constitute pseudo-replication (Hurlbert 1984) 

and should be avoided if possibel.  In cases where animals are unequally sampled, 

pooling data among animals could strongly affect results if all individuals did not make 

similar selections (White and Garrot 1990, Garshelis 2000).  Problems with pooling 

across years (Schooley 1994) and seasons (Thomas and Taylor 1990) have also been 

reported. 

In a review of methods for the study of resource selection, Alldredge et al. (1998) 

state, �the choice of a method is complex and sometimes controversial�.  The goal of this 

research project is to navigate these challenges and to produce a map of habitat selection 

for Louisiana black bears that will be useful in directing efforts to recover the species.  I 

develop a resource selection function to estimate the relative probability of a habitat 

being selected based on observed use in the Coastal and Inland black bear populations 

using readily available data layers and landscape scale land cover data.  Habitat was 

developed from Landsat imagery using methods that may be applied to other areas and 

time periods. 

DISSERTATION ORGANIZATION 

I have organized this dissertation into 6 Chapters as follows:   

• Chapter 1 � (this chapter) provides an introduction to the concepts of resource 

selection function and describes overall study goals.   

• Chapter 2 - describes the at-satellite tasseled-cap image processing technique used to 

develop the habitat variables that will be the primary predictive variables in all 
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subsequent analyses.  Examples relating these unitless measures to tangible resources 

are provided.   

• Chapter 3 � describes the conversion of the at-satellite tasseled cap functions to 

habitat variables, and examines the derived habitat variables for differences in 

available resources between the two study areas.  Also examines differences in used 

resources between study areas and among individual bears and seasons.   

• Chapter 4 � outlines the overall analysis process used to test a set of a priori 

hypothesis and to develop predictive resource selection function models.  The 

�traditional� approach to model building is presented and critically examined, and an 

improved strategy is outlined that is consistent with current recommendations on 

model selection using the information theoretic approach (Burnham and Anderson 

1998). 

• Chapter 5 - examines a set of a priori hypotheses addressing questions of scale, 

model complexity, and the relative value of groups of habitat variables. 

• Chapter 6 � describes development of predictive models that are used to extrapolate 

RSFs within the boundaries of each study areas, and I present a method to apply the 

study area-specific RSFs beyond study area boundaries.  I also use the development 

of habitat selection predictions in south central Louisiana to explore issues of model 

calibration and validation for RSFs developed from used/available data.  In addition 

to RSFs, I identified suitable resource units based on statistical distance (Mahalanobis 

distance) and compared those results with RSF predictions.



11 

CHAPTER 2: THE TASSELED CAP FUNCTION AS A TOOL FOR WILDLIFE 
MANAGERS 
 
 
INTRODUCTION 

Wildlife managers frequently apply their craft to wildlife populations on multiple 

use lands where some uses compete for resources with managed populations.  To 

effectively manage wildlife populations in multiple use settings, managers must have an 

understanding of habitat requirements and how changing resource availability will affect 

managed populations.  Habitat selection models have been used extensively in recent 

years to address animal resource use/management questions for species of interest, 

particularly important game species and species listed under the U.S. Endangered Species 

Act of 1972.  Increased computing power and advances in geographic information 

systems (GIS) and image processing have enhanced the ability of wildlife managers to 

expand their spatial-temporal scale when considering an animal�s resource needs.   

Remotely sensed data, such as satellite imagery, are available and can be used to 

investigate multi-temporal, landscape-scale animal resource questions but historically 

were expensive to acquire, required great skill and effort to process, and sensor data were 

used to create habitat category patch maps that had limited comparability from one 

project to the next as each researcher had their own processing methodology and land 

cover/habitat classification scheme.  Additionally, researchers attempting to work with 

data from different time periods and over large areas had limited methods to remove the 

inherent differences resulting from satellite platform, drift in sensor calibration, season, 

and time of day (Huang et al. 2002a).   
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The recent formation of the Multi-Resolution Land Characteristics (MRLC) 

consortium, as well as advances in GIS technology and image processing method, 

overcame many of the limitations listed above.  MRLC (http://www.epa.gov/mrlc/) is a 

cooperative effort among six federal agencies that began in 1992.  The MRLC 

consortium makes standard geometrically and radiometrically corrected Landsat 

Thematic Mapper (TM) data for the conterminous U.S. available to state, local, and 

federal agencies and their affiliates at minimal costs (approximately $50-$100/scene [a 

scene covers an area about 180 km square, or 3.2 million hectares]).  These data were the 

primary data source for GAP analysis (Loveland and Shaw 1996).   

Landsat 4 and its successor satellites have been developed with radiometric 

sensors useful in discriminating landscape features at scales > 30 m2.  In particular an 

array of sensors collects 6 bands of data representing reflected/emitted electromagnetic 

energy from the visible, reflective-infrared, middle-infrared, and thermal-infrared regions 

of the spectrum.  The at-satellite tasseled cap function, provides a standardized 

methodology to compress the six bands of Landsat Thematic Mapper (TM) data into 3 

bands that explain the majority of variability in the data, are oriented along biologically 

interpretable axes, and are comparable in space and time (Huang et al. 2002a).  Although 

the process to convert raw Landsat data to at-satellite tasseled cap functions requires a 

fairly sophisticated level of image processing skill, comparable to other classification 

techniques, the subjective art of extracting land cover/habitat categories is replaced with 

an objective, repeatable process, providing consistent results across large spatial and 

temporal extents and among researchers/managers.  In this chapter, I provide some 

background information on the at-satellite reflectance tasseled cap function, and examine 
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the distribution of these data within the geographic range of black bears (Ursus 

americanus) in Louisiana as an example. 

Tasseled Cap Function 

Because of the complexity of displaying and extracting information from multi-

spectral satellite data such as the six reflective TM bands, and the fact that the TM visible 

bands are highly correlated, it is desirable to compress those data into fewer meaningful 

variables.  The tasseled cap transformations, so called because the shape of the 

transformed function in multivariate space resembles a tasseled cap, perform such a 

compression.  The tasseled cap function is a linear transformation that rotates data into 

three new axes directly correlated to selected physical properties of vegetation, and 

captures 95% or more of the total data variability in bands 1-5 and 7 of Landsat TM 

scenes dominated by vegetation and soils (Crist et al. 1986).  The three data dimensions 

or axes are referred to as brightness, greenness, and wetness, and are orthogonal to each 

other (Crist et al. 1986).  Brightness is a weighted sum of all six bands, measures overall 

reflectance, and was originally used to differentiate light from dark soils.  Greenness is a 

contrast between near-infrared and visible reflectance and serves as an index of 

vegetative cover density and vigor (i.e. biomass), similar to other, better known, 

vegetation indices such as NDVI.  However, most of the other vegetation indices are 

based on only 2 rather than 6 TM bands.  Wetness is a contrast between shortwave-

infrared and visible/near-infrared reflectance, providing a measure of soil moisture 

content, vegetation density, and other scene characteristics (Crist et al. 1986).   

The tasseled cap function was originally developed to understand important 

phenomenon of crop development in spectral space (Kauth and Thomas 1976), but has 
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the potential for identifying a number of other features (Figure 2.1).  The tasseled cap 

contains sufficient information to identify key forest attributes such as species, age, and 

structure (Horler and Ahern 1986, Cohen et al. 1995, Hansen et al. 2001).   

 

 

 
Figure 2.1.  Approximate locations of important scene classes in TM tasseled cap feature 
space (source: Crist et al. 1986, with permission). 

 

Something similar to the tasseled cap could be derived using Principal 

Components Analysis (PCA), a commonly used statistical technique to achieve data 

compression (Johnson and Wichern 1992).  PCA creates new variables as weighted sums 

of the original data.  Typically the first few components explain the majority of the 

variability in the data, with the first component explaining the largest fraction of the 

variability and each subsequent component explaining less than the preceding component 

(Johnson and Wichern 1992).  PCA, like the tasseled cap transformation, transforms the 

data to a new coordinate system but unlike the tasseled cap function PCA axes are 

guaranteed to be orthogonal to one another.  PCA was the inspiration for the tasseled cap, 

and brightness, greenness, and wetness roughly correspond to the first three principal 

components derived from TM data.  However, the tasseled cap transformation has several 
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advantages over PCA.  PCA is data dependent.  That is, the weight coefficients that are 

applied to each TM band change from scene-to-scene, which makes consistent 

interpretation of PC images difficult.  PCA is computationally expensive for large images 

or for many spectral bands.  Although the tasseled cap is a linear transformation like 

PCA, the weight coefficients are fixed for a given sensor based on pre-defined 

characteristics. 

Because of the intuitive appeal of tasseled cap functions and the fixed nature of 

the weight coefficients, several wildlife researchers have used tasseled cap functions in 

recent years as �pseudo-habitat� measures in lieu of the more traditional classified habitat 

maps to develop habitat selection models.  For example, Mace et al. (1999), and 

Clevenger et al. (2002) have successfully used indices from the tasseled cap 

transformation to evaluate resource selection for bears.  Most researchers that have used 

the tasseled cap transformation for resource selection studies have used greenness and 

wetness and ignored brightness, probably because its name implies a biological 

interpretation that is less straightforward.  However, a large fraction of the variability in 

the TM data is incorporated into brightness.  Relating the tasseled cap to PCA, this would 

be like discarding the first component, which contains the most information, and which 

might provide information important to partitioning spectral space into resource 

components important to the animal being studied.  Few have explored the relative value 

of each tasseled cap function prior to selecting the components to be modeled, the 

seasonal variability in the information content of the tasseled caps, or the value of 

multitemporal data to identify resource selection.   
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At-satellite Reflectance Tasseled Cap 

To use satellite imagery collected at different times, across mosaics of images (or 

scenes), or collected by different sensors, it is necessary to convert the Digital Numbers 

(DN) of commercially available satellite imagery to calibrated radiance values, and to 

obtain absolute reflectance levels of objects by normalizing solar angles and earth-sun 

distances by converting radiance to at-satellite reflectance.  DNs are positive integers, 

typically calibrated to fit a range of values such as an 8-bit scale (0-255) by a linear 

transformation, and represent average brightness or radiance in a limited spectral range 

measured for a small area (30m x 30m for Landsat TM) on Earth; this value and its 

relative position are represented as a raster grid cell or pixel.  DNs are transformed to 

radiance by removing the linear transformation, or stretch.  To compare data collected at 

different times of the year, radiance must be further corrected for sun elevation and earth-

sun distance.  Images that are acquired under different solar illumination angles can be 

adjusted to one another based on the sun�s angle from zenith (directly overhead).  The 

earth-sun distance corrects for seasonal changes in the distance between the earth and 

sun.  Substantial noise can be removed by converting DN to at-satellite reflectance, 

enhancing consistency of land cover characterization and increasing the temporal 

information contained in the images (Huang et al. Undated). 

Huang et al. (2002a) developed a tasseled cap transformation using at-satellite 

reflectance values based on Landsat ETM+ (Enhanced Thematic Mapper Plus) data to 

allow for the use of multi-scene/temporal image sets.  Landsat ETM+ data are collected 

by the Landsat 7 satellite, the most recent in a series of Landsat satellites, launched in 

1999.  Landsat 5 TM, launched in 1982, was the primary source of satellite imagery 
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available prior to the launch of Landsat 7.  Voglemann et al. (2001) detailed a 

transformation of Landsat 7 ETM+ at-satellite reflectance values to Landsat 5 

equivalents.  Huang et al. (2002b) provided the reverse transformation, Landsat 5 TM 

values to Landsat 7 ETM+ equivalents based on Voglemann et al. (2001) coefficients.   

Because the Louisiana bear data presented in this case study were collected during 

1991-1995, and 1993 satellite imagery from Landsat 5 was used to investigate bear 

resource use, I discuss the steps to process Landsat 5 TM data to at-satellite reflectance 

below and compare the performance of at-satellite reflectance tasseled cap with expected 

values. 

STUDY AREA 

Bears in Louisiana are distributed among three isolated sub-populations located 

within the Mississippi River floodplain (U. S. Fish and Wildlife Service 1995).  

Bottomland hardwood forests that historically dominated the drier portions of the 

floodplain have for the most part been cleared for agriculture leaving forested islands and 

swamps that extant bear populations inhabit.  The climate is warm and humid, with 

monthly average temperatures ranging from 10.8o C (January) to 27.6o C (July and 

August), and monthly precipitation averages from 8.4 cm (October) to 15.5 cm (August) 

(Evans et al. 1983).   

Telemetry studies were conducted in 2 areas of south central Louisiana that are 

labeled Coastal and Inland (Figure 2.2).  In spite of their close proximity, Coastal and 

Inland land cover differ greatly.  Based on USDA Forest Service Forest Inventory and 

Analysis (FIA) data, 27% of Inland was un-forested, primarily cleared for cropland.  

Forest consisted of three types: 1) 64% sweetgum � Nuttall oak � willow oak 
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(Liquidambar styraciflua � Quercus michauxii � Quercus phellos), 27% sugarberry � 

American elm - green ash (Celtis laevigata - Ulmus americanus - Fraxinus 

pennsylvanica), and 3) 9% Cottonwood (Populus deltoides).  Coastal was 65% un-

forested.  However, coastal marsh, scrub-shrub habitats, or other uncultivated vegetative 

cover of non-merchantable timber covered much of that area.  Coastal forest types were 

baldcypress - water tupelo (Taxodium distichum - Nyssa aquatica)(43%), sweetbay - 

water tupelo - red maple (Magnolia virginiana � Nyssa aquatica - Acer rubrum) (29%), 

sugarberry � American elm - green ash (14%) and willow (Salix spp.) (14%).   

Essentially two habitat types were available to Inland bears: seasonally flooded 

bottomland hardwood stands that varied in vegetation structure and composition 

according to harvest patterns and wetness, and agricultural crops, primarily corn and 

winter wheat.  In Coastal, food and cover resources were disproportionately distributed 

among numerous habitat types (Nyland and Pace 1997) ranging from inundated swamps, 

scrub-shrub habitats and marshes to upland cover types on four salt domes that rise more 

than 30 m from the surrounding wetlands.  The only Coastal agricultural crop was 

sugarcane, which was eaten by bears in fall. 

METHODS 

Data Development 

Data development consisted of five steps: 1) identify available habitat, 2) 

establish random sample points within the available habitat, 3) identify forested patches 

within available habitat, 4) develop at-satellite reflectance tasseled cap functions to 

provide data coverage extending over both study areas, and 5) extract tasseled cap values 
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at sample points.  I used 1993 TM satellite imagery obtained through the MRLC 

consortium for all image analyses described below. 

 

 
Figure 2.2.  Location of the telemetry study areas in south central Louisiana and Landsat 
scene coverage.  The northern image is 024/038 (row/path) and the southern image is 
024/039.  

 

Identify Available Habitat - I wanted to examine tasseled cap response within habitats 

occupied by bears in the two telemetry study areas.  To limit my focus to areas known to 

be occupied by bears, I defined available habitat based on the distribution of capture and 

radio telemetry locations of bears.  Beginning in December 1991 in Coastal, and in June 
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1992 in Inland, bears were located approximately weekly from aircraft (Wagner 1995).  

Locations were digitized from maps and stored as Universal Transverse Mercator (UTM) 

coordinates.  These data were converted to GIS maps in ArcView 3.2.  Between October 

1991 through May 1995, 2,061 locations (capture locations and telemetry) were collected 

on 49 female bears.  However, 28 females bears, 18 Coastal and 10 Inland, had 30 

locations or more each, accounting for 1,915 of 2,061 (93%) locations.  All locations 

were used in this analysis.  To define a border area around these locations available to 

bears (available habitat), I delineated a composite buffer around telemetry locations for 

female black bears in each study area.  The buffer radii around individual telemetry 

locations were based on the mean interlocation distance for female bears in each area 

(Wagner 1995; 1.06 km Coastal and 2.2 km Inland; average of spring-summer and fall 

interlocation distance means 1992-1994).  This buffer represents a conservative estimate 

of the area that could have been used given the movement pattern (extent) observed by 

these animals, as nearly half the time animals move farther between locations than 

specified radii. 

Establish Random Sample Points - Within the available area, defined above, separate 

samples equal to 1%, 3.5% and 5% of the available 30x30m pixels were obtained using 

systematic sampling with random point placement using the Sample extension to 

ArcView 3.2 (Quantitative Decisions, http://www.quantdec.com).  Grids cells of 

approximately 300, 160, and 134 m square, representing 1%, 3.5% and 5% samples 

respectively, were established in each study area using a random starting point, and a 

pixel within each grid cell was selected at without replacement and with equal likelihood.  

A simple random sample of available habitat is often used to describe available resources 
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for habitat selection analysis with continuous data, although systematic (grid) samples are 

more effective than simple random or stratified random samples (Hirzel and Guisan 

2002).  Systematic grid placement with random point or pixel selection within grid cells 

achieves the superior spatial coverage provided by a purely systematic sampling scheme 

while maintaining an element of random selection (i.e., each pixel within each grid cell 

has equal probability of being selected).   

Identification of Forested Areas - Black bears are forest dwelling animals (Kolenosky 

and Strathearn 1987).  Accordingly, I was particularly interested in tasseled cap values in 

forested habitats.  To isolate tasseled cap values from forested habitats for further 

examination, I used Louisiana GAP maps (http://sdms.nwrc.gov/gap/gap2.html).  GAP 

maps were classified into 23 land cover categories using Landsat TM imagery collected 

between January and March 1993 with one November 1992 scene.  Gap maps are a 

relatively coarse landscape land cover classification (Table 2.1) that I reclassified into 

either forested or unforested landcover.  To eliminate numerous small streams (< 30 m 

wide), classified in GAP data that create divisions in the forested patches and small (<2.2 

hectares) isolated forested and unforested patches, I used a 210 m x 210 m (7 x 7 pixel) 

moving window mode filter.  I overlaid major roads (identified as �Primary� and 

�SECOND� coverages on Louisiana Oil Spill Contingency Plan Map CD, Version 1, 

Louisiana Applied Oil Spill Research and Development Program, Louisiana State 

University, Baton Rouge, LA) into the forest layer to divide forested patches bisected by 

major roadways.  I used IDRISI 32 (Clark Labs, Worcester, MA) for all raster image 

processing.  I converted the raster image of forested patches to vector data for use in 

ArcView 3.2. 
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Table 2.1.  Louisiana GAP original habitat categories (Hartley et al. 2000) and 
forest/unforested reclassification assignments.  

Original 
Category 
Number 

 
 
Original Category 

New 
Category 
Number 

 
New 

Category 
1 Fresh Marsh 
2 Intermediate Marsh 
3 Brackish Marsh 
4 Saline Marsh 

0 Un-forested 

5 Wetland Forest � Deciduous 
6 Wetland Forest � Evergreen 
7 Wetland Forest � Mixed 
8 Upland Forest � Deciduous 
9 Upland Forest � Evergreen 
10 Upland Forest � Mixed 
11 Dense Pine Thicket 

1 Forested 

12 Wetland Scrub/Shrub � Deciduous 
13 Wetland Scrub/Shrub � Evergreen 
14 Wetland Scrub/Shrub � Mixed 
15 Upland Scrub/Shrub � Deciduous 
16 Upland Scrub/Shrub � Evergreen 
17 Upland Scrub/Shrub - Mixed 
18 Agriculture � Cropland � Grassland 
19 Vegetated Urban 
20 Non-Vegetated Urban 
21 Wetland Barren 
22 Upland Barren 
23 Water 

0 Un-forested 

 

 

Within the Coastal study area, 55% (2539 of 4654) of random locations were in 

forest, versus 76% of telemetry locations (963 of 1263).  A similar association of 

telemetry locations with forest was observed in the Inland study area, with 42% (1744 of 

4186) of random locations in forest, versus 88% of telemetry locations (710 of 806).  

This represents a clear association between bears in both areas and forested habitats 

(Coastal Pearson�s Chi-square = 193.5, df = 1, P < 0.01; Inland Pearson�s Chi-square = 

582.9, df = 1, P < 0.01).   
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Tasseled Cap Development - I acquired geo-referenced, terrain corrected Landsat TM 

satellite imagery (30m resolution) from the U.S. Geological Survey, EROS Data Center 

(Sioux Falls, South Dakota, USA) for 2 scenes covering the study area (Path/Row 

023/038 and 023/039) for the fall (29 September) and spring (22 April), 1993.  I 

purchased the raw 7-band imagery made available through the Multi-Resolution Land 

Characterization (MRLC) consortium (Loveland and Shaw 1996).  I selected these 

images because the dates of image capture were comparable to the time span over which 

the telemetry data were collected and the imagery was an exceptional value ($50 

U.S./scene/season).  These data were collected using the Landsat 5 satellite.   

To facilitate comparison among scenes/seasons, I used at-satellite reflectance 

tasseled cap transformation based on a combination of methods similar to those currently 

being used by MRLC1 (Huang et al. 2002b, Huang pers. comm.).  The steps in the 

process are outlined in Figure 2.3, and include the steps to produce at-satellite tasseled 

cap functions for Landsat 7 ETM+ data.  I transformed Landsat 5 TM raw DN (DN5) to 

Landsat 7 equivalents (DN7hat), based on a process developed by Vogelmann et al. 

(2001), and the alternative formulation presented in Huang et al. (2002b).  The 

transformation uses the following equation: 

DN
^
7 λ = (DN5λ x slopeλ)+ interceptλ   

where λ represents TM band number 1-5 and 7.  The coefficients used to transform DN5 

to DN7hat are provided in Table 2.2.   

 

 

                                                 
1 For Landsat 5 TM data collected after May 5, 2003, see also Chander and Markham (undated). 
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Figure 2.3.  Process to convert Landsat data to at-satellite reflectance tasseled caps. 

 

DN7hat for each band was transformed to at-satellite reflectance by converting 

DN7hat to at-satellite radiance and then adjusting for solar angle and earth-sun distance 

using the following formula: 

  Lλ = (Gainλ * DNλ) + Biasλ 
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where: 

λ = ETM + /TM band number 

L = at-satellite radiance 

gain = an element of band specific adjustment of DN to radiance from Table 2.3 

bias = an element of band specific adjustment of DN to radiance from Table 2.3 
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ρ = at-satellite reflectance, unitless 

d = Earth-Sun distance in astronomical unit, derived by interpolation of Table 2.4. 

ESUN = Mean solar exoatmospheric irradiance from Table 2.5 (Irish 2000). 

θ = Sun elevation angle, provided in the scene�s header file.  

 

Table 2.2. Coefficients to transform Landsat 5 DN to Landsat 7 ETM+ equivalents.  
(Source: Huang et al. 2002b). 

 Band # (λ)    Slope  Intercept 
   ---------------------------------------------- 

1   0.9398  4.2934 
2   1.7731  4.7289 
3   1.5348  3.9796 
4   1.4239  7.0320 
5   0.9828  7.0185 
7   1.3017  7.6568 

 

Table 2.3. Gain and bias values to convert DN7hat to at-satellite radiance.  (Source: 
Huang et al. 2002b). 

   Band#                Gain                Bias      
-------------------------------------------------- 
1   0.7756863  -6.1999969 
2   0.7956862  -6.3999939 
3   0.6192157  -5.0000000 
4   0.6372549  -5.1000061 
5   0.1257255  -0.9999981 
7   0.0437255  -0.3500004 

 

Table 2.4.  Earth-sun distance in astronomical units.  (Source: Irish 2000) 

Julian 
Day Distance 

Julian 
Day Distance

Julian 
Day Distance

Julian 
Day Distance 

Julian 
Day Distance

1 0.9832 74 0.9945 152 1.0140 227 1.0128 305 0.9925 
15 0.9836 91 0.9993 166 1.0158 242 1.0092 319 0.9892 
32 0.9853 106 1.0033 182 1.0167 258 1.0057 335 0.9860 
46 0.9878 121 1.0076 196 1.0165 274 1.0011 349 0.9843 
60 0.9909 135 1.0109 213 1.0149 288 0.9972 365 0.9833 
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Table 2. 5.  ETM+ solar spectral irradiances, or ESUN, to convert at-satellite radiance to 
at-satellite reflectance.  (Source: Irish 2000) 

Band#  watts/(meter squared * µm) 
-------------------------------------------------- 

1    1969.000 
2    1840.000 
3    1551.000 
4    1044.000 
5      225.700 
7        82.070 
8    1368.000 

 

After calculating at-satellite reflectance, I validated that image processing worked 

as expected.  Within seasons, in the area of scene overlap, I cropped pairs of sample 

images of matching areas from each scene-band, and regressed one image on the other.  

If image processing worked as expected, an intercept of 0 and a slope of 1 would be 

observed.  I also selected a sample of pseudo-invariant objects, such as large parking lots 

and deep water (Huang et al. Undated), to compare across seasons.  If image processing 

worked as expected, pseudo invariant objects would be expected to have the same value 

across seasons.  Intercept and slope values for 023/038 fall and 023/039 fall were close to 

expected values, but 023/038 spring versus 023/039 spring were not (Table 2.6).  Further 

investigation into differences in pseudo-invariant objects indicated that the problem was 

with 023/039 spring image.  The selected sample of pseudo-invariant objects averaged 

97% agreement between 023/038 spring and fall scenes, but only 82% between 023/039 

spring and fall scenes.  Communications with C. Huang, USGS, confirmed that this level 

of variability was much greater than expected.  Discussions with EROS Data Center 

confirmed that the problem was with that image and that they were unable to reprocess 

the image to correct the problem, and that a substitute image was not available from 

MRLC.  Accordingly, to remove the processing error, I modeled the relationship between 
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023/038 spring and 023/039 spring (the problem image) by extracting three matching 

pairs of images from the area of overlap and regressing 023/038 spring on 023/039 spring 

for each band.  I attempted to capture the range of values in each band in each overlap 

sample.  The results of the three separate regressions for each band were averaged and 

then were applied to 023/039 spring to obtain 023/038 spring equivalents (C. Huang pers. 

comm.).   

 

Table 2.6.  Results of regressing matching pairs of images extracted within seasons, in 
the area of scene overlap, from each scene-band. 

023/038 Fall vs. 023/039 Fall 
Band# Intercept Slope r 

1 0.000835 0.974537 0.99 
2 0.000898 0.970757 0.99 
3 0.000267 0.977798 1.00 
4 -0.000028 0.983251 1.00 
5 -0.000294 0.984549 1.00 
7 0.000042 0.981375 1.00 

Average 0.0002867 0.978711 0.99 
Expected 0 1 1.00 
    
023/038 Spring vs. 023/039 Spring 

Band# Intercept Slope r 
1 0.009423 1.148190 0.98 
2 0.007182 1.121899 0.98 
3 0.003997 1.274987 0.99 
4 0.003989 1.117046 0.99 
5 0.002785 1.122103 0.99 
7 0.001556 1.176051 0.99 

Average 0.004822 1.160046 0.99 
Expected 0 1 1.00 

 
 

Following adjustment of 023/039 spring, the at-satellite reflectance tasseled cap 

function was calculated for each image using weight coefficients in Table 2.7 (Huang et 
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al. 2002a and 2002b).  Images were then cropped to an area surrounding the study areas 

and mosaics were created for each season.  I used Idrisi32 v.I32.22 (Clark Labs, Clark 

University, Worchester, Massachusetts, USA) for all image processing. 

Analysis 

Effect of sample size - I extracted the value for each tasseled cap for each of the three 

sets of random points (1%, 3.5% and 5% samples), and their distributions were compared 

visually using Loess smoothed empirical density functions (EDF).  Because smaller 

sample sizes require less computer overhead, their use would be advantageous provided 

that the smaller sample sizes did not eliminate low frequency values or alter the shape of 

the EDF. 

 

Table 2.7.  Coefficients to convert at-satellite reflectance to tasseled caps.  (Source: 
Huang et al. 2002a). 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 
Brightness 0.35612057 0.39722874 0.39040367 0.69658643 0.22862755 0.15959082
Greenness 0.33438846 0.35444216 0.45557981 0.69660177 0.02421353 0.26298637
Wetness 0.26261884 0.21406704 0.09260517 0.06560172 0.76286850 0.53884970
 

 

Assessment of At-satellite Tasseled Cap - To access how well the at-satellite tasseled 

cap normalized image noise, I compared each tasseled cap in the area of overlap visually.  

Any differences would be obvious at the seam where the overlapping images were joined 

(Huang et al. Undated).  I also assessed between scene differences by regressing 

matching pairs of images extracted within seasons, in the area of scene overlap, from 

each tasseled cap, and by comparing pseudo-invariant objects between seasons and across 

images.  If image processing worked as expected, an intercept of 0 and a slope of 1 would 
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be observed, and pseudo-invariant objects would be expected to have the same value 

across seasons.  Images of each tasseled cap in each study area are presented in the 

Appendix. 

To gain insight into the information contained in each at-satellite tasseled cap, and 

to compare its performance with the theoretical performance of the tasseled cap as 

presented by Crist et al. (1986), I selected the following land cover features: water, 

developed (industrial sites or large paved areas), agricultural areas (�Ag�), coastal marsh, 

dry forest, and wet forest.  Dry forest and wet forest are relative terms, and separate the 

more upland from more inundated forest in the study area.  I sampled between 10 and 30 

locations for each feature throughout the combined images and determined �typical� 

values (an informal median) for each feature in both seasons and graphed them using 

tasseled cap combinations comparable to those presented in Figure 2.1.   

To examine the information content of the at-satellite tasseled cap function, I 

generated EDFs for each study area as a whole and for their forested areas only.  Using 

the random locations within the forested portions of each study area, I determined the 

linear relationship among the at-satellite tasseled cap components using Pearson�s 

correlation coefficients and developed separate correlation matrices for each area.   

RESULTS 

The Coastal and Inland study areas contain 42,057 and 37,644 hectares of land, 

respectively and all is assumed potentially available for bears to use.  The 1% random 

sample consisted of 4,654 Coastal and 4,186 Inland locations.  Comparison of EDFs 

among the 1%, 3.5% and 5% samples for each area-season-tasseled cap component were 
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virtually indistinguishable, so to lessen the demands on computer resources, the 1% 

sample data were used in all subsequent analyses using the random locations.   

I compared each tasseled cap visually at the seam where the overlapping images 

were joined to access how well the at-satellite tasseled cap normalized image noise, and 

if the adjustment of the 023/039 spring image was successful.  The seams created by the 

overlapping spring images and the overlapping fall images were undetectable indicating 

that there was little noise between the scenes and successful adjustment of the 023/039 

spring image.  The results of regressing matching pairs of images extracted within 

seasons, in the area of scene overlap, from each tasseled cap also indicated a successful 

tasseled cap transformation (Table 2.8), and pseudo-invariant objects between seasons 

and across images were comparable.   

 

Table 2.8. Results of regressing matching pairs of images extracted within seasons, from 
scene overlap for each tasseled cap. 

 
023/038 Vs. 023/039 Fall 
Tasseled Cap Intercept Slope r 
Brightness 0.003 0.973 0.989 
Greenness 0.000 0.975 0.992 
Wetness -0.000 0.981 0.996 

 
023/038 Vs. 023/039 Spring � Post Correction 
Tasseled Cap Intercept Slope r 
Brightness   0.013 0.957 0.991 
Greenness   0.004 0.955 0.990 
Wetness -0.002 0.978 0.992 

 

Figure 2.4 plots the value of pairs of at-satellite tasseled caps for selected land 

cover features in each season.  The format of the graphs is the same axis layout as used 

by Crist et al. (1986) to facilitate comparison with Figure 2.1 above.  Figures 2.5 and 2.6 
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present EDFs for each study area as a whole and for forested areas only.  The EDFs show 

the distribution of the data, allowing visual comparison with statistical distributions, and 

shows how the distribution of the data change seasonally and when only forested areas 

are considered.  Table 2.9 presents the correlation matrices for each area, which indicates 

the direction and strength of the linear relationship between pairs of tasseled cap 

components, both within and across seasons.  
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Figure 2.4.  Typical tasseled cap values of selected land cover features in scenes 023/038 
and 023/039 captured in spring (April 22) and fall (September 29), 1993. 

 
 
 
 



32 

b. 

0.15 0.20 0.25 0.30 0.35 0.40 0.45

-0.20

-0.15

-0.10

-0.05

0.00

0.05

Spring
Fall

TC1

T
C

3
Water

DevelopedAg

Ag
Marsh

Marsh
Dry Forest

Dry Forest

Wet Forest

Wet Forest

 
 
c. 

-0.20 -0.15 -0.10 -0.05 0.00 0.05
-0.10

-0.05

0.00

0.05

0.10

Spring
Fall

TC3

T
C

2

Developed
Water

Marsh

Wet Forest

Dry Forest

Ag

Ag

Marsh
Dry Forest

Wet Forest

 
 
Figure 2.4.  Continued. 
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Figure 2.5.  Comparison of spring and fall tasseled cap Loess smoothed empirical density 
functions within the Coastal study area�s available habitat a) throughout the area, and b) 
in forested portions only.  
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Figure 2.6.  Comparison of spring and fall tasseled cap Loess smoothed empirical density 
functions within the Inland study area�s available habitat a) throughout the area, and b) in 
forested portions only.  
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Table 2.9.  Correlation matrices of tasseled caps in Coastal, and Inland study areas.  TC1-
3 represents Brightness, Greenness, and Wetness respectively, and S and F represent 
Spring and Fall respectively.   

Coastal 
 TC1S TC2S TC3S TC1F TC2F TC3F

TC1S 1.00 0.77 -0.72 0.51 0.46 -0.47
TC2S 0.77 1.00 -0.25 0.28 0.42 -0.18
TC3S -0.72 -0.25 1.00 -0.57 -0.44 0.66
TC1F 0.51 0.28 -0.57 1.00 0.87 -0.64
TC2F 0.46 0.42 -0.44 0.87 1.00 -0.33
TC3F -0.47 -0.18 0.66 -0.64 -0.33 1.00

 
Inland 
 TC1S TC2S TC3S TC1F TC2F TC3F

TC1S 1.00 0.74 -0.52 0.17 0.09 -0.20
TC2S 0.74 1.00 0.07 -0.21 0.20 0.23
TC3S -0.52 0.07 1.00 -0.39 0.06 0.53
TC1F 0.17 -0.21 -0.39 1.00 0.44 -0.65
TC2F 0.09 0.20 0.06 0.44 1.00 0.29
TC3F -0.20 0.23 0.53 -0.65 0.29 1.00

 

DISCUSSION 

The at-satellite tasseled cap produced results that were consistent across scenes 

and seasons.  Additionally, selected land cover features were oriented along tasseled cap 

component axes consistent with expected relationships, and the results were easily 

interpretable.  These results also suggest that use of all three tasseled cap components 

rather than use of single or dual components, as has been typically used by wildlife 

researchers, improves the ability to separate land cover/habitat features evidenced by the 

above biplots (Figure 2.4) and correlation matrices.  This analysis also suggests that the 

use of multi-temporal datasets may improve information content and be useful in 

identifying selection of certain important resources or separation of overlapping features 

such as marsh and forest.  These hypotheses will be formally tested in Chapter 5.  The 

correlation matrices suggest that some variability in correlations among tasseled cap 



36 

components differs by habitat, as evidenced by 1/3 of the correlations changing slope 

direction (sign of the correlation coefficient) between the two areas.  Correlations among 

tasseled cap components between image seasons were generally less than within seasons 

also indicating that additional information can be gained by using multi-temporal data. 

The EDFs show that each tasseled cap component is from a unimodal, relatively 

Gaussian distribution, which becomes increasing normal, although leptokurtic, when 

restricted to data from the forested areas.  Accordingly, use of parametric statistics, such 

as mean and standard deviation to smooth or aggregate values over larger areas or to 

examine variability among pixels will perform adequately. 

The at-satellite tasseled cap offers several advantages over other image processing 

techniques: it compresses all of the available data into 3 orthogonal components, which 

explain 95% of the variability in the data, with axes rotated along environmentally 

interpretable gradients.  The process can be applied over large areas and time frames, 

during different times of the year, and across sensors to produce consistent results that 

avoid the use or the need to categorize land cover/habitats.  The MRLC consortium is 

making at-satellite tasseled cap image commercially available for a limited number of 

scenes and plans to increase availability of this product in the future.  Researchers and 

wildlife managers attempting to model animal resource use at landscape scales should 

consider these data in the place of a course habitat map.    
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CHAPTER 3:  DEVELOPMENT AND PRELIMINARY EXAMINATION OF 
HABITAT VARIABLES 
 
 
INTRODUCTION 

One of the primary goals of this study was to develop models of habitat selection 

that could be applied beyond study area boundaries to predict habitat suitability 

throughout the region, across a range of habitat types, using habitat variables derived 

from the at-satellite reflectance tasseled caps described in Chapter 2.  Because habitat 

selection is normally implied from the disproportionate use of habitat relative to its 

availability (Neu et al. 1974, White and Garrott 1990), changes in the availability of 

resources will usually result in differences in model coefficients and selection.  Thus, I 

wanted to examine the extent of differences between available resources in the 2 study 

areas.  However, I wanted to conduct that analysis in such a way as not to examine the 

habitat variable�s relationship between used and available resources.  To do so would 

compromise the development of a priori models and subsequent estimates of variability 

and test statistic values on the estimates of selection (Burnham and Anderson 1998, 

Harrell, 2001).   

As part of the habitat model development process, I needed to identify the 

geographic scale at which apparent selection patterns are consistent (i.e., does modeled 

selection change in response to changing the scale at which habitat variables are 

measured?) so that I could develop a reasonable set of a priori models of habitat 

selection.  I found no published accounts describing how habitat variables derived from 

satellite imagery change in response to changes in measurement scale.  To examine the 
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scale aspect, I derived at-satellite reflectance tasseled cap means and standard deviations 

using a range of �moving window� sizes.   

In addition to examining issues of scale, I needed to evaluate the adequacy of 

habitat variables derived from at-satellite reflectance tasseled caps for describing bear 

habitat use.  To evaluate the adequacy of the habitat�s specificity (ability to identify 

resource units selected by the species) and resolution (measurement scale or smallest 

mappable unit), I examined the extent of differences in used resources between the two 

study areas, and among seasons and individual bears.  I expected some differences in 

habitat variables if they have adequate resolution and specificity.  If I fail to detect 

differences among habitat variables at used locations, then either the resolution or 

specificity (or both) is inadequate, or no differences truly exist.  I thought the latter 

hypothesis doubtful, given the observed differences in habitat occupied by individual 

bears, so if differences are detected, resolution and specificity will be assumed to be 

adequate for further analysis to develop models of selection.   

METHODS 

Data Development 

Data development consisted of four steps: 1) identify used habitat, 2) identify 

available habitat, 3) sample the available habitat, 4) develop habitat variables from at-

satellite reflectance tasseled cap functions at a range of spatial scales, and extract habitat 

values at used and available locations.  Each of these steps is explained in detail below. 

Identify Used Habitat - Beginning in December 1991 in Coastal, and in June 1992 in 

Inland, fellow graduate students and I located radio-tagged bears approximately weekly 

from aircraft (Wagner 1995).  I assumed temporally adjacent locations were not serially 
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correlated because intervals between consecutive locations averaged 8.6 days (SD=6.6) 

(Swihart and Slade 1985).  All aerial locations were obtained during daylight hours using 

methods adopted from Gilmer et al. (1981).  While in flight, we plotted locations directly 

onto 1:24,000 USGS quadrangle maps.  I digitized the aerial locations from the flight 

maps and stored them as Universal Transverse Mercator (UTM) coordinates.  These data 

were converted to GIS maps in ArcView 3.2 (ESRI, Redlands, CA, USA).  I assessed 

aerial location precision by comparing global positioning system (GPS) locations 

(receiving uncorrected 32 fix average position estimates) of den sites, recovered collars 

and dummy transmitters (blind to tracker) placed at a set of test locations, to digitized 

aerial locations.  Median location error was 281 m (147 m inner quartile, 417 m outer 

quartile, n=106).   

Between October 1991 and May 1995, we collected 2,061 locations (capture and 

telemetry locations) of 49 female bears.  We recorded 30 or more locations for 28 bears 

(18 Coastal and 10 Inland), accounting for 1,915 of 2,061 (93%) locations (1151 Coastal 

locations and 764 Inland locations).  Bear locations were distributed across three bear 

seasons, which I defined based on plant phenology and bear biology as: winter (1 Dec. - 

31 Mar.), spring-summer (1 April - 31 July), and fall (1 Aug. - 30 Nov.) (Wagner 1995).  

Because differences among bears and seasonal use were of interest in this analysis, only 

those bears with 30 or more locations, with location distributed among all seasons 

(minimum number of locations in any season was 7) were retained in the set of used 

locations.     

Identify Available Habitat and Establish Random Sample Points - The methods that I 

used to identify available habitat and to select random sample points are described in 
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Chapter 2.  The same available habitat and random sample point used in Chapter 2 are 

used in this chapter. 

Develop Habitat Measures - I calculated at-satellite reflectance tasseled cap brightness, 

greenness, and wetness values for Landsat scenes 023/038 and 023/039, captured in fall 

and spring of 1992, using methods adopted from Huang et al. (2002b, pers. comm.), and 

described in Chapter 2.  I cropped the images to include only the study areas and 

immediate vicinity, and mosaiced the tasseled cap function � season � scene images into 

single images for each tasseled cap function - season (6 mosaiced images).   

To address issues of scale, define meaningful habitat units and reduce the effects 

of location error, I smoothed the 6 mosaiced images by assigning each pixel the mean and 

standard deviation of tasseled cap values calculated within a moving window centered on 

the pixel.  I used seven window sizes, 90 m x 90 m (0.8 hectares), 210 m x 210 m (4.4 

hectares), 510 m x 510 m (26.0 hectares), 495 m radius (77.0 hectares), 990 m x 990 m 

(98.0 hectares), 1005 m radius (317.3 hectares) and 2010 m x 2010 m (404.0 hectares), to 

examine the sensitivity of modeled selection to changing the scale over which these 

habitat variables were measured.  I selected these window sizes because I believed they 

represented a reasonable range over which to examine this effect.  By using the moving 

window mean, the effect of location errors in measured habitat values was reduced 

compared with values extracted from a single, possibly erroneous, location (Erickson et 

al. 1998, Waller and Mace 1998), as are minor location and reflectance errors in the 

satellite data.  The standard deviation describes the variability of tasseled cap values 

within the window, which could be important in modeling bear habitat selection.  Low 

standard deviations would indicate homogenous conditions and high values would 
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indicate that the window consists of divergent values (e.g., a large patch of mature forest 

would be expected to have a low standard deviation, where a pixel near a forest-

agricultural transition may have a similar mean but would have a much higher standard 

deviation).  I used IDRISI32 v.I32.22 (Clark Labs, Clark University, Worchester, 

Massachusetts, USA) for all image processing and to derive window means and standard 

deviations, collectively referred to as the habitat variables, for used and available 

locations.  I converted the IDRISI data files to ArcView grids and used the ArcView 3.2 

script SampleGrid.ave (available from 

http://www.commenspace.org/resources/tools.html) to extract habitat variables for each 

used and available location.  I similarly extracted GAP habitat categories for available 

locations for comparison of my habitat variables with the coarse but relatively precise 

GAP maps. 

Statistical Analysis 

Statistical analyses consisted of two steps: 1) I tested for differences between 

study areas among habitat variables measured at available locations at each scale and 

examined differences graphically, and 2) I tested for differences between study areas, and 

among seasons and bears and their interactions among habitat variables extracted from 

used habitat at each scale and examined differences graphically.  Each of these steps is 

explained in detail below.  I examined available and used resources separately in this 

chapter so as not to compromise results of hypotheses test examining resource selection 

presented in Chapter 4.  All statistical analyses were conducted using S-Plus, version 6.1 

(Insightful Corp. 2002). 
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Examination of Available Habitat - For each of the seven window sizes, I conducted a 

MANOVA to test whether or not study area differences explained significant amounts of 

the variability in response vectors consisting of the twelve habitat variables (moving 

window mean and standard deviation for spring and fall tasseled caps 1-3) measured at 

available locations.  Model significance was compared based on approximated F-

statistics, estimated from Wilks� lambda.  The assumptions of MANOVA are: 1) 

response variables are a random, independent sample from each population; 2) they have 

a common covariance structure; and 3) each population is multivariate normal.  As others 

have pointed out (Manly et al. 1993, Harrell 2001), environmental variables often do not 

meet these criteria.  However, because my sample sizes were large, the assumption of 

multivariate normality can be relaxed by appealing to the central limit theorem (Venables 

and Ripley 1999).  If the MANOVA was significant (α = 0.05), then I examined 

univariate tests for each habitat variable.  I calculated area specific means and standard 

deviations for each habitat variable and examined graphs of the relationship between each 

habitat variable, study area, and scale. 

Examination of Used Habitat - For each of the seven window sizes, I also conducted a 

MANOVA to test whether or not the following predictor variables explained significant 

amounts of the variability in the response vectors, which consisted of the twelve habitat 

variables extracted from used locations: 1) study area, 2) bear seasons (spring-summer, 

fall, and winter), 3) interaction between study area and bear seasons, 4) bears within 

study areas, and 5) interaction between bears within study areas and bears seasons.  

Model significance was compared based on approximated F-statistics, estimated from 

Wilks� lambda.  If the MANOVA was significant (α = 0.05), then I examined the 
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univariate tests for each variable.  I examined graphs of the response of bears by season 

and area to each habitat variable over the range of spatial scales considered. 

RESULTS 

Habitat Measures 

Calculating a mean and standard deviation of each of the three tasseled caps in 

two seasons (fall and spring) at seven spatial scales, produced 84 habitat variables (Table 

3.1).  Images based on these variables showed distinct changes with changing scale 

(Figure 3.1). 

 

Table 3.1.  List of habitat variables developed from at-satellite reflectance tasseled cap 
function.  Each of the below list habitat variables were developed at each of seven scales, 
or moving window sizes: 90x90m, 210x210m, 510x510m, 495m radius, 990x990m, 
1005m radius, and 2010x2010m, resulting in a total of 84 variables. 

 
Tasseled Cap 

Function 
Tasseled 

Cap 
Season of Image 

Capture1 
 

Statistic2 Habitat ID 
Brightness TC1 S M TC1.S.M 
   SD TC1.S.SD 
  F M TC1.F.M 
   SD TC1.F.SD 
Greenness TC2 S M TC2.S.M 
   SD TC2.S.SD 
  F M TC2.F.M 
   SD TC2.F.SD 
Wetness TC3 S M TC3.S.M 
   SD TC3.S.SD 
  F M TC3.F.M 
   SD TC3.F.SD 
Notes: 1 S = Spring, F = Fall; 2 M = Mean, SD = Standard deviation. 
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Figure 3.1.  Example images of spring greenness (TC2) means and standard deviations at 
moving window sizes of 90x90m, 510x510m, 990x990m, and 2010x2010m.  In the 
images, dark red represents high values, to white in the mid range, to dark blue for the 
lowest values.   
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Figure 3.1 continued. 
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Figure 3.1 continued. 
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Figure 3.1 continued. 
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Examination of Available Habitat 

MANOVA results indicated that the available habitats in the two study areas, as 

measured by the habitat variables, differed (P <0.0001 for all overall tests) at all scales 

(Table 3.2).  Univariate analyses suggest: 

• Study area means for habitat variables derived from moving window means were 

relatively unaffected by scale, with similar values across all scales, maintaining a 

constant relationship between Coastal and Inland values (Figure 3.2a). 

• Comparing study area means for habitat variables derived from moving window 

means (Figure 3.2a), Inland had greater spring and fall brightness, greater mean 

spring greenness, lower fall greenness and lower spring and fall wetness than 

Coastal, reflecting a larger fraction of the Inland study area in dryer forested and 

agricultural conditions compared with the wetter forest and coastal marsh in the 

Coastal study area. 

• Study area means for habitat variables derived from moving window standard 

deviations increased with increasing scale.  Differences between study area values 

also increased with scale, except fall brightness, indicating interaction between 

study area and scale. 

• Inland study area means for habitat variables derived from moving window 

standard deviations were greater than for Coastal for spring brightness, spring 

greenness, and spring and fall wetness.  Coastal fall brightness was greater than 

for Inland at 90m x90m, 210m x 210m, and 510m x510m scales, but not different 

at scales greater than 510m x 510m.  Coastal fall greenness was greater than for 
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Inland at scales less than 510m x 510m, and less than for Coastal at 510m x 510m 

and larger. 

• Study area standard deviations for habitat variables derived from moving window 

means decreased with increasing scale, with the relationship between study area 

and scale relatively constant for about half of such variables and interaction was 

apparent for the remaining half (Figure 3.2b). 

• Study area standard deviations for habitat variables derived from moving window 

standard deviations increased with increasing window size to intermediate scales 

and then either leveled off or decreased slightly.  Interaction between study area 

and scale was apparent for these variables. 

• Overall, study area standard deviations for habitat variables derived from moving 

window standard deviations for Inland were greater than for Coastal. 

 

Graphs of the distribution of the habitat variables within GAP habitat categories 

(Figure 3.3) also show differences between study areas in many of the GAP habitat 

categories that occur in both areas.  The variability of the habitat variables within GAP 

habitat categories also shows that there is considerable information in the habitat 

variables beyond the coarse categories represented in the GAP maps. 

Examination of Used Habitat 

MANOVA results for each of the seven window sizes provide strong evidence (P 

<0.0001 for all tests) that the response vector of the twelve habitat variables for used 

locations differed between study areas (Coastal n = 1,151; Inland n = 764), among bear 

seasons (all bears observed in all seasons), and among bears within areas (18 Coastal 
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bears, 10 Inland bears), but seasonal habitat use differences were inconsistent between 

areas (area*season interaction), and differences among bears were also inconsistent 

among seasons (bear*season interaction) at each scale (Table 3.3).  Scale differences 

were also apparent in the results of univariate tests (Table 3.4), and through examination 

of plots of habitat variables by bear and season (Figure 3.4).   

 

Table 3.2.  MANOVA results testing for differences in twelve derived tasseled-cap 
values between study areas (Coastal [n = 4,654] and Inland [n = 4,186]) at random 
locations in available habitat.  F-values were based on Wilk�s lambda, with numerator 
and denominator degrees of freedom shown in parenthesis.  P <0.0001 for overall test at 
all scales.  Results for univariate test follow MANOVA results.  For tests with results 
with P < 0.05, the relationship between inland and coastal are provided and �++� 
indicates P < 0.001, �+� indicates P > 0.001 and < 0.01, �0� indicates P > 0.01 and < 
0.05, �-� indicates P > 0.05. 

 
Window 
Size 

90m x 
90m 

210m x 
210m 

510m x 
510m 

495m 
radius 

990m x 
990m 

1005m 
radius 

2010m x 
2010m 

MANOVA Results 
F(12, 8827) 260 339 540 824 930 1579 1805 

Results of Univariate Tests 
TC1.S.M I>C++ I>C++ I>C++ I>C++ I>C++ I>C++ I>C++ 
TC1.F.M I>C++ I>C++ I>C++ I>C++ I>C++ I>C++ I>C++ 
TC2.S.M I>C++ I>C++ I>C++ I>C++ I>C++ I>C++ I>C++ 
TC2.F.M C>I++ C>I++ C>I++ C>I++ C>I++ C>I++ C>I++ 
TC3.S.M C>I++ C>I++ C>I++ C>I++ C>I++ C>I++ C>I++ 
TC3.F.M C>I++ C>I++ C>I++ C>I++ C>I++ C>I++ C>I++ 
TC1.S.SD I>C++ I>C++ I>C++ I>C++ I>C++ I>C++ I>C++ 
TC1.F.SD C>I++ C>I++ C>I+ - - - - 
TC2.S.SD I>C++ I>C++ I>C++ I>C++ I>C++ I>C++ I>C++ 
TC2.F.SD C>I++ - I>C++ I>C++ I>C++ I>C++ I>C++ 
TC3.S.SD I>C++ I>C++ I>C++ I>C++ I>C++ I>C++ I>C++ 
TC3.F.SD I>C++ I>C++ I>C++ I>C++ I>C++ I>C++ I>C++ 
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Figure 3.2a.  Observed means of 12 habitat variables between study area (  � Coastal,  � Inland) and across seven scales.  Scale is 
defined as the area (m2) of the moving windows considered (90x90m, 210x210m, 510x510m, 495m radius, 990x990m, 1005m radius, 
2010x2010m).  Habitat variable names appear on the y-axis and are structured as TCn.i.s, where �TCn� identifies tasseled-cap 1-3 
(brightness, greenness, and wetness), �i� indicates the season of image capture (S=spring, F=fall), and �s� indicates the window 
statistic, either window mean or standard deviation.   
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Figure 3.2a continued. 
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Figure 3.2a continued. 
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Figure 3.2b.  Variability (in units of standard deviation) of 12 habitat variables between study area (  � Coastal,  � Inland) and 
across seven scales.  Scale is defined as the area (m2) of the moving windows considered (90x90m, 210x210m, 510x510m, 495m 
radius, 990x990m, 1005m radius, 2010x2010m).  Habitat variable names appear on the y-axis and are structured as TCn.i.s, where 
�TCn� identifies tasseled-cap 1-3 (brightness, greenness, and wetness), �i� indicates the season of image capture (S=spring, F=fall), 
and �s� indicates the window statistic, either window mean or standard deviation. 
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Figure 3.2b continued. 
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Figure 3.3.  Range of the habitat variable, specified on the y-axis, within each GAP 
habitat category based on the available sample for the Coastal and Inland study areas.  
Data for two scales are presented: 90m x 90m and 2010m x 2010m.  Grey reference lines 
represent the grand mean of the habitat variable.  Gap categories are: 1 fresh marsh, 2 
intermediate marsh, 3 brackish marsh, 5 wetland forest�deciduous, 7 wetland forest�
mixed, 8 upland forest-deciduous, 10 upland forest�mixed, 12 wetland scrub/shrub�
deciduous, 14 wetland scrub/shrub�mixed, 17 upland scrub/shrub-mixed, 18 agriculture-
cropland�grassland, 19 vegetated urban, 22 upland barren, and 23 water. 
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Figure 3.3.  Continued. 
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Figure 3.3.  Continued. 
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Figure 3.3.  Continued. 
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Figure 3.3.  Continued. 
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Figure 3.3.  Continued. 
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Table 3.3. MANOVA results testing for differences in the twelve habitat variables 
between areas (Coastal and Inland).  F-values presented in the table are based on Wilk�s 
lambda, with numerator and denominator degrees of freedom shown in parenthesis.  P 
<0.0001 for all tests.   

Area Season
Area *
Season

Bears 
w/in Area

Bear *
 Season

(1 df) (2 df) (2 df) (26 df) (52 df)
Window Size F(12, 1820) F(24, 3640) F(24, 3640) F(312, 19926) F(624, 21345)

90m x 90m 217.3 5.3 2.4 9.0 1.7
210m x 210m 314.5 7.0 4.1 13.1 2.8
510m x 510m 594.4 10.8 5.9 20.6 3.1
495m radius 885.0 13.0 7.8 26.5 3.7
990m x 990m 973.9 13.1 8.6 28.3 3.8
1005m radius 1628.6 13.2 9.5 42.4 4.7
2010m x 2010m 1908.7 13.6 10.1 47.7 5.0
 

DISCUSSION 

As I expected, increasing scale (moving window size) smoothed window means, 

and increased window standard deviation as larger spatial extents were considered, as is 

evident in Figure 3.1.  Figure 3.1 also provides insight into why F-values increased with 

increasing scale for both available and used samples.  F-values increased with increasing 

scale because 1) differences between study area means for each habitat variable either 

increased slightly with increasing scale, as in the case of window means, or increased 

substantially as in the case of window standard deviations, while 2) study area standard 

deviations, or variation among moving window values assigned to each pixel, decreased 

for window means with increasing scale, at finer scales increased to a maximum among 

window standard deviations at intermediate scales, and then decreased at coarser scales.  

Interaction between study area and scale was apparent (Figure 3.1), in that the rate of 

change for many of the habitat variables with increasing scale differed between study 

areas.   
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Based on the results presented in this chapter, available and used habitat, as 

measured by the habitat variables, differed between study areas, and used locations 

differed among seasons and bears.  These results are not surprising given the large 

differences in the available habitat composition of the two study areas, as measured by 

the coarse GAP habitat categories, which contain less information than the habitat 

variables developed in this chapter (Figure 3.3).  Large differences in used habitat 

resulted from the differences in available resources, as many of the habitat types available 

to bears in the Coastal study area were not available to Inland bears, some of which were 

highly preferred, such as GAP category 10, �upland forest � mixed�, the dominate cover 

type on Weeks Island.   

The apparent information content in the habitat variables developed in this 

chapter suggest that they have adequate resolution and specificity to examine habitat 

selection for black bears in the study areas, but that development of a single model that 

can be applied to both study areas and extrapolated beyond study area boundaries is 

doubtful.  I explore this hypothesis further in Chapters 5 and 6. 
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Table 3.4.  Results of univariate tests following MANOVA, testing used location for 
differences in habitat variables at each scale between study areas, among seasons, 
area*season interaction, among bears, and bear*season interaction.  For tests with results 
with P < 0.05, the relationship between Inland and Coastal are provided and �++� 
indicates P < 0.001, �+� indicates P > 0.001 and < 0.01, �0� indicates P > 0.01 and < 
0.05, �-� indicates P > 0.05. 
 Window Size 
Study 
Area 

90x 
90 

210x 
210 

510x 
510 

495 
Radius

990x 
990 

1005 
Radius 

2010x 
2010 

TC1.S.M ++ ++ ++ ++ ++ ++ ++ 
TC1.F.M - - - - + ++ ++ 
TC2.S.M ++ ++ ++ ++ ++ ++ ++ 
TC2.F.M 0 + ++ ++ ++ ++ ++ 
TC3.S.M + + ++ ++ ++ ++ ++ 
TC3.F.M ++ ++ ++ ++ ++ ++ ++ 
TC1.S.SD ++ ++ ++ ++ ++ ++ ++ 
TC1.F.SD ++ ++ ++ ++ ++ ++ ++ 
TC2.S.SD - - 0 ++ ++ ++ ++ 
TC2.F.SD ++ ++ ++ ++ + - 0 
TC3.S.SD ++ ++ ++ ++ + - - 
TC3.F.SD - 0 ++ ++ ++ ++ ++ 
        

Season 
90x 
90 

210x 
210 

510x 
510 

495 
Radius

990x 
990 

1005 
Radius 

2010x 
2010 

TC1.S.M ++ ++ ++ ++ ++ ++ ++ 
TC1.F.M ++ ++ ++ ++ ++ ++ ++ 
TC2.S.M ++ ++ ++ ++ ++ ++ ++ 
TC2.F.M - - 0 ++ ++ ++ ++ 
TC3.S.M ++ ++ ++ ++ ++ ++ ++ 
TC3.F.M ++ ++ ++ ++ ++ ++ ++ 
TC1.S.SD - ++ ++ ++ ++ ++ ++ 
TC1.F.SD 0 ++ ++ ++ ++ ++ ++ 
TC2.S.SD + ++ ++ ++ ++ ++ ++ 
TC2.F.SD + ++ ++ ++ ++ ++ ++ 
TC3.S.SD ++ ++ ++ ++ ++ ++ ++ 
TC3.F.SD ++ ++ ++ ++ ++ ++ ++ 
        
Area * 
Season 

90x 
90 

210x 
210 

510x 
510 

495 
Radius

990x 
990 

1005 
Radius 

2010x 
2010 

TC1.S.M - 0 0 - - - - 
TC1.F.M 0 + ++ ++ ++ ++ ++ 
TC2.S.M ++ ++ 0 - - - - 
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Table 3.4. Continued. 
 
TC2.F.M ++ ++ ++ ++ ++ ++ ++ 
TC3.S.M - - - - - + + 
TC3.F.M - - - - - - - 
TC1.S.SD - - - + ++ ++ ++ 
TC1.F.SD - - - ++ ++ ++ ++ 
TC2.S.SD 0 - - - 0 + 0 
TC2.F.SD 0 - - ++ ++ ++ ++ 
TC3.S.SD - - 0 ++ ++ ++ ++ 
TC3.F.SD - - - + ++ ++ ++ 
        

Bear 
90x 
90 

210x 
210 

510x 
510 

495 
Radius 

990x 
990 

1005 
Radius 

2010x 
2010 

TC1.S.M ++ ++ ++ ++ ++ ++ ++ 
TC1.F.M ++ ++ ++ ++ ++ ++ ++ 
TC2.S.M ++ ++ ++ ++ ++ ++ ++ 
TC2.F.M ++ ++ ++ ++ ++ ++ ++ 
TC3.S.M ++ ++ ++ ++ ++ ++ ++ 
TC3.F.M ++ ++ ++ ++ ++ ++ ++ 
TC1.S.SD ++ ++ ++ ++ ++ ++ ++ 
TC1.F.SD ++ ++ ++ ++ ++ ++ ++ 
TC2.S.SD ++ ++ ++ ++ ++ ++ ++ 
TC2.F.SD ++ ++ ++ ++ ++ ++ ++ 
TC3.S.SD ++ ++ ++ ++ ++ ++ ++ 
TC3.F.SD ++ ++ ++ ++ ++ ++ ++ 
        
Bear * 
Season 

90x 
90 

210x 
210 

510x 
510 

495 
Radius 

990x 
990 

1005 
Radius 

2010x 
2010 

TC1.S.M ++ ++ ++ ++ ++ ++ ++ 
TC1.F.M ++ ++ ++ ++ ++ ++ ++ 
TC2.S.M ++ ++ ++ ++ ++ ++ ++ 
TC2.F.M - ++ ++ ++ ++ ++ ++ 
TC3.S.M ++ ++ ++ ++ ++ ++ ++ 
TC3.F.M ++ ++ ++ ++ ++ ++ ++ 
TC1.S.SD + ++ ++ ++ ++ ++ ++ 
TC1.F.SD ++ ++ ++ ++ ++ ++ ++ 
TC2.S.SD 0 ++ ++ ++ ++ ++ ++ 
TC2.F.SD + ++ ++ ++ ++ ++ ++ 
TC3.S.SD + ++ ++ ++ ++ ++ ++ 
TC3.F.SD ++ ++ ++ ++ ++ ++ ++ 
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Figure 3.4.  Box plots show the range of each habitat variable used by each bear in each 
season, at the largest spatial scale considered (2010m x 2010m moving window).  
Reference lines, representing the mean of all used locations for the habitat variable, are 
shown in grey.  
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Figure 3.4.  Continued. 
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Figure 3.4.  Continued. 
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Figure 3.4.  Continued. 
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Figure 3.4.  Continued. 
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Figure 3.4.  Continued. 
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CHAPTER 4: SELECTION OF AN APPROPRIATE MODEL BUILDING 
APPROACH 
 
 
INTRODUCTION 

As discussed in Chapters 1 and 2, there is considerable interest among natural 

resource managers in developing landscape scale habitat models for wildlife species.  In 

order to develop a landscape scale habitat model, measures of the value of resources 

available to the species of concern and methods to quantify animal resource use across 

the landscape must be identified.  In previous chapters, I described my analyses for 

selecting measures of available resources, the use of the tasseled cap function to derive 

habitat variables, methods to quantify resource use, and a regression-based resource 

selection function for development of a habitat model for Louisiana black bears. 

In order to test my hypotheses regarding black bear resource selection and 

develop a predictive habitat model, a structured modeling process was required.  The 

traditional approach for model building and hypothesis testing relies on null hypothesis 

significance tests, with frequent selection and examination of individual predictor 

variables.  This approach has been criticized by a number of ecological researchers in 

recent years (Yoccoz 1991, Cherry 1998, Johnson 1999, Anderson et al. 2000, Boyce 

2001, and Harrell 2001).  In this chapter, I outline the traditional modeling process, 

identify deficiencies in the process based on current recommendations from the literature, 

and outline an alternative modeling approach based on Harrell (2001), which incorporates 

the use of the information theoretic approach advocated by Burnham and Anderson 

(1998) and provides clear guidance for the use of logistic regression for developing 

models for prediction and hypothesis testing.  
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SUMMARY OF THE TRADITIONAL APPROACH TO LOGISTIC 
REGRESSION MODELING 
 

The traditional approach for development of logistic regression models is 

characterized by reliance on significance levels (p-values), null hypothesis testing, and 

�data dredging�.  Hosmer and Lemeshow�s (1989, 2000) Applied Logistic Regression has 

been widely cited as the authoritative reference for logistic regression, with over 1,000 

citations in many fields appearing since the book�s first printing (Hosmer and Lemeshow 

2000).  In section 4.2 (pages 92-104) of Applied Logistic Regression, Hosmer and 

Lemeshow (2000) provide detailed guidelines for logistic regressions and methods for 

model building strategies.  Their modeling process is patterned in the traditional 

hypothesis testing approach and is summarized below.   

Initial Variable Evaluation (Step 1)   

Univariable analysis is performed on each candidate variable to obtain estimates 

of variable significance (i.e., p-values) using one of the following methods:  

1. Contingency tables of binomial response or outcomes (y=0,1) versus the k 

levels of the independent nominal or ordinal variable, or continuous variable 

with limited integer responses.    

2. For continuous variables, univariable logistic regression, or alternatively, two-

sample t-tests, are used and supplemented with examination of smoothed or 

scatter plots of the logit, or fitted values, versus the variable under 

consideration.  

Select Variables for Multivariable Analysis (Step 2) 

Hosmer and Lemeshow (2000) proposed two methods for constructing a 

multivariable model and further reducing the variable set considered.  The method used 
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depends on the amount of data available relative to the number of variables being 

considered. 

1. Construct a multivariable model using all variables with p-value <0.25 in 

univariable tests in step 1, along with all variables of known importance. 

2. Alternatively, if sample size (the numbers of outcomes in each group) is 

adequate relative to the total number of candidate variables then include all 

scientifically relevant variables in a multivariable model regardless of the 

outcome of the univariable tests performed in step 1 above.  Use a best subsets 

technique, which will construct all possible models from the full set of 

candidate variables and rank the models using a specified estimate of model 

fit such as the coefficient of determination (R2) or deviance, to identify the 

�best� set of candidate models for further analysis.  Stepwise variable 

selection techniques could be used instead of the best subsets method. 

Refine Multivariable Model (Step 3) 

Assess importance of each variable in the multivariable model selected in step 2 

above using the Wald statistic and examination of the model coefficients, and eliminate 

variables that do not contribute to the model.  Compare the new reduced model to the 

original multivariable model using the likelihood ratio test to determine if significant 

information was lost as a result of dropping the variable from the model.  This process of 

deleting, refitting and verifying continues until all unimportant variables are eliminated. 

Then, any variables not included in the original multivariable model (i.e., variables 

dropped from consideration in step 2) are added to the reduced model that resulted from 

the deleting and refitting procedures to identify variables that alone are not significantly 
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related to the outcome, but, when combined with other variables in the model, make an 

important contribution.  All variables that significantly contribute are retained.  

Test Assumptions of Linearity for Continuous Variables (Step 4)   

Check the assumption of linearity of the logit for continuous variables by 

examining graphs of the observed values versus the response.  If the function is not 

linear, then determine the most logical parametric shape of the relationship between the 

variable and the response (e.g., quadratic, cubic, or higher order polynomial) and include 

additional variables in the model to account for the nonlinearity.  Hosmer and Lemeshow 

(2000) refer to this model as the main effects model.  Fractional polynomials and 

generalized additive models are proposed as more analytic approaches to assess the 

assumption of linearity for continuous variables. 

Test for Interactions (Step 5)   

Based on prior knowledge, identify plausible interactions among variables in the 

main effects model and test for them by adding each interaction to the main effects model 

one at a time and testing for changes in model fit using a likelihood ratio test.  Retain all 

interactions that significantly improve model fit.  The model containing all of the main 

effects and significant interactions, the �preliminary final model�, must be checked for 

adequacy and fit prior to being used for inferences.    

Assess Model Fit (Step 6)   

To assess model fit or calibration (i.e., how effectively the model describes the 

response), Hosmer and Lemeshow (2000) recommend using the Hosmer-Lemeshow 

goodness-of-fit test, which is a Pearson chi-square statistic computed from observed and 

expected frequencies (Hosmer and Lemeshow 2000, p. 147), followed by an analysis of 
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residuals.  An assessment of model discrimination, the model�s ability to discriminate 

between those subjects that experience the outcome of interest versus those that do not, 

must also be performed, and Hosmer and Lemeshow (2000) recommend using the area 

under the receiver operating character (ROC) curve. Both calibration and discrimination 

are important. 

Model Validation (Step 7)   

Validate the model with out-of-sample data, either a hold out set (i.e., a set of 

observations selected at random and removed from the dataset prior to initiating model 

development) or, if possible, a different data set.  

CRITIQUE OF TRADITIONAL APPROACH FOR LOGISTIC REGRESSION 
MODELING 
 

The methods for initial variable evaluation, the selection of variables for 

multivariable analysis, and the refinement of the multivariable model (Steps 1-5) under 

the traditional approach encourage, if not depend on, data dredging through initial 

univariable screening, iterative variable examination, and the use of stepwise selection 

procedures.  Harrell (2001, p. 56-58) outlines a number of problems with stepwise 

selection and concludes that �stepwise variable selection has been a very popular 

technique for many years, but if this procedure had just been proposed as a statistical 

method, it would most likely be rejected because it violates every principle of statistical 

estimation and hypothesis testing�.  Univariable screening and stepwise variable selection 

allow researchers to avoid the real thinking that is required to construct a set of a priori 

models, based on best available scientific information or informed opinion, to which 

testing will be limited.  Univariable screening to identify �significant� variables to be 

entered into a subsequent multivariable model is just forward stepwise selection in which 
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the variables removed in the screening process are not reanalyzed in later steps.  This is 

even worse than stepwise modeling as it can miss important variables that are only 

important after adjusting for other variables, and can cause severe biases in the resulting 

multivariable model fits while losing valuable predictive information from deleting 

marginally significant variables (Harrell 2001, p. 60).   

Additionally, there are no procedures recommended in the traditional approach 

for determining the number of variables that may be considered given the amount of data 

available.  The number of candidate variables considered in the modeling process, 

including all candidate variables screened for association with the response, nonlinear 

terms, and interactions, should not exceed the amount of information in the dataset, 

which is a function of sample size.  When too many free parameters are included in a 

model for the amount of information in the data, over-fitting has occurred and the 

estimated worth of the model (e.g. R2) will be overstated and future observations will not 

agree with predicted values (Harrell 2001, p. 60).  Over-fitting incorporates noise and 

results in finding spurious associations between X and Y.  For binary responses, a rule of 

thumb to avoid over-fitting is to limit the number of parameters, p, in the model from 

m/10 to m/20, where m is the smaller of the number of observed binary outcomes 

(Harrell 2001, p. 61).  Variable screening and stepwise selection also does not solve the 

problem of too many variables for too little data. 

Step 4 recommends the use of scatter plots to assess the assumption of linearity of 

the logit, and, if the response is judged to be nonlinear, to decide a �logical parametric 

shape� and include the additional terms in the model to account for the nonlinearity.  

However, in the vast majority of studies, the assumption of linearity of non-binary 
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predictors is probably unreasonable (Harrell 2001, p. 53), and the only reason to assume 

linearity is that there is insufficient information in the sample to allow reliable fit of 

nonlinear terms.  The recommended approach typically results in an adequately fitting 

model, but estimates of model fit will be overstated because the degrees of freedom that 

are consumed during the subjective assessments are not accounted for in the computation 

of those estimates (Harrell 2001, p. 53).     

In step 5, each �plausible� interaction is added one at a time and assessed for 

significance.  As with steps 1-4, this additional iterative testing further overstates 

estimates of model fit resulting from the failure to account for the additional phantom 

degrees of freedom.  To avoid this problem, only interactions specified in the a priori set 

of candidate models should be considered.   

In Step 6, the traditional approach recommends the use of a global goodness-of-fit 

test to determine if the model is adequate.  However, it has been demonstrated that the 

recommended Hosmer-Lemeshow goodness-of-fit test has limited power and is fairly 

dependent on how predictions are grouped.  Also, a large goodness-of-fit statistic simply 

indicates that there is some lack of fit, but provides no insight into its nature.  More 

power for detecting lack of fit is expected from testing specific alternatives to the model 

(Harrell 2001, p. 231).  If a more complex model does not provide a better fit, then this 

provides some assurance that the fitted model is reasonable (Agresti 1996, p. 114).  A 

plot of observed responses against predicted responses (a calibration plot), can also be 

examined to determine the extent of the lack of fit.  A calibration plot graphically depicts 

that fraction of p events predicted with probability p that actually occur (i.e., are 

observed).  A calibration plot clearly identifies in which prediction intervals the model 
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performs poorly, allowing the analyst to assess the consequences of the differences.  For 

example, a model may fail the global goodness of fit because of over prediction p in the 

upper decile.  This over prediction may be acceptable because it represents only 10% of 

the observations and the predictions are ranked correctly, even though the magnitude of 

the predicted value is overstated.   

If the model is to be used for prediction, a model having poor calibration can be 

dismissed outright.  Given two models that have similar calibration, discrimination 

should be examined.  Discrimination can be quantified by the use of rank measures such 

as Somer�s Dxy, Spearman�s ρ, and area under ROC curve or probability of concordance 

(c index).   Probability of concordance, the c index, is a unitless index of the strength of 

the rank correlation between predicted probability of responses and actual responses � a 

measure of model�s predictive discrimination.  It is derived from the Wilcoxon-Mann-

Whitney two-sample rank test, computed by taking all possible pairs of observations such 

that one responded and one did not.  The c index represents the proportion of such pairs 

with the responder having a higher predicted probability than the nonresponders.  The c 

index is identical to the area under the ROC curve, which is a widely used measure of 

discrimination.  A c value of 0.5 indicates random predictions (we might as well flip a 

coin), 0.7-0.8, acceptable discrimination, 0.8-0.9, excellent discrimination and >0.9 

outstanding discrimination (Hosmer and Lemeshow 2000, p. 162).  The c index is also 

related to Somer�s Dxy rank correlation between predicted probabilities and observed 

responses where 

Dxy = 2(c - 0.5)    (Eq. 1) 
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Dxy value of 0 indicates that the model is making random predictions, where a value of 1 

indicates perfect discrimination.  Dxy and c have the advantage of being insensitive to the 

prevalence of positive responses. 

Other measures of discrimination not based on ranks include Brier�s score and 

Nagelkerke�s generalized R2.  Brier�s score (eq. 2) is frequently used in judging 

meteorological forecasts. 

B = 
n
1 ∑

=

n

i 1

(Pi � Yi)2                  (Eq. 2) 

where Pi is the predicted probability and Yi is the corresponding observed response for 

the ith observation.  However, discrimination may be estimated more directly and with 

greater sensitivity with model X2 and Nagelkerke�s generalized R2 (eq. 3) (Harrell 2001, 

p. 78) 

R2 = (1-exp(-LR/n)) / (1-exp(-L0/n)   (Eq. 3) 

where LR is the global log likelihood ratio statistic for testing the importance of all 

predictors in the model; L0 is the �2 log likelihood for the null model.  Evaluation of 

several of these measures described above will provide greater insight into the model�s 

discrimination ability than if only one of the measures is considered. 

Additionally, models used for prediction should be validated to estimate how well 

the model will predict future observations and to ensure that the model is not over-fitted 

or is otherwise inaccurate.  The simplest validation method is a one time splitting of the 

dataset into training and test samples, which are used for model development and model 

validation respectively.  This splitting must occur before model development begins.  

Following model development using the training sample, calibration and discrimination 

are validated on the test sample.  There are several disadvantages of this approach, 
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however, these can be overcome by using bootstrap resampling to obtain nearly unbiased 

estimates of future model performance (Lachenbruch and Mickey 1968, Verbyla and 

Litvaitis 1989, Harrell 2001).  Boyce et al. (2002) provide a nice review of evaluating 

resource selection functions derived using logistic regression and points out the 

additional challenges in validating models based on presence/available (use-vs.-

availability) designs. 

Calibration plots developed from bootstrap resample estimates will have a slope 

near 1 and an intercept near 0 if well calibrated.  When parameter estimates are derived 

from one dataset and then applied to predict outcomes on an independent dataset, 

overfitting will cause the slope of the calibration plot to be less than 1 (the shrinkage 

factor), typically with low predictions too low and high predictions too high.  �Apparent� 

calibration accuracy can be estimated using a nonparametric smoother relating predicted 

p to observed.  The nonparametric estimate can be evaluated at a sequence of p levels, 

and the distances from the 45û line (perfect fit) can be compared with the differences 

when the model developed from the current bootstrap sample is compared back on the 

whole sample.  Averaged over many replications, the level specific differences are 

subtracted form the apparent calibration to estimate over optimism in calibration (Harrell 

2001, p. 262).  Bootstrap validation should also be used to compute over optimism in 

measures of discrimination.  Proper bootstrap validation must repeat any variable 

selection steps for each resample (Harrell 2001). 

THE MODERN APPROACH FOR MODEL DEVELOPMENT 

The modeling strategy recommended by Harrell (2001) overcomes the above-

identified shortcomings of the traditional approach.  Harrell�s approach begins with a 
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decision on the number of degrees of freedom that can be spent to avoid problems of 

overfitting, followed by a decision on where they should be spent and a commitment to 

spending them.  Later reconsideration of how those degrees of freedom have been spent 

is not recommended if statistical tests or confidence limits are to be considered.  A 

strategy for developing predictive models is outlined below, followed by an outline of 

developing models for hypothesis testing (adapted from Harrell 2001, pages 79-83). 

Development of Predictive Models 

1. Formulate good a priori models based on as much pertinent data as possible over a 

wide distribution of predictor values that lead to good hypotheses of relevant 

candidate variables and their possible interactions.  Do not examine Y in developing 

this list. 

2. Specify the degree of nonlinearity that should be allowed for each candidate variable 

based on prior knowledge where possible.  If prior knowledge cannot be used to 

specify the degree of nonlinearity, the number of degrees of freedom devoted to the 

variable should be based on its perceived importance in predicting Y, and on sample 

size.  If the number of terms specified in the a priori models is too large in 

comparison to the number of outcomes in the sample, use data reduction, ignoring Y, 

until the number of model terms is acceptable, based on an estimate of likely 

overfitting or shrinkage.  Overfitting can be assessed by the m/10 to m/20 rule or by 

the van Houwelingen-Le Cessie heuristic shrinkage estimate (Eq. 4), which quantifies 

the amount of overfitting present: 

γ  = 
χ

χ −
2

2

model

model p
   (Eq. 4) 
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where p is the total degrees of freedom for the predictors and model X 2 is the 

likelihood for testing the joint influence of all predictors simultaneously (the global 

test statistic). 

This process avoids the assumptions of linearity in the traditional modeling 

process by including nonlinear terms in the a priori models.  The simplest nonlinear 

model is a quadratic (i.e., adding an X2 term), which will account for a parabolic 

relationship.  Model complexity can be increased to handle more complex 

relationships; however, polynomials have some undesirable qualities.  Polynomials 

can have undesirable peaks and valleys, and fitting the data in one region of X can 

greatly affect the fit in other regions and will not adequately fit many functional 

forms (Harrell 2001, p. 18).  When there are several predictors, the restricted cubic 

spline function is better for estimating the true relationship between X and logit {Y = 

1} for continuous variables without assuming linearity (Harrell 2001, p. 233).  Spline 

functions are piecewise polynomials that can accommodate a variety of functions.  

Splines divide the x-axis into intervals at endpoints called knots, and polynomials are 

fit to the intervals between the knots.  Increasing function complexity can be 

accommodated by increasing k, the number of knots, with k limited by the amount of 

available data.  Restricted cubic splines (Harrell 2001, p. 20) use cubic polynomials 

between knots to achieve a smooth function, but constrain the function to be linear in 

the tails.  Restricted cubic splines have an added advantage in that only k � 1 

parameters are estimated, as opposed to unrestricted cubic spline models that require 

k + 3 knots.  Knots are typically established at fixed quantiles (percentiles) of a 

predictor�s marginal distribution, with the quantiles being a function of the number of 
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knots.  For example, if k=3, knots are established at 0.10, 0.50 and 0.90 quantiles, 

where 4 knot model use 0.05, 0.35, 0.65, and 0.95.  The principle factor in choosing 

an appropriate k is sample size.  Use of more than 5 knots is seldom required, so the 

decision is then between k = 3, 4, or 5.   

3. Use the entire sample in model development.  If the following steps are too difficult 

to repeat for each bootstrap of cross-validation sample, hold out test data from the 

following model development steps for validation of the final model. 

4. Conduct structured tests of model complexity to simplify the model with limited need 

to penalize the final model.  For example, make all continuous predictors have the 

same number of knots, varying k from 0 (linear) to the most complex a priori model 

and choose the value of k that optimizes Akaike�s information criteria (AIC) as a 

data-based choice of the best model complexity �for the money�. 

5. Check linearity assumptions by comparing to more complex models or retain the 

complexity that was prespecified in step 2.  Retaining the prespecified complexity is 

attractive if the model will be used for prediction and thus must be validated.  If 

model complexity is altered as a result of this examination, confidence limits and 

other statistics will not be correct. 

6. Check additivity assumptions by testing interaction terms specified in the a priori 

models, based on a global test for additivity.  If the global test of additivity is decisive 

(e.g. P > 0.3), then all interactions terms can be eliminated; otherwise all interaction 

terms should be retained.  

7. Determine that there are no overly influential observations.  Overly influential 

observations can be detected using statistical measures that apply to a variety of 
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regression models such as leverage, DFBETAS, DFFIT, and DFFITS, which are 

described in most texts on linear models. 

8. Do limited backwards step-down selection if parsimony is more important than 

accuracy, as when developing predictive models.  The backwards step-down method 

is preferred because: 

a. It usually performs better than forward stepwise methods, especially when 

collinearity is present. 

b. It forces consideration of the full model, which is the only fit providing 

accurate standard errors, error mean square and P-values. 

c. It is very efficient, which is an important attribute if the procedure is 

included in the validation process. 

If step-down selection is used, the variable selection process must be included in the 

resampling procedure to validate the model or to compute confidence limits and other 

measure of model fit.  This is the �final model�.   

9. Interpret the final model graphically by examining predicted values and significance 

tests.  Collinear predictors should be assessed using pooled tests of association to 

avoid misleading impressions of their significance.  However, in general, collinearity 

is not a large problem compared to nonlinearity and overfitting (Harrell 2001, p. 244). 

10. Validate the final model for calibration and discrimination ability using bootstrapping 

techniques.  Repeat steps 5 through 8 for each bootstrap cycle.  

Development of Models for Hypothesis Testing 

The strategy for developing models for hypothesis testing follows the process 

outline above for developing predictive models, with the following modifications.  



87 

1. Parsimony is of little concern for hypothesis testing because the full model, including 

insignificant variables, will result in more accurate P-values for testing models of 

interest. 

2. Consideration of interactions is still a major concern for hypothesis testing.  Each a 

priori defined interactions should be evaluated with a combined main effect + 

interaction test. 

3. Conserving degrees of freedom devoted to predictor variables is of little concern.  

The degrees of freedom allowed for each variable should be based on prior beliefs, 

while considering the tradeoff between bias and power.  

4. Model validation is not necessary, although it can be used to quantify the degree of 

over-fitting. 

CONCLUSIONS 

The traditional modeling approach has a number of shortcomings when compared 

with current statistical recommendations.  I have identified these deficiencies and 

outlined a modeling strategy based on the recommendations presented by Harrell (2001), 

which overcomes them.   

I use the modern modeling strategy in Chapter 5 to test a set of a priori models 

examining hypotheses about selection scale, required model complexity, and the relative 

value of combinations of predictor variables.  This strategy is extended to develop 

predictive models in Chapter 6, where the �best� models identified in the hypotheses 

testing phase are further examined for parsimony and calibration and are validated.  The 

validation process is discussed further in Chapter 6, including the additional challenges to 
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validate models constructed from presence/absence (use-vs.-availability) designs 

compared with the typical presence/absence design. 
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CHAPTER 5: HYPOTHESES TESTING 

 

INTRODUCTION 

As discussed in Chapter 1, wildlife habitat models are valuable tools to manage 

wildlife resources and are increasingly being used to manage species of concern.  Of 

particular interest to conservation planners are habitat models developed on a landscape 

scale that might be useful for predicting habitat quality outside the locale in which they 

were developed. However, acquiring adequate landscape scale habitat data is often a 

limiting factor in model development.  The use of habitat variables derived from tasseled 

cap functions as predictive variables in habitat models have shown some promise; 

however, no critical examination of the relative value of the function�s components has 

been reported.   

In this chapter, I will examine the effect of measurement scale and season of 

image capture on discriminating habitat use patterns of black bears in south central 

Louisiana, and investigate the relative ability of tasseled cap derived habitat variables, 

both alone and in combination, to detect perceived patterns of bear habitat selection.  I 

will use the results of those analyses in Chapter 6 to develop a resource selection function 

that can be used to predict bear habitat selection within two study areas in south central 

Louisiana, and explore the potential to extrapolate predictions beyond the study area 

boundaries. 
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METHODS 

Data Development 

In addition to the �Forest� variable developed from GAP data to separate forested 

from unforested areas as explained in Chapter 2, and 84 habitat variables described in 

Chapter 3, I was also interested in road density as a predictive variable because roads 

have been an influential predictor in other models of black bear habitat selection 

(Mykytka and Pelton 1989, Clark et al. 1993, Hellgren et al. 1991, Rudis and Tansey 

1995, van Manen and Pelton 1997).  To determine road density, I first merged all 

primary, secondary and tertiary roads (identified as �Primary�, �SECOND� and 

�Tertiary� coverages on Louisiana Oil Spill Contingency Plan Map CD, Version 1, 

Louisiana Applied Oil Spill Research and Development Program, Louisiana State 

University, Baton Rouge, LA), excluding tertiary roads identified as trails, into a single 

data layer.  Next, I developed a raster data layer of 30m x 30m pixels and calculated road 

density (km of road/km2) for each pixel using a 1005m-radius moving window filter.  I 

used IDRISI 32 (Clark Labs, Worcester, MA) for all raster image processing.  As with 

the other raster data layers described in previous chapters, I used ArcView 3.2. script 

SampleGrid.Ave (available from http://www.commenspace.org/resources/tools.html) to 

extract road density for used and available locations  

Used and Available Habitat 

Between October 1991 and May 1995, we collected 2,061 locations (capture 

locations and telemetry) on 49 female bears.  I dropped 15 bears (8 Coastal and 7 Inland), 

each with less than 5 locations, from all analyses in this and subsequent chapters, which 

resulted in a loss of 26 used locations.  I retained 2,035 (1,249 Coastal, 786 Inland) 
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locations of 34 female bears (23 Coastal, 11 Inland).  I described the selection of 8,840 

(4,654 Coastal, 4,186 Inland) available habitat sample locations in Chapters 2 and 3.  The 

boundaries of available habitat were unaffected by the elimination of bears with less than 

five locations. 

Statistical Analysis 

Following the �modern� approach to model building and hypothesis testing 

outlined in Chapter 4, I first constructed a set of a priori hypotheses and then developed 

logistic regression models to test those hypotheses.  I relied on the information theoretic 

approach, as presented by Burnham and Anderson (1998), using delta AIC and Akaike 

weights rather than null hypothesis tests with a pre-specified type I error rate (α level).  

Akaike weight, wi, is the weight of evidence in favor of model i being the �best� model 

given the data at hand and the models considered (Burnham and Anderson 1998, p. 125).   

My hypotheses or research questions are listed hierarchically below. 

• Can a single �robust� model (ignoring area effects) adequately describe black 

bear habitat selection in both the Coastal and Inland study areas?  To determine if 

a single robust model that did not include study area differences was adequate, I 

developed a logistic regression model containing all variables of interest (Table 

5.1) for each scale of interest.  Habitat variables and their interactions with study 

area were modeled using five-knot restricted cubic splines.  I used the scale model 

with the greatest Akaike weight to determine if the effects of study area were 

additive or, if there was evidence of study area by habitat measure interaction.  

The presence of study area effects would indicate that a single robust model 

would not be possible, and that either a combined model with area effects or 
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separate models for each study area would be required. If there is evidence that a 

single robust model is not adequate, then I will develop separate models for each 

study area and determine which scale contains the most information for each area 

using AIC weight as for the single model test for scale.  Development of separate 

models for each area would allow me to identify and compare the �best� 

modeling scales in each area to determine if the apparent interaction between 

study areas and scale observed in Chapter 3 was reflected in model selection.  If 

there was interaction between scale and study area, then the best scales at which 

selection is detected will be different between the two areas.  I will plot the 

relationship between Delta AIC and scale to examine how model information 

content changes with scale for the single and separate study area models.   

• Is the a priori habitat model complexity (i.e., five-knot restricted cubic splines) 

required?  Using the �best� scale single robust model if adequate, or alternatively, 

the �best� scale models for each study area, I will determine if the a priori model 

complexity is required or if a more parsimonious model is adequate.  As discussed 

in Chapter 4, in the vast majority of studies, the assumption of linearity of non-

binary predictors is probably unreasonable, and the only reason to assume 

linearity is that there is insufficient information in the sample to allow reliable fit 

of nonlinear terms.  In this study, I anticipated that bears would select: 

intermediate values of most habitat variables, with selection being curvilinear 

around an optimal range.  Accordingly, to avoid the assumption of linearity, I fit 

models using the restricted cubic spline function.  With no prior knowledge of the 

degree of nonlinearity of habitat variables, I chose a model complexity of five-
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knots (see discussion in Chapter 4).  To avoid over-fitting, I limited the maximum 

number parameters, p, in any of the models considered to meet the m/10 to m/20 

rule.  I conducted structured tests of model complexity to compare the a priori 

model complexity with simpler models.  The five-knot restricted cubic spline 

(RCS) model was compared to four-knot, and three-knot RCS models, and cubic 

and quadratic polynomials, and linear models.  Information on the appropriate 

model complexity will be used in Chapter 6 to develop predictive models. 

• What is the relative importance of each group of predictive variables?  To 

examine the relative importance of each group of predictor variables given above, 

I developed new models by dropping variable groups from the full model of 

�best� scale (Table 5.1) for the single model if adequate, or alternatively, for each 

area, and compared all models using AIC weights.  I selected groups of predictor 

variables for testing that others have identified as important predictors of bear 

habitat use, or groups of predictor variables that I believed might have value and 

my initial examination supported further consideration (Chapters 2 and 3).   

o Predictive values that have been identified by others as predictive of black 

bear habitat use that I considered were Forest and road density (Mykytka 

and Pelton 1989, Clark et al. 1993, Hellgren et al. 1991, Rudis and Tansey 

1995, van Manen and Pelton 1997). 

o I believed that the habitat variables, described in Chapter 3, would be 

predictive of bear habitat use because 1) others have successfully used 

tasseled cap derived habitat variables (Mace et al. 1999 used greenness; 

Clevenger et al. 2002 used greenness and wetness) to model bear habitat 
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selection, 2) as described in Chapter 2, greenness is roughly equivalent to 

the second of the first three principle components represented by the 

tasseled cap function, and 3) as discussed in Chapter 2, it was logical to 

use all three components.  Habitat variables were grouped to examine the 

relative contribution of each group of variables to explain the differences 

between used and available locations as follows:  

! All habitat variables derived from window means. 

! All habitat variables derived from window standard deviations. 

! All habitat variables derived from spring images. 

! All habitat variables derived from fall images. 

! All habitat variables derived from combinations of tasseled cap 

(1&2, 1&3, 2&3). 

! All habitat variables derived from each tasseled caps (1, 2, and 3). 

Table 5.1.  List of a priori models examined. 

Combined Study Area Models (Variables in Full Single Model: Study Area, Forest, 
road density, all habitat variables at model scale [12 variables/scale], and all Habitat 
Variables*Study Area interactions � Model Complexity: 5-knot restricted cubic spline 
[RCS]) 
 
Models Examining Scale  
Full Combined Model 90m x 90m 
Full Combined Model 210m x 210m 
Full Combined Model 510m x 510m 
Full Combined Model 495m radius 
Full Combined Model 990m x 990m 
Full Combined Model 1005m radius 
Full Combined Model 2010m x 2010m 
 
Models Examining Study Area Effects 
Full Combined Model � Best Scale 

Drop Study Area*Habitat Variable Interaction 
Drop study area effects (no interaction or additivity) 
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Table 5.1.  Continued. 

Study Area Specific Models (Variables in Full Study Area Specific Model: Forest, road 
density, and all habitat variables at model scale [12 variables per scale] � Model 
Complexity: 5-knot RCS) 
 
Models Examining Scale  
Full Coastal model 90m x 90m   Full Inland model 90m x 90m 
Full Coastal model 210m x 210m   Full Inland model 210m x 210m 
Full Coastal model 510m x 510m   Full Inland model 510m x 510m 
Full Coastal model 495m radius   Full Inland model 495m radius 
Full Coastal model 990m x 990m   Full Inland model 990m x 990m 
Full Coastal model 1005m radius   Full Inland model 1005m radius 
Full Coastal model 2010m x 2010m   Full Inland model 2010m x 2010m 
 
Combined or Study Area Specific Models � Best Scale (Variables in Single or Study 
Area Specific Full Models) 
 
Models Examining Model Complexity 
Full Model � 5 knot RCS 
Full Model � 4 knot RCS 
Full Model � 3 knot RCS 
Full Model � Cubic polynomial 
Full Model � Quadratic polynomial 
Full Model � Linear 
 
Models Examining Variable Groups (Model Complexity: 5-knot RCS) 
Full Model 

Drop Forest1 
Drop Road Density1  

 Drop all habitat variables derived from window standard deviation1 
 Drop all habitat variables derived from window means1 
All habitat variables from spring images, Forest, and road density 
All habitat variables from fall images, Forest, and road density 
All habitat variables from tasseled caps 1 and 2 + Forest + road density 
All habitat variables from tasseled caps 1 and 3 + Forest + road density 
All habitat variables from tasseled caps 2 and 3 + Forest + road density 
All habitat variables from tasseled cap 1 + Forest + road density 
All habitat variables from tasseled cap 2 + Forest + road density 
All habitat variables from tasseled cap 3 + Forest + road density 
Note: 1 All other full model variables retained. 
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RESULTS 

The �best� modeling scale for single combined study area models was 2010m x 

2010m, with the weight of evidence for the model increasing (smaller delta AIC values) 

with increasing scale (Table 5.2, Figure 5.1).  Comparison of models with and without 

study area effects and study area by habitat measure interactions at the 2010m x 2010m 

scale, strongly suggest that, as suspected based on the findings in Chapter 3, habitat 

selection differs between the two study areas, and that the differences are not additive 

(Table 5.3).  Accordingly, study area cannot be ignored in the modeling process, and 

separate models for each study area were required.   

 

Table 5.2.  Model selection statistics examining scale with study areas combined in a 
single model.  The �best� model is in bold and null model values are presented for 
comparison.  Full model predictive variables include all habitat variables within each 
scale, Forest, road density, study area, and study area by habitat variable interaction.  The 
models avoid the assumption of linearity by using the restricted cubic spline function 
with 5-knots. 

Model Deviance k* AIC 
Delta 
AIC wi

Full combined model 90m x 90m 8682.03 90 8862.03 589.29 0.000
Full combined model 210m x 210m 8443.17 96 8635.17 362.43 0.000
Full combined model 510m x 510m 8221.70 98 8417.70 144.96 0.000
Full combined model 495m radius 8157.42 102 8361.42 88.69 0.000
Full combined model 990m x 990m 8134.14 102 8338.14 65.41 0.000
Full combined model 1005m radius 8091.11 102 8295.11 22.37 0.000
Full combined model 2010m x 2010m 8068.74 102 8272.74 0.00 1.000
Null model 10484.14     
*For models with k < 102, model did not converge because of singular information matrix.  Model 
convergence was obtained by iteratively reducing model complexity on offending variables, reducing 
complexity by one knot at a time until model converged. 
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Figure 5.1.  Relationship between delta AIC and scale.  Delta AIC is calculated for a set 
of logistic regression models examining the relationship between black bear habitat use in 
Louisiana and predictive variables.  Scale is presented as the square root of moving 
window area.  Moving window sizes considered are 90m x90m, 210m x201m, 495m 
radius, 510m x 510m, 990m x 990m, 1005m radius, and 2010m x 2010m. 

 

Table 5.3.  Model selection statistics examining study area effects (interaction and 
additivity) for the best scale combined study area model.  The �best� a priori model is in 
bold and null model values are presented for comparison.  Full model predictive variables 
include all habitat variables within best scale, Forest, road density, study area, and study 
area by habitat variable interaction.  The models avoid the assumption of linearity by 
using the restricted cubic spline function with 5-knots. 

Model Deviance k AIC 
Delta 
AIC wi

Full combined model 2010m x 
2010m 8068.74 102 8272.74 0.00 1.000
No Study Area*Habitat Variable 
Interaction 8591.62 52 8695.62 422.88 0.000
No study area effects 
(no interaction or additivity) 8746.46 51 8848.46 575.73 0.000
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Comparison of study area specific models across scales suggested that the �best� 

modeling scales differed between areas (Table 5.4), confirming the apparent interaction 

between study areas and scale observed in Chapter 3.  The �best� modeling scales were 

2010m X 2010m and 495m radius in the Coastal and Inland areas, respectively (Figure 

5.1).  Because of these differences, all subsequent hypotheses were examined using study 

area specific �best� scale models.   

 

Table 5.4.  Model selection statistics examining scale separately for each study area.  The 
�best� a priori model in each area is in bold and null model values are presented for 
comparison.  Full model predictive variables include all habitat variables within each 
scale, Forest, and road density.  The models avoid the assumption of linearity by using 
the restricted cubic spline function with 5 knots.  Models are ranked based on delta AIC. 

Model Deviance k* AIC 
Delta 
AIC wi Rank

Full Coastal model 90m x 90m 5526.65 49 5624.65 344.18 0.000 7 
Full Coastal model 210m x 210m 5421.62 49 5519.62 239.15 0.000 6 
Full Coastal model 510m x 510m 5308.14 51 5410.14 129.67 0.000 5 
Full Coastal model 495m radius 5249.05 51 5351.05 70.58 0.000 4 
Full Coastal model 990m x 990m 5208.48 51 5310.48 30.01 0.000 2 
Full Coastal model 1005m radius 5211.49 51 5313.49 33.02 0.000 3 
Full Coastal model 2010m x 2010m 5178.47 51 5280.47 0.00 1.000 1 
Null model 6092.51      
   
Full Inland model 90m x 90m 3121.04 49 3219.04 246.88 0.000 7 
Full Inland model 210m x 210m 3012.64 50 3112.64 140.48 0.000 6 
Full Inland model 510m x 510m 2887.98 51 2989.98 17.82 0.000 3 
Full Inland model 495m radius 2870.16 51 2972.16 0.00 0.998 1 
Full Inland model 990m x 990m 2883.04 51 2985.04 12.88 0.002 2 
Full Inland model 1005m radius 2894.32 51 2996.32 24.16 0.000 4 
Full Inland model 2010m x 2010m 2905.19 51 3007.19 35.03 0.000 5 
Null model 4340.37      

*For models with k < 51, model did not converge because of singular information matrix.  Model 
convergence was obtained by iteratively reducing model complexity on offending variables, reducing 
complexity by one knot at a time until model converged. 

 

Tests of the model complexity suggested that the 5-knot restricted cubic spline 

models provided the best fit (Tables 5.5 and 5.6).  Model ranks based on model 
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complexity in the two study areas were identical, suggesting that the ability of the 

specified model complexities to fit the data was similar across study areas.  All variable 

groups were important in modeling black bear habitat selection in the Inland area, and all 

but road density were important in the Coastal area (Tables 5.5, 5.6). 

 

Table 5.5.  Model selection statistics examining study model complexity and variable 
groups for the best scale Coastal study area model.  The �best� a priori model is in bold.  
Full model predictive variables included all habitat variables at the best area specific 
scale, Forest, and road density.  Models examining variable groups used the restricted 
cubic spline function with 5 knots.  Models are ranked based on delta AIC. 

Model Deviance k AIC
Delta 
AIC wi Rank

Models Examining Model 
Complexity     

Full Coastal model � 5 knot RCS 5178.47 51 5280.47 0.00 1.000 1
Full Coastal model � 4 knot RCS 5262.70 39 5340.70 60.23 0.000 2
Full Coastal model � 3 knot RCS 5338.26 27 5392.26 111.79 0.000 4
Full Coastal model � cubic polynomial 5273.08 39 5351.08 70.61 0.000 3
Full Coastal model � quadratic polynomial 5346.41 27 5400.41 119.94 0.000 5
Full Coastal model � linear 5562.88 15 5592.88 312.41 0.000 6

Models Examining Variable Groups      
Full Coastal model  5178.47 51 5280.47 0.66 0.418 2
     Drop Forest 5212.35 50 5312.35 32.54 0.000 3
     Drop Road Density 5179.81 50 5279.81 0.00 0.582 1
     Drop all habitat variables derived from 

window st. dev. 5454.60 27 5508.60 228.79 0.000 11
     Drop all habitat variables derived from 

window means 5387.62 27 5441.62 161.81 0.000 6
Habitat variables from spring images* 5423.27 27 5477.27 197.46 0.000 10
Habitat variables from fall images* 5402.07 27 5456.07 176.26 0.000 7
Habitat variables from tasseled caps 1and 2* 5284.66 35 5354.66 74.85 0.000 5
Habitat variables from tasseled caps 1 and 3* 5280.26 35 5350.26 70.45 0.000 4
Habitat variables from tasseled caps 2 and 3* 5394.69 35 5464.69 184.88 0.000 8
Habitat variables from tasseled caps.1* 5431.83 19 5469.83 190.02 0.000 9
Habitat variables from tasseled cap 2* 5535.56 19 5573.56 293.75 0.000 13
Habitat variables from tasseled cap 3* 5516.23 19 5554.23 274.42 0.000 12
Note: �*� indicates that in addition to the predictive variables listed, Forest and road density are included. 
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Table 5.6.  Model selection statistics examining study model complexity and variable 
groups for the best scale inland study area model.  The �best� a priori model is in bold.  
Full model predictive variables included all habitat variables at the best area specific 
scale, Forest, and road density.  Models examining variable groups used the restricted 
cubic spline function with 5 knots.  Models are ranked based on delta AIC. 

Model 
Residual 
Deviance k AIC

Delta 
AIC wi Rank

Models Examining Model Complexity     
Full Inland model � 5 knot RCS 2870.16 51 2972.16 0.00 1.000 1
Full Inland model � 4 knot RCS 2933.668 39 3011.67 39.51 0.000 2
Full Inland model � 3 knot RCS 3006.905 27 3060.91 88.74 0.000 4
Full Inland model � cubic polynomial 2972.205 39 3050.20 78.04 0.000 3
Full Inland model � quadratic polynomial 3012.658 27 3066.66 94.50 0.000 5
Full Inland model � linear 3157.954 15 3187.95 215.79 0.000 6

Models Examining Variable Groups      
Full Inland model  2870.16 51 2972.16 0.00 1.000 1
     Drop Forest 2925.34 50 3025.34 53.18 0.000 2
     Drop Road Density 2967.92 50 3067.92 95.76 0.000 4
     Drop all habitat terms derived from window 

st. dev. 3010.84 27 3064.84 92.68 0.000 3
     Drop all habitat terms derived from window 

means 3163.61 27 3217.61 245.45 0.000 11
Habitat variables from spring images* 3037.21 27 3091.21 119.05 0.000 7
Habitat variables from fall images* 3097.04 27 3151.04 178.88 0.000 10
Habitat variables from tasseled caps 1and 2* 3006.59 35 3076.59 104.43 0.000 5
Habitat variables from tasseled caps 1 and 3* 3006.69 35 3076.69 104.53 0.000 6
Habitat variables from tasseled caps 2 and 3* 3022.44 35 3092.44 120.28 0.000 8
Habitat variables from tasseled caps.1* 3081.99 19 3119.99 147.83 0.000 9
Habitat variables from tasseled cap 2* 3215.99 19 3253.99 281.83 0.000 12
Habitat variables from tasseled cap 3* 3217.57 19 3255.57 283.41 0.000 13

Note: �*� indicates that in addition to the predictive variables listed, Forest and road density are included.  
 

DISCUSSION 

Combined and area specific models exhibited similar overall patterns in their 

relationship of model information content, as measured by delta AIC, to increasing scale, 

and appear to reach an asymptote near the 1km window scale.  This provides some 

evidence that the range of scales considered was adequate.  However, I found strong 

evidence that the best scale for modeling habitat selection differed between the Coastal 

and Inland study areas, as I suspected based on the results presented in Chapter 3.  As a 
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consequence of the study area by scale interaction, coupled with interactions among the 

study areas and habitat variables, development of a single model spanning both study 

areas and potentially suitable for extrapolation outside the study area boundaries was not 

possible.  However, development of study area specific models was possible and 

provided valuable insight into required model complexity and the relative value of 

variable groups.  

The model complexity of study area specific models strongly supported my a 

priori hypothesis that the bears' response to the habitat variables was best modeled as a 

nonlinear function.  Five-knot restricted cubic spline models provided the best fit to the 

data overall, and model fit statistics (i.e., AIC and wi) provide useful information into the 

relative amount of information lost by simplifying the model.  In some circumstances, the 

use of a simpler model may be warranted, such as predicting habitat suitability using a 

GIS.  For example, use of restricted cubic splines models for prediction in a typical GIS 

environment would be difficult, however, cubic polynomial models can be easily used.  

Model selection statistics allow an informed choice of an appropriate model complexity 

for the situation at hand.  

In addition to scale, the relative importance of road density also differed between 

study areas.  Road density accounted for a sizable fraction of the variability in the Inland 

study area, but was about as likely to contribute to model fit as not in the Coastal study 

area.  The relative value of Forest is comparable in both study areas, and although an 

important variable to be included in the model if available, may not be worthy of 

extensive effort to develop otherwise.    
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Moving window means and standard deviations (i.e., habitat variables) were 

important in modeling bear habitat use, and although their relative value differed between 

study areas, the best models for each area included both measures.  Similarly, habitat 

variables derived from spring and fall images differed in relative importance between 

study areas (spring imagery was more informative in Inland, fall imagery was more 

informative in Coastal), but the best models included variables derived from both 

seasons.  Habitat variables derived from tasseled cap 1, brightness, were more 

informative than habitat variables derived from the other two tasseled caps in both areas.  

The relative value of habitat variables derived from tasseled caps 2 and 3, greenness and 

wetness, differed between study areas, with habitat variables derived from greenness and 

wetness of equal value in the Inland study area, but habitat variables derived from 

wetness more informative than those derived from greenness in the Coastal study area.  

This finding is also consistent with my a priori expectations, as I thought that the extent 

of inundated land in the Coastal area was a factor limiting bear distribution. 

In summary, the conclusions from these analyses are: 

• Scale matters.  Habitat variables derived from tasseled cap functions using 

different sized moving window filters produced measures of varying 

information content.  Researchers attempting to develop habitat models from 

remote sensed data should explore a range of scales rather than using the raw 

30m data. 

• Consider multiple summary statistics.  The best models for both study areas 

included both habitat derived summary statistics � the moving window mean 

and standard deviation.  Little effort is required to calculate multiple summary 
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statistics from processed imagery, and they should be considered if the 

statistic can be justified a priori. 

• Use multi-temporal data if available.  In this study, habitat variables derived 

from imagery captured during spring and fall improved model information 

content.  In each study area, the relative amount of information available from 

the imagery of each season differed.  I suspect that this situation is not unique 

and finding a rational for selecting imagery from one season over another 

would be difficult.   

• Use all of the information available in the tasseled cap function.  The tasseled 

cap function produces three commonly used measures, brightness, greenness, 

and wetness.  As discussed in Chapter 2, the tasseled cap function is similar to 

a principle-components analysis, typically with decreasing amount of 

information in each subsequent measure.  However, each measure includes 

different information, with the potential for each measure to be more 

important in one situation than another.  If justified by a priori hypotheses, all 

of the data should be considered before being discarded. 
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CHAPTER 6: RESOURCE SELECTION MODELS FOR PREDICTION 

 

The development of bear resource selection models began in Chapter 5 with the 

identification of the bear habitat selection model for each study area that had the lowest 

AIC.  Those models were used for hypothesis testing; however, as described in Chapter 

4, a refinement of those models to identify the most parsimonious model was required for 

prediction of bear resource selection within the study areas.  

In addition to model refinement, examination of model calibration, discrimination 

and validation were required.  Examination of model calibration and discrimination are 

often lacking in published RSF models, and validation is not typically conducted despite 

the clear need to do so before such models are used for management (Fielding and Bell 

1997, Verbyla and Litvatis 1989).  No model should be used for prediction unless it has 

been determined that the model effectively describes the response (calibration), 

adequately discriminates between those subjects that experience the outcome of interest 

versus those that do not (discrimination), and has acceptable capabilities to correctly 

predict future observations.   

In this chapter, I refine the �best� models from Chapter 5 to make predictions of 

bear resource selection in each study area and present a method to apply the study area-

specific RSFs beyond study area boundaries.  I also use the development of habitat 

selection predictions in south central Louisiana to explore issues of model calibration and 

validation for RSFs developed from used/available data where separate samples of used 

and available resources are taken as opposed to using a census or single sample in which 

subjects either exhibit a response or not (e.g., used and unused resources).   
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I also consider an alternative method to RSFs for identifying suitable resource 

units based on statistical distance, known as Mahalanobis distance.  As discussed in 

Chapter 1, logistic regression requires measurements of used and available (or unused) 

resources.  The difficulty of defining �available� resources and the impacts on subsequent 

data analysis has been the subject of considerable discussion (Johnson 1980, White and 

Garrott 1990, Alldredge and Ratti 1992, Aebischer et al. 1993, Manly et al. 1993, 

McClean et al. 1998, Garshelis 2000).  The advantage of Mahalanobis distance over 

logistic regression is that only the set of used resources needs to be correctly defined, 

eliminating the problems caused by misclassification of available habitats (Clark et al. 

1993).  However, Mahalanobis distance assumes multivariate normality, which is 

typically not valid for most habitat data (Manly et al. 1993, Harrell 2001), and users of 

Mahalanobis distance interested in evaluating model variables or hypothesis testing must 

rely on other statistical techniques.  In spite of these limitations, Mahalanobis distance is 

an attractive method for developing GIS-based habitat maps because it avoids the issue of 

defining availability and it�s comparatively easy to implement in GIS.  I explore the use 

of Mahalanobis distance to identify resource selection in my study areas and compare 

those results with RSF results.  I also explore a new use of Mahalanobis distance to 

evaluate the similarity of the available resources in potential bear habitat beyond my 

study area boundaries to identify areas where study-area specific models of bear resource 

selection may be reasonably applied.  Based on those findings, I will generate bear 

habitat selection maps for areas outside of my study areas, but within Louisiana�s 

Mississippi River Alluvial Plain. 
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METHODS 

The model building process used in this chapter follows that outlined in Chapter 

4.  All statistical analyses were performed with S-Plus, version 6.1.   

The Resource Selection Function 

Manly et al. (2002; p. 13) defined the resource selection function (RSF) as a 

function of characteristics measured on resource units such that its value for a unit is 

proportional to the probability of that unit being used.  When a resource selection 

function is derived from a census or single sample of used and unused resource units, the 

RSF is referred to as a resource selection probability function (RSPF), and the function 

gives the expected probability of use for the observed resource units.  For RSPFs 

developed from used/unused data using logistic regression, expected values estimated by 

the logistic regression model (equations 6.1 or 6.2) are the probability of observing the 

response (i.e., Y = 1), given the values of the matrix of predictors, X, and β, and the 

vector of estimated regression coefficients β0 � βk.   

In matrix terms, the logistic function is  

Prob{Y = 1|X} = [1 + exp(-X β)]-1    (6.1) 

or equivalently, 
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To model used/unused data using logistic regression, the bounds of the study area are 

delineated and resource units to be censused or sampled are identified.  The resource 

units are then observed to determine whether or not they are used; used units are coded as 

1 and unused units are coded as 0.  A priori predictor variables that are known or 

hypothesized to be associated with resource use are then measured on each unit.   
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Figure 6.1.  Study areas in south Central Louisiana and extrapolation area within Mississippi Alluvial Floodplain. 
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Regression coefficients are estimated by of maximum likelihood, and the model can then 

be used to estimate, or predict, the probability of use for each unit.  

However, when separate independent samples are taken of used and available 

sites (used/available data), the estimated Prob{Y = 1|X} can be considered a RSPF only if 

Pa, the probability of sampling an available resource unit, and Pu, the probability that the 

resource unit was used given that it was sampled, are known (Manly et al. 1993).  In this 

situation, the model intercept, β0 in equation 6.2, is modified to loge[(1-Pa)Pu/Pa]+β0 to 

allow available and used resource units to be sampled with different probabilities.  The 

resource selection function can then be estimated by substituting β0 - loge[(1-Pa)Pu/Pa] for 

β0  in equation 6.2.  If Pu or Pa is unknown, Manly et al. (1993) state that the RSF can still 

be estimated using equation 6.3, but the model predictions must be considered an index 

of use rather than interpreted as the true probability of use.   

w(x) = exp( kkXX β+β …11 )     (6.3) 

where β1 � βk are derived from logistic regression (eq. 6.1 or 6.2).   

I recorded radio-collared bear locations (i.e., used resource units) and randomly 

selected available resource units within each study area using GIS.  As was the case for 

my study, when a sample of available resource units are selected from GIS data, such as 

satellite imagery or other raster data, Pa can be defined as the ratio of the number of 

pixels in the sample to the total number of pixels in the study area.  However, Pu cannot 

be determined from typical telemetry data because the sampling proportion of used units 

is unknown.  Therefore, I was unable to develop a RSPF for bear resource use in my 

study areas and I had to develop a RSF. 
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Interpreting the RSF developed from used/available data as if it were a RSPF 

derived from used/unused data is inappropriate because of the sensitivity of predicted 

probabilities to changes in the sampling proportions of used and available resource units.  

In my study, including more or fewer pixels in the sample would alter the sampling 

proportion of available resources, and, similarly, increasing or decreasing the relocation 

interval could have changed the sampling proportion of used units.  As these sampling 

proportions change, altering the relative fraction of used to available units in the sample, 

so does the range of predicted values within each category.  Classification is sensitive to 

the relative size of the two component groups (i.e., used and available) and always shifts 

the range of predicted values for both groups towards the larger group.  This fact is 

independent of model fit (Hosmer and Lemeshow 2000, p. 157).  This effect is depicted 

graphically in Figure 6.2, which I constructed by treating the samples of used and 

available resources for the Inland study area as if they were a census of used/unused 

resource units, sampling the used and available resources at different probabilities, and 

predicting the RSF using the model with the lowest AIC for the Inland study area from 

Chapter 5 for each sampling proportion.  It is evident that decreasing the probability of 

used locations in the sample skews the distribution of Prob{Y = 1|X} towards 0, and 

increasing the probability of used locations skews the distribution towards 1.  So, 

interpreting logistic regression model predictions from used/available data as though they 

were used/unused data is clearly inappropriate.  To eliminate this problem, many 

researchers bin, or group, RSF predicted values estimated using equation 6.3 in quantiles 

from which inference and maps are made.  However, ranks, and thus quantiles, of 

predicted values from equations 6.2 and 6.3, with and without elimination of the model 
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intercept, β0, are identical, and thus the predicted values form standard statistical 

packages, based on equation 6.2, can be used directly avoiding the need to calculate 

values using equation 6.3.  This fact is important in that many statistical packages have 

procedures to assess model calibration and discrimination based on predicted values from 

equation 6.2.  This fact also suggests that measures of model discrimination based on 

ranks should be valid, which is discussed further below.  Accordingly, for all analyses in 

this chapter I used model predictions from equation 6.2 as the estimated RSF.   
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Figure 6.2.  Distribution of Prob{Y = 1|X} for different sampling probabilities of used and 
available units.  Lines are kernel smoothed densities of Prob{Y = 1|X}.  Inland study area 
data were used for this example.  The dataset included 4,186 available units and 786 used 
units. 
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Final Model Development, Model Calibration, Validation, and Refinement  

To find the most parsimonious �final� model for each study area, I first examined  

DFBETAS and DFFITS (Harrell 2001, p. 245 and 261) to determine that there were no 

overly influential observations, and then performed limited backwards selection (see 

Chapter 4 and below) on the �best� full model for each area identified in Chapter 5 (i.e., 

Full Coastal model 2010 m x 2010 m, Full Inland model 495 m radius).  As discussed in 

Chapter 4, models used for prediction should be examined to determine model adequacy 

(calibration), and they should be validated before being used for management decisions.  

To assess over optimism in the final models� estimated calibration and discrimination, I 

used bootstrapping methods described by Harrell (2001).  In this process, a new sample 

(the bootstrap sample) of size n is drawn with replacement from the original X and Y 

sample of size n.  A model based on the bootstrap sample is derived and applied without 

change to the original sample, and the accuracy indices from the bootstrap sample minus 

the index computed on the original sample is an estimate of optimism.  The process is 

repeated for j bootstrap replications to obtain an average optimism for the accuracy 

indices.  Each of the 200 bootstrap iterations included the limited backward selection 

process used to derive the �final� model.  In this process, each predictor variable was 

dropped from the �best� full model, and AIC was calculated for the reduced model.  If 

the reduced model resulted in an increase in AIC > 2, then the variable was eliminated, 

else the variable was retained, and the process was repeated with the next variable in the 

model until each variable in the model was evaluated.  Factors requiring multiple degrees 

of freedom were retained or dropped as a group, so any higher order terms accounting for 

nonlinearity of a variable were dropped with the predictive variable as a group.  Variable 
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selection for each bootstrap iteration was recorded and summarized, and over optimism 

in measures of discrimination were calculated and reported.  I also used the results of 

these analyses to adjust the �final� model for predictions in each study area.  If predictor 

variables included in �final� model were frequently included in the bootstrap models, 

then those variables would be added back into the �final� model, and vice-a-versa, if a 

predictor variable was included in the �final� model but rarely included in the bootstrap 

models, then it was eliminated from the �final� model.  Calibration was assessed using 

calibration plots, as discussed in Chapter 4, and the Hosmer-Lemeshow GOF test. 

Based on my previous examination of important sources of variation (see Chapter 

3), I expected differences among bears to dominate variability among used locations.  

The bootstrapping procedure estimating how well the model for each study area would be 

expected to perform on a new random sample drawn from the same population as a 

whole, but provided little insight into how well the models would be expected to perform 

on a new bear from the study area.  Therefore, I also wanted to: 1) estimate how well the 

models would be expected to perform on a new bear from the study area, 2) gain insight 

into the range of variability in habitat selection among individual bears within each study 

area, and 3) gauge the relative influence of bears with large numbers of used locations on 

model selection.  I used a modified �jackknife� procedure to perform these assessments.  

For all bears with > 50 locations (bears j � n), I removed the jth bear�s used locations from 

the study area�s original dataset, and developed the jth training set model.  The jth training 

set model was then used to predict the probability of use for each location observed for 

the jth bear.  These were compared with the similar predictions for the  jth bear�s locations 

based on the final model using Spearman ρ2.   
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Further, I considered the model assessment method proposed by Boyce et al. 

(2002), which I refer to as the Boyce test.  The Boyce test is a k-fold cross validation for 

evaluating �prediction success�, based on the correlation between RSF ranks and area-

adjusted frequencies for a withheld sub-sample of data.  Calculation of the Boyce test 

requires extrapolation of model predictions to determine the area in ad-hoc bins of used 

location predictions.  Boyce et al. (2002) argued that many methods for evaluating 

logistic regression models are inappropriate for used/available data because the 

distribution of used sites is not drawn directly from available sites, so neither category is 

exclusive as in the usual application of logistic regression, as discussed above.   

Commonly, in used/available designs modeling continuous variables, samples of 

available resource units are larger than those of used units, favoring classification into the 

larger group, independent of model fit.  Researchers unaware of this phenomenon may 

get the impression that their models are poor when in fact that may not be the case.  

Boyce at al. (2002) asserted that ROC (which is the same as c-index; see Chapter 4) and 

similar measures are flawed when used with used/available data, but provide no evidence 

to support that position.  Because the Boyce test lacks a well developed theoretical basis, 

and like the Hosmer-Lemeshow GOF test, would be sensitive to how data are binned, I 

believe that the rank based methods to assess the model�s discriminatory ability (e.g., 

Somer�s Dxy and c-index), discussed in Chapter 4 and used in this chapter, perform 

adequately on used/available data.  To assess the validity of this hypothesis, I compared 

the c-index for each of the variable probability samples used to create Figure 6.2 for the 

Inland study area, and evaluated similar datasets for the Coastal study area. 
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Extrapolate RSF Predictions Within Study Area Boundaries 

I used the final model to predict the RSF for all available and used locations in the 

original datasets for each study area.  I plotted those predictions using GIS to create maps 

of predicted habitat selection.  Model predictions were binned into 20% quantiles (i.e., < 

20th percentile, > 20th percentile and < 40th percentile, > 40th percentile and < 80th 

percentile, and > 80th percentile). 

Compare RSF Results With Mahalanobis Distance Within Study Area Boundaries 

Some researchers have used Mahalanobis distance as an alternative to RSFs 

because it is relatively easy to implement in a GIS and avoids the problems associated 

with defining availability.  Mahalanobis distance is the dimensionless statistical distance 

of a set of variables from a multivariate centroid, adjusted for variance in each dimension 

of the multivariate set.  Small distances indicate similarity to the centroid, which in this 

case is the multivariate mean of the set of measured habitat characteristics.  Mahalanobis 

distance is calculated as 

M = ( ) ( )µxΣµx ��'� 1 −− −      (6.4) 

where x  is the p-dimensional matrix of observed habitat characteristic variables (x1, x2, 

� xp), µ�  is the mean vector of habitat characteristics estimated from the used locations 

and Σ�  is the estimated covariance matrix from the used locations.  Assuming 

multivariate normality, Mahalanobis distances are approximately distributed as a chi-

squared with p-1 df.  Some authors have plotted significance levels (p-values) and others 

have plotted scaled distances, or binned distances into quantiles, avoiding the usually 

questionable assumption of multivariate normality (Knick and Rotenberry 1998).   
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Mahalanobis distance has been proposed as an alternative to RSF (Clark et al. 

1993), but I was unable to locate any studies that compared the two approaches on the 

same data.  Therefore, I calculated µ�  and Σ�  for used locations in each study area and 

determined Mahalanobis distances for used and available sample locations combined 

based on those values.  Mahalanobis distances of used locations were binned into 20% 

quantiles (i.e., < 20th percentile, > 20th percentile and < 40th percentile, > 40th percentile 

and < 80th percentile, and > 80th percentile), and available locations were binned using the 

used binned distances.  For example, if the first bin (< 20th percentile) for used 

Mahalanobis distances was 0-7, then the first bin for the combined locations would be 

based on this same distance interval.  I compared Mahalanobis distances for combined 

used and available sample locations with RSF results for each study area using 

Spearman�s ρ2. 

Extrapolate RSF Predictions and Mahalanobis Distances Beyond Study Area 
Boundaries 
 

To identify blocks of potentially suitable habitat beyond study area boundaries, I 

needed a sample of available habitat in the extrapolation area.  I used the Sample 

extension to ArcView 3.2 (Quantitative Decisions, http://www.quantdec.com) to generate 

1-km grid with a random starting point and orientation angle in order to systematically 

sample the extrapolation area (Figure 6.1).  As with the other raster data layers described 

in previous chapters, I used ArcView 3.2 script SampleGrid.Ave (available from 

http://www.commenspace.org/resources/tools.html) to extract all model predictor 

variables for the extrapolation sample.  

Because RSFs are a function of used units relative to what is available to the 

animal, application of RSFs to areas other than where they were developed is suspect 
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unless the available resources are comparable in the original and extrapolation areas.  I 

used Mahalanobis distance to evaluate the similarity between the available resources in 

each study area and those available throughout the extrapolation area.  I calculated µ�  and 

Σ�  for available locations in each study area and determined Mahalanobis distances for 

the available sample locations, which were then binned into 20% quantiles.  I then 

calculated Mahalanobis distance for the extrapolation sample using µ�  and Σ�  for 

available locations in each study area, and binned the extrapolation locations using the 

available binned distances, providing a measure of similarity to the available resource 

units in each study area.  RSF predictions beyond study area boundaries should only be 

applied to areas where availability was comparable.  I produced maps depicting the 

similarity throughout the extrapolation area to each study area. 

I extrapolated RSF using the final model for each study area to the extrapolation 

sample, and binned the extrapolation area�s predicted values using the same bin intervals 

developed for the predictions within the study areas.  This allowed comparison of 

selection relative to the selection within the study area (bin intervals would be much 

wider based on comparable extrapolation quantiles).  I produced maps of RSF based on 

each study area. 

I also produced maps depicting similarity throughout the extrapolation area to the 

used location in each study area.  I calculated Mahalanobis distance for the extrapolation 

sample using µ�  and Σ�  for used locations in each study area, and binned the extrapolation 

sample distances into the same bin intervals developed from the used samples. 
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RESULTS 

Model Calibration, Validation, and Refinement 

The �best� (lowest AIC) Coastal and Inland full models identified in Chapter 5 

were the �Full Coastal model 2010m x 2010m� and �Full Inland model 495m radius� 

models.  These models included Forest, road density, and 12 habitat variables at the 

specified model scale.  Five-knot RCS functions were required to provide adequate 

model complexity.   

Bootstrapped limited backwards selection on the full models for each study area, 

performed in conjunction with calibration and validation, confirmed that the �best� model 

for the Inland study retained all model variables for the majority of resamples and thus 

should be used as the Final Inland model (Tables 6.1, 6.2).  However, those results 

suggested that road density should be dropped from the Final Coastal model because it 

was more likely to be excluded from the �best� model for the 200 bootstrap resamples 

than not.  All Coastal and Inland Final model variables, excluding some nonlinear terms, 

were highly significant (Table 6.3), except TC3F2010M in the Coastal model, which was 

marginally significant but was retained because it was more likely to be retained than not 

in the bootstrap validation process. 

The Hosmer-Lemeshow global goodness-of-fit test suggested that the fit of the 

Final Coastal model was poor (P=0.0003).  However, the bootstrap estimates of 

calibration errors were small (mean absolute error=0.019, 0.9 quantile of absolute 

error=0.037), and the source of the lack of fit is evident in the calibration plot (Fig. 6.3).  

That is, model predictions in the range of 0.2-0.4 (~0.65-0.85 quantiles of predicted 

values) are overestimated, and predicted values > 0.5 (the upper 0.9 quantile of predicted 
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Table 6.1.  The number/fraction of bootstrap resamples in which k variables were 
retained using limited backward selection on the �best� full Coastal and Inland study area 
models identified in Chapter 5. 

 Coastal Inland 

k 

# of Bootstrap 
Iterations with 

k Variables 

Fraction of 
Bootstrap 

Iterations with k 
variables

# of Bootstrap 
Iterations with 

k Variables

Fraction of 
Bootstrap 

Iterations with 
k variables

9 1 < 1% 0 0%
10 0 0% 2 1%
11 21 11% 9 5%
12 86 43% 34 17%
13 76 38% 61 31%
14 16 8% 94 47%

 
 
 
 

Table 6.2.  The number/fraction of bootstrap resamples in which each variable was 
retained using limited backward selection on the �best� full Coastal and Inland models 
identified in Chapter 5. 

 Coastal Inland 

Factor 

# of Bootstrap 
Iterations Factor 

Retained

Fraction of 
Iterations Factor 

Retained

# of Bootstrap 
Iterations Factor 

Retained 

Fraction of 
Iterations Factor 

Retained
TC1.F.M 200 100% 200 100%
TC1.F.SD 200 100% 185 93%
TC1.S.M 197 99% 200 100%
TC1.S.SD 200 100% 133 67%
TC2.F.M 199 100% 199 100%
TC2.F.SD 200 100% 147 74%
TC2.S.M 198 99% 187 94%
TC2.S.SD 172 86% 200 100%
TC3.F.M 101 51% 200 100%
TC3.F.SD 190 95% 197 99%
TC3.S.M 200 100% 188 94%
TC3.S.SD 200 100% 200 100%
Forest 200 100% 200 100%
Road Density 27 14% 200 100%
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Table 6.3.  ANOVA table of Final Coastal and Inland models.  Chi-square and P-values 
were based on Wald statistic. 

Final Coastal Model Final Inland Model 
Factor Chi-Square d.f. P Factor Chi-Square d.f. P
TC1F2010M 56.05 4 <.0001 TC1F495rM 44.24 4 <.0001
Nonlinear 25.81 3 <.0001 Nonlinear 14.5 3 0.0023
TC1F2010SD 36.41 4 <.0001 TC1F495rSD 17.47 4 0.0016
Nonlinear 36.05 3 <.0001 Nonlinear 5.69 3 0.1275
TC1S2010M 39.34 4 <.0001 TC1S495rM 49.91 4 <.0001
Nonlinear 35.36 3 <.0001 Nonlinear 25.71 3 <.0001
TC1S2010SD 95.55 4 <.0001 TC1S495rSD 10.78 4 0.0291
Nonlinear 10.6 3 0.0141 Nonlinear 4.15 3 0.2458
TC2F2010M 28.96 4 <.0001 TC2F495rM 39.46 4 <.0001
Nonlinear 11.15 3 0.0109 Nonlinear 9.01 3 0.0292
TC2F2010SD 51.66 4 <.0001 TC2F495rSD 12.02 4 0.0172
Nonlinear 20.38 3 0.0001 Nonlinear 11.59 3 0.0089
TC2S2010M 26.69 4 <.0001 TC2S495rM 22.87 4 0.0001
Nonlinear 20.37 3 0.0001 Nonlinear 5.36 3 0.1473
TC2S2010SD 17.48 4 0.0016 TC2S495rSD 52.8 4 <.0001
Nonlinear 15.35 3 0.0015 Nonlinear 19.79 3 0.0002
TC3F2010M 7.6 4 0.1073 TC3F495rM 51.18 4 <.0001
Nonlinear 2.08 3 0.5559 Nonlinear 18.19 3 0.0004
TC3F2010SD 21.61 4 0.0002 TC3F495rSD 28.77 4 <.0001
Nonlinear 2 3 0.5729 Nonlinear 21.88 3 0.0001
TC3S2010M 26.14 4 <.0001 TC3S495rM 21.51 4 0.0003
Nonlinear 25.84 3 <.0001 Nonlinear 10.88 3 0.0124
TC3S2010SD 48.99 4 <.0001 TC3S495rSD 34.17 4 <.0001
Nonlinear 7.85 3 0.0493 Nonlinear 22.45 3 0.0001
Forest 33.73 1 <.0001 Forest 51.25 1 <.0001
   Road Density 74.64 1 <.0001
TOTAL 
NONLINEAR 333.04 36 <.0001

TOTAL 
NONLINEAR 199.77 36 <.0001

TOTAL 648.54 49 <.0001 TOTAL 668 50 <.0001
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values) are underestimated.  This lack of fit does not however, diminish the utility of the 

model because the predicted values are used as a RSF representing the relative 

probability of use.  The Hosmer-Lemeshow global goodness-of-fit test provides no 

evidence of a lack of fit of the Inland Final model (P=0.51), calibration errors were small 

(mean absolute error=0.008, 0.9 quantile of absolute error=0.019), and the calibration 

plot fit well (Fig. 6.3), except for model predictions > 0.5 (the upper 0.9 quantile of 

predicted values), which were overestimated.  It is important to note that calibration was 

relatively consistent among bootstrap resample estimates for both the Coastal and Inland 

Final models as evidenced by the close agreement between the apparent and bias-

corrected calibration curves.   

Final model validation statistics based on the jackknife by bear procedure 

suggested that the discriminatory ability of both the Coastal and Inland Final models was 

acceptable (Table 6.4).  The Final Coastal model had a c index value (ROC) of 0.76, 

which is considered acceptable discrimination (Hosmer and Lemeshow 2000), and the 

Final Inland model had a c index value of 0.89, which is considered excellent 

discrimination.  Bootstrap validation results indicated over-optimism in Dxy of 0.025 for 

the Coastal model and 0.018 for Inland, which resulted in bias-corrected estimates of Dxy 

of 0.485 for Coastal and 0.755 for Inland, and translates to bias-corrected c index values 

of 0.74 and 0.88 for Coastal and Inland respectively.  The bias-corrected measures of 

discrimination provided a good estimate of what would be obtained by a future 

independent validation.  Briers score, another measure of discrimination, also suggested 

that the discriminatory ability of both study area models was acceptable with bias-

corrected estimates of 0.14 and 0.09 for the Coastal and Inland areas, respectively.    
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Figure 6.3.  Bootstrap calibration curve using a loess smoother examining the Final 
Coastal (a) and Inland (b) model fit, and a rug plot of the predicted value distribution.   

 



122 

Table 6.4.  Final model discrimination statistics and jackknife results. 

Coastal Study Area           
 n obs c Dxy R2 Brier  
Final Model 5903 0.76 0.512 0.22 0.14  

  Jackknife Model Discrimination

Comparison of 
Jackknife to 
Final Model 

Bear ID n. bear obs c Dxy R2 Brier ρ2 
001 63 0.76 0.52 0.23 0.14 0.91 
011 106 0.78 0.55 0.25 0.13 0.12 
012 69 0.76 0.51 0.22 0.13 0.73 
015 119 0.78 0.55 0.25 0.13 0.87 
021 52 0.76 0.52 0.23 0.14 0.94 
026 52 0.77 0.54 0.25 0.13 0.85 
039 100 0.75 0.50 0.21 0.14 0.86 
041 104 0.74 0.48 0.19 0.14 0.70 
043 93 0.74 0.49 0.19 0.14 0.56 
049 54 0.76 0.52 0.23 0.14 0.95 
050 67 0.75 0.50 0.22 0.14 0.70 
mean  0.76 0.52 0.22 0.13 0.74 
st. dev.  0.012 0.024 0.021 0.003 0.241 
   
Inland Study Area           
 n. obs c Dxy R2 Brier  
Final Model 4972 0.89 0.77 0.44 0.09  

  Jackknife Model Discrimination

Comparison of 
Jackknife to 
Final Model  

Bear ID n. bear obs c Dxy R2 Brier ρ2 
005 97 0.88 0.76 0.41 0.09 0.71 
009 58 0.89 0.78 0.44 0.09 0.67 
027 123 0.89 0.78 0.43 0.08 0.91 
029 103 0.89 0.77 0.43 0.08 0.58 
034 123 0.89 0.77 0.42 0.08 0.74 
036 76 0.90 0.80 0.46 0.08 0.61 
045 74 0.89 0.77 0.43 0.09 0.82 
mean  0.89 0.78 0.43 0.09 0.72 
st. dev.  0.006 0.011 0.016 0.002 0.116 
 
 

Bias-corrected R2 estimates of 0.20 and 0.41 for Coastal and Inland, respectively, 

suggested that the models fit the data reasonably well.   
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Results of the jackknife procedure indicated that training set models were 

relatively stable to the removal of individual bears, as evidenced by the low variance in 

training set model concordance (c) and Somer�s Dxy values.  Jackknife results also 

suggested that on average, the final model fits individual bears reasonably well (mean of 

jackknifed ρ2 = 0.74 for Coastal and 0.72 for Inland), and provided no evidence that the 

number of locations for individual bears influenced model discrimination or fit.  Through 

the jackknife process, I identified one bear, Coastal bear 011, that was using resources 

that differed from those selected by other bears.  Bear 011 was the only bear with the 

majority of locations along a boundary between fresh marsh and cypress swamp. 

Because I relied on rank based methods to assess final model discriminatory 

ability (i.e., c/Dxy), and the claim of Boyce et al. (2002) that ROC is unsuitable to assess 

discrimination for use/available designs, I examined whether those measures were 

compromised when estimated for the set of variable probability samples.  My findings 

were consistent with the assertion that rank-based indexes are insensitive to the 

prevalence of positive responses (Harrell 2001, p. 248; Table 6.5), and provide further 

evidence that model discrimination can be appropriately assessed using these measures 

on data collected under used/available designs. 

Extrapolate RSF Predictions Within Study Area Boundaries 

I mapped the Coastal RSF values, which I calculated for each used and available 

resource unit within the Coastal available resource buffer (Fig. 6.4) using the Final 

Coastal model, by binning the values into 20% quantiles (Fig. 6.5).  Similarly, I mapped 

the Inland available resource buffer (Fig. 6.6) and RSF values (Fig. 6.7).  
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Table 6.5.  Model discrimination measured by c (or Somer�s Dxy) for different sampling 
probabilities of used and available units.  The full dataset included 4,186 available units 
and 786 used units. 

Proportion of 
Used Sampled 

Proportion of Available 
Sampled Coastal c Inland c 

100 100 0.756 0.886 
20 100 0.780 0.893 
80 50 0.758 0.884 
100 10 0.767 0.897 

 

Compare RSF Results With Mahalanobis Distance Within Study Area Boundaries 

I calculated Mahalanobis distances for used locations in each study area and 

binned them into 20% quantiles.  I then assigned all used and available sample locations 

within the respective study areas into one of the used location quantiles and produced a 

map of the classified sample locations for each study area (Fig. 6.8 and 6.9).  Comparing 

Figure 6.5 with 6.8, and Figure 6.7 with 6.9, I noted obvious differences in the relative 

value of resources estimated by these two approaches in both study areas.  For example, 

some areas that were heavily used by bears, such as Weeks Island in the western most 

portion of the Coastal study area, were mapped as having high relative selection 

probability (high RSF values) as expected, but the same area fell into mixed Mahalanobis 

distance quantile intervals.  However, caution should be used when attempting to 

interpret differences between RSF and Mahalanobis distances because the two measures 

are not directly comparable.  The RSF quantiles are the relative probability of use, with 

the fraction of used locations increasing with increasing RSF quantiles.  This is not the  

 



125 

 
 

Figure 6.4.  Coastal study area available buffer boundary, outlined in red.  The background image is a 1992-1993 Landsat color 
composite (RGB � 7, 5, 3); image source: LOSCO Environmental Baseline Inventory Dataset 'Thematic Mapper Image of Louisiana, 
UTM15 NAD83, LOSCO (1999) [la_north & la_south]. 
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Figure 6.5.  Coastal study area resource selection function (RSF) predictions.  Increasing quantiles indicate increasing selection.  The 
background image is a 1992-1993 Landsat color composite (RGB � 7, 5, 3); image source: LOSCO Environmental Baseline Inventory 
Dataset 'Thematic Mapper Image of Louisiana, UTM15 NAD83, LOSCO (1999) [la_north & la_south]. 
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Figure 6.6.  Inland study area available buffer boundary, outlined in red.  The background image is a 1992-1993 Landsat color 
composite (RGB � 7, 5, 3); image source: LOSCO Environmental Baseline Inventory Dataset 'Thematic Mapper Image of Louisiana, 
UTM15 NAD83, LOSCO (1999) [la_north & la_south]. 
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Figure 6.7.  Inland study area resource selection function (RSF) predictions.  Increasing quantiles indicate increasing selection.  The 
background image is a 1992-1993 Landsat color composite (RGB � 7, 5, 3); image source: LOSCO Environmental Baseline Inventory 
Dataset 'Thematic Mapper Image of Louisiana, UTM15 NAD83, LOSCO (1999) [la_north & la_south]. 
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case with Mahalanobis distance, where increasing quantiles indicate increasing 

dissimilarity from the multivariate centroid of the predictor variables for used locations 

and each quantile contains 20% of the used locations.  To quantitatively assess the 

relationship between RSF estimates and Mahalanobis distance, I compared ranked RSF 

with ranked Mahalanobis distances for each area using Spearman�s ρ2.  In the Coastal 

study area, the rank correlation between RSF and Mahalanobis distances was weak 

(Spearman�s ρ2 = 0.28; Figure 6.10).  The rank correlation between RSF and 

Mahalanobis distances in the Inland study area was greater than in the Coastal study area, 

but still not strong (Spearman�s ρ2 = 0.58; Figure 6.11).   

Extrapolate RSF Predictions and Mahalanobis Distances Beyond Study Area 
Boundaries 
 

RSFs identify the relationship of used units relative to what is available to the 

subject species, and should not be applied to areas with a different set of available 

resources.  As one of my goals was to predict habitat selection throughout the 

extrapolation area, I used Mahalanobis distance to identify areas within the extrapolation 

area that were similar to each study area (Fig. 6.12 and 6.13).  As the similarity of a 

prospective area to the study area decreases (increasing Mahalanobis distance), the 

applicability of the RSF developed to the prospective area decreases.  Based on 

Mahalanobis distances of study area available resources, very little of the extrapolation 

area was similar to the Coastal area, and thus the applicability of the Coastal RSF model 

predictions (Figure 6.14) outside of the Coastal study area was limited.  However, large 

portions of the extrapolation area were very similar to the Inland study area.  Thus, Inland 

RSF model predictions (Figure 6.15) may be applicable to those areas.  An example of 
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Figure 6.8.  Coastal study area Mahalanobis distances based on Coastal used locations.  Increasing quantiles indicate decreasing 
similarity to used locations.  The background image is a 1992-1993 Landsat color composite (RGB � 7, 5, 3); image source: LOSCO 
Environmental Baseline Inventory Dataset 'Thematic Mapper Image of Louisiana, UTM15 NAD83, LOSCO (1999) [la_north & 
la_south]. 
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Figure 6.9.  Inland study area Mahalanobis distances based on Inland used locations.  Increasing quantiles indicate decreasing 
similarity to used locations.  The background image is a 1992-1993 Landsat color composite (RGB � 7, 5, 3); image source: LOSCO 
Environmental Baseline Inventory Dataset 'Thematic Mapper Image of Louisiana, UTM15 NAD83, LOSCO (1999) [la_north & 
la_south].    
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Figure 6.10.  Ranked RSF versus ranked Mahalanobis distances for the Coastal study 
area, with a loess line (red line).  The expected relationship is high ranked RSF (high 
probability of use) would have low Mahalanobis distances (similar to used locations). 
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Figure 6.11.  Ranked RSF versus ranked Mahalanobis distances for the Inland study area, 
with a loess line (red line).  The expected relationship is high ranked RSF (high 
probability of use) would have low Mahalanobis distances (similar to used locations). 
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Figure 6.12.  Extrapolation area Mahalanobis distances based on Coastal available locations.  Increasing quantiles indicate decreasing 
similarity to available locations.  The background image is a 1992-1993 Landsat color composite (RGB � 7, 5, 3); image source: 
LOSCO Environmental Baseline Inventory Dataset 'Thematic Mapper Image of Louisiana, UTM15 NAD83, LOSCO (1999) [la_north 
& la_south]. 
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Figure 6.13.  Extrapolation area Mahalanobis distances based on Inland available locations.  Increasing quantiles indicate decreasing 
similarity to available locations.  The background image is a 1992-1993 Landsat color composite (RGB � 7, 5, 3); image source: 
LOSCO Environmental Baseline Inventory Dataset 'Thematic Mapper Image of Louisiana, UTM15 NAD83, LOSCO (1999) [la_north 
& la_south]. 
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Figure 6.14.  Extrapolation area resource selection function (RSF) predictions from Final Coastal model.  Increasing quantiles indicate 
increasing selection.  The background image is a 1992-1993 Landsat color composite (RGB � 7, 5, 3); image source: LOSCO 
Environmental Baseline Inventory Dataset 'Thematic Mapper Image of Louisiana, UTM15 NAD83, LOSCO (1999) [la_north & 
la_south].   
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Figure 6.15.  Extrapolation area resource selection function (RSF) predictions from Final Inland model.  Increasing quantiles indicate 
increasing selection.  The background image is a 1992-1993 Landsat color composite (RGB � 7, 5, 3); image source: LOSCO 
Environmental Baseline Inventory Dataset 'Thematic Mapper Image of Louisiana, UTM15 NAD83, LOSCO (1999) [la_north & 
la_south].     
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the use of this model is a more careful examination an area known as three rivers 

(including Three Rivers, Grassy Lake, and Red Rivers Wildlife Management Areas) (Fig 

6.16 and 6.17), which is of particular interest to agencies committing resources to the 

repatriation of bears.  

DISCUSSION  

Rigorous assessment of model calibration, discrimination and validation has been 

recognized as a necessary step that must be completed before habitat models are used for 

management decisions.  I outlined the issues associated with assessing calibration, 

discrimination, and validation on used/available data, and provided a rational for using 

proven methods that make use of standard logistic regression model predictions rather 

than w(x) (based on eq. 6.3).  Although measures of calibration may be compromised as a 

result of used/available sampling designs, calibration curves were useful for assessing the 

magnitude and potential consequences of any lack-of-fit.  Because I specified a set of a 

priori candidate models and based model selection on AIC, there were four possible 

sources for any lack-of-fit: failure to include an unknown but important predictor 

variable, failure to specify an unknown but important interaction, over-fitting, or failure 

of the assumption of linearity of the logit.  I incorporated steps to avoid over-fitting and 

the assumption of linearity of the logit into the modeling process, so I was assured of 

selecting the model with the best fit to the data from my a priori universe of �reasonable� 

models by selecting the model with the lowest AIC.   

I agree with Boyce et al. (2002) that methods related to classification tables (e.g., 

confusion matrices and Kappa statistics) are flawed, but the flaws in the use of those 

methods apply equally to the typical logistic regression situation based on used/unused, 
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Figure 6.16.  Mahalanobis distances based on Inland available locations to Three Rivers, Grassy Lake, and Red River Wildlife 
Management Areas (WMA boundaries in black).  Increasing quantiles indicate decreasing similarity to available locations.  The 
background image is a 1992-1993 Landsat color composite (RGB � 7, 5, 3); image source: LOSCO Environmental Baseline Inventory 
Dataset 'Thematic Mapper Image of Louisiana, UTM15 NAD83, LOSCO (1999) [la_north & la_south]. 
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Figure 6.17.  Resource selection function (RSF) predictions from Final Inland model to Three Rivers, Grassy Lake, and Red River 
Wildlife Management Areas (WMA boundaries in black).  Increasing quantiles indicate increasing selection.  The background image 
is a 1992-1993 Landsat color composite (RGB � 7, 5, 3); image source: LOSCO Environmental Baseline Inventory Dataset 'Thematic 
Mapper Image of Louisiana, UTM15 NAD83, LOSCO (1999) [la_north & la_south].     
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or other mutually exclusive dichotomous data (Hosmer and Lemeshow 2000, Harrell 

2001).  In the case of used/available models, Boyce et al. (2002) failed to distinguish the 

two aspects for evaluating logistic regression models, calibration and discrimination.  

Poorly fitting models (poor calibration) may still have good discrimination (Hosmer and 

Lemeshow 2000, pp. 162-163).  Accordingly, models should be assessed by considering 

both calibration and discrimination.  I was unable to determine whether the Boyce test is 

actually measuring calibration, discrimination, or a combination of both. 

Theoretically, the discrimination measures c/Dxy should be stable regardless of the 

number of used and available points included in the sample when ranked based measures 

of resource selection are used.  My results were consistent with that theory.  Thus, 

contrary to the claims of Boyce et al. (2002), I found no reason to doubt the applicability 

of c/Dxy to assess discrimination for used/available designs.  Accordingly, I used 

bootstrap validation procedures, which are superior to other validation methods (Efron 

1983, Verbyla and Litvaitis 1989) and should be used to validate RSF models based on 

logistic regression for either used/unused or used/available designs, for my RSF models.  

The discrimination of the Final Coastal and Inland RSF models was good and excellent, 

respectively, indicating that the models readily discriminated between used and available 

sample points, and that the models were robust to changes in sample composition.  

However, the bootstrapping validation procedure provided no insight into the variability 

of model performance for individual animals. 

The difficulty of incorporating animals as sampling units in the analysis, and thus 

to assess the extent of variability in individual resource selection (Pendleton et al. 1998), 

has been one of the criticisms of using logistic regression to develop RSFs..  Analyses 
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involving more than one animal must either allow for among-individual differences, 

assume that animals select resources similarly, or draw inferences about average selection 

at the population level (Aebischer et al. 1993, Alldredge et al. 1998).   I wanted to 

develop models of average selection at the population level, so my results were not 

compromised by my inability to model individual bears.  However, based on MANOVA 

results presented in Chapter 3, differences among bears was a large source of explained 

variability.  Consequently, the Final Coastal and Inland models would be expected to 

exhibit superior validation on a random sample of used and unused locations, as in the 

case of the bootstrap validation, than on samples that excluded entire portions of a study 

area (Manly pers. com.), or individual bears.  The jackknife procedure provided a rational 

for partitioning the study area into discrete spatial units for validation, as each bear uses a 

different spatial area within the study area, and incorporated differences in individual 

selection into the validation process.  Jackknifing on bears also allowed me to estimate 

how well the models would be expected to perform on a new bear from the study area, to 

gain insight into the range of variability in habitat selection among individual bears 

within each study area, and gauge the relative influence on the model of bears with the 

most used locations in each study area.  In cases where animals are unequally sampled, 

pooling data among animals could strongly affect results if all individuals did not make 

similar selections (White and Garrot 1990, Garshelis 2000).   

Aebischer et al. (1993) expressed an additional concern resulting from the 

inability to include individual animals in the model.  They suggested that pooling data 

among animals, as was the case in this study, constitutes pseudo-replication (Hurlbert 

1984).  However, in this study, predictor variables used to develop RSFs typically varied 
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as much or more among relocations within bears than among bears within areas, 

suggesting that concerns for pseudo-replication in this study would be overstated.   

Mahalanobis distance has been proposed as an alternative to logistic regression to 

map resource selection using GIS.  Advocates of this method argue that it avoids the 

problems associated with defining available resources and that it is easy to implement in 

GIS.  As typically used to model habitat selection, Mahalanobis distance is calculated for 

used locations to produce a map of habitat similarity, with decreasing similarity assumed 

to infer decreasing probability of use.  However, the essential component inherent in the 

RSF, but missing from Mahalanobis distance is the ability to rank resource units by their 

relative probability of use (Manly et al. 2002).  For Mahalanobis distance to be 

comparable to RSF, similarity must correlate with probability of use.  To fulfill this 

requirement, the probability that a particular habitat configuration will be used must be a 

function of statistical distance from the multivariate centroid of used locations, with equal 

statistical distances having equal probabilities of use.  This assumption would only be 

valid in rare cases where 1) the matrix of predictor variables are multivariate normal, 2) 

the multivariate centroids represent a singular optimal resource configuration, and 3) the 

probability of use diminishes as a symmetrical parabolic function, at least along the major 

axes of the multivariate space, with increasing distance from the centroid (i.e., the 

probability of use decreasing equally with equal statistical distance).  It is unlikely that 

these three conditions will be met with real data.  Mahalanobis distance was only weakly 

correlated with RSF values in the more diverse habitats of the Coastal study area.  The 

correlations in the Inland area were stronger than those in the Coastal area, but still 

should only be considered moderate.  Although many of the predictor variables in my 
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study were approximately multivariate normal, roughly meeting condition 1, conditions 2 

and 3 were clearly not met.  In a similar example, Knick and Rotenberry (1998), 

examined the potential of using Mahalanobis distance to predict habitat quality in a 

simulated landscape, and found that any deviation from the original habitat mean vector, 

even in a biological meaningful direction such as habitat improvement, resulted in a 

greater Mahalanobis distance, due to the failure of condition 3.  In that case, an increase 

in shrublands was expected to result in an increase in jackrabbit habitat suitability but 

because habitat suitability increases logistically rather than parabolically, Mahalanobis 

distance failed. 

Although resource selection studies are conducted for a variety of reasons (Manly 

et al. 1993), the overall goal of most of these studies is to identify those habitat features 

that are at a minimum correlated or indicative of what is �prized� by the species.  RSFs 

are clearly superior to Mahalanobis distance in this regard.  Additionally, statistically 

sound model building process exists to develop RSFs using logistic regression.  In this 

chapter, I developed Mahalanobis distances based on the results of variables selected by 

the logistic regression modeling process, but most authors that have used Mahalanobis 

distance have relied on a combination of statistical procedures which have many of the 

shortcomings discussed in Chapter 4.   

Availability matters.  Advocates of Mahalanobis distance attempt to escape this 

reality, but use must be judged relative to availability.  I suggest that a better use of 

Mahalanobis distance is to assess the similarity of available habitats to assess where RSF 

models might reasonably be applied outside of the areas in which they are developed.  

Using this process, a RSF could be developed using a statistically sound model building 



144 

process, Mahalanobis distance calculated for those variables from the set of available 

locations and then extrapolated to other areas of interest, and RSF predictions extended to 

those areas with similar available resources.  This process provides a rationale to select 

areas where the RSF can be applied, and where applicable, provides a metric with the 

desired properties of increasing values correlated with increasing probability of use.  

Although violations of multivariate normality would limit the applicability of 

Mahalanobis distance to assess similarity of available habitats, the other two assumptions 

required to interpret Mahalanobis distance based on used locations as a RSF do not apply.   

In addition to the more process-based considerations that I have addressed, the 

results of this study have the potential for practical application to address a number of 

management questions for black bears in Louisiana.  Within each of the study areas, RSF 

model predictions quantify the relative value of the landscape for bears.  However, it is 

important to recognize that these results are based on habitat measures taken in 1993, and 

should only be applied to areas that are relatively unchanged since that time.  This same 

caveat applies to predictions of habitat similarity and RSF beyond the study area 

boundaries, which may be useful to identify blocks of potentially suitable but unoccupied 

habitat, potential corridors, and lands for acquisition of conservation easements.  The 

image processing methods that I used should allow application of the RSF models 

developed from 1993 data to similarly processed current image data, although this 

process has not been tested.   
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A1.  At-satellite reflectance tasseled cap 1, brightness, based on data collected April 1993 in the Coastal study area. 
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A2.  At-satellite reflectance tasseled cap 1, brightness, based on data collected September 1993 in the Coastal study area. 
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A3.  At-satellite reflectance tasseled cap 2, greenness, based on data collected April 1993 in the Coastal study area. 
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A4.  At-satellite reflectance tasseled cap 2, greenness, based on data collected September 1993 in the Coastal study area. 
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A5.  At-satellite reflectance tasseled cap 3, wetness, based on data collected April 1993 in the Coastal study area. 
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A6.  At-satellite reflectance tasseled cap 3, wetness, based on data collected September 1993 in the Coastal study area. 
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A7.  At-satellite reflectance tasseled cap 1, brightness, based on data collected April 1993 in the Inland study area. 
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A8.  At-satellite reflectance tasseled cap 1, brightness, based on data collected September 1993 in the Inland study area. 
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A9.  At-satellite reflectance tasseled cap 2, greenness, based on data collected April 1993 in the Inland study area. 
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A10.  At-satellite reflectance tasseled cap 2, greenness, based on data collected September 1993 in the Inland study area. 
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A11.  At-satellite reflectance tasseled cap 3, wetness, based on data collected April 1993 in the Inland study area. 
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A12.  At-satellite reflectance tasseled cap 3, wetness, based on data collected September 1993 in the Inland study area. 
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