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ABSTRACT   

Gray Wolves (Canis lupus) are a focal species for rare Temperate Rainforests located on 

the central coast of British Columbia, Canada.  Characteristics of coastal wolf habitat are 

unknown.  Wolf presence/absence data and spatial, physical and biological attributes of 

the coastal landscape were compiled in GIS and analysed with logistic regression. 

Akaike’s Information Criterion was used to select the best model describing wolf habitat.  

Island area and shape positively influenced wolf presence while distance to mainland, 

inter-island distance, and logged area negatively predicted wolf presence.  Sub-island 

analysis showed positive effects on wolf occurrence from deer density and range of forest 

age, and a negative effect from mean forest age.  Models had high classification accuracy 

evaluated with jackknife validation and Relative Operating Characteristic (ROC) curves.  

Identification of factors comprising coastal wolf habitat enhance understanding of the 

coastal ecosystem and are useful for conservation management and planning. 
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1.0 INTRODUCTION AND RESEARCH OBJECTIVES 

The Central Pacific Coast of British Columbia, Canada is a unique area supporting 

Coastal Temperate Rainforest, which is an extremely rare ecosystem worldwide.  The 

area is comprised of an island archipelago and is home to a diverse array of species.  The 

landscape is nearly pristine because of minimal human development: this is exceedingly 

rare in the world today.  Although biologically diverse, this area remains understudied 

due to its remoteness.  Extensive logging proposals have prompted researchers to focus 

their efforts on understanding the coastal ecosystem to mitigate the negative effects of 

these planned disturbances.  Species of importance to the coastal ecosystem have been 

identified as bear, wolf and salmon. 

 

Research conducted to date on coastal wolves includes their general distribution 

(Darimont and Paquet 2002), interactions with salmon (Darimont et al. 2003) and 

foraging behaviour (Darimont et al. 2004).  The relationship of wolves and coastal 

habitat, including physical, biological and spatial attributes is however, unknown.  

Identifying factors that affect wolf presence will enhance existing coastal wolf literature 

and provide insight into how wolves interact with a naturally fragmented landscape.  The 

ability to predict areas of habitat importance for wolves will also assist in conservation 

planning. 

 

Geographic Information Systems (GIS) are often used to model species habitat 

relationships as they can store and organize large amounts of data.  GIS enables 

straightforward extraction of spatial landscape attributes, which often are difficult to 
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collect in the field.  More importantly, GIS can be used to create predictive maps of 

species occurrence for conservation management and planning.   

 

The objectives of this thesis were to: 

1) Incorporate empirical and spatial data in a GIS to model wolf use of the coastal 

landscape;  

2) Identify primary habitat factors that determine wolf presence and distribution; and  

3) Create and validate a predictive model of habitat use by wolves, to assist in 

conservation initiatives. 

 

This thesis is organized in the following manner:  Chapter 2 outlines characteristics of the 

coastal study area in British Columbia, Canada. Chapter 3 discusses application of GIS to 

habitat modelling and statistical techniques, and Chapter 4 examines wolf life history. 

Methods and Results comprise Chapters 5 and 6 respectively, and Chapter 7 discusses the 

implications of the results.  Chapter 8 summarizes the important conclusions from this 

research.   

 

2.0 STUDY AREA 

Coastal Temperate Rainforest is an extremely rare habitat comprising only 2-3% of the 

world’s temperate forests (Ecotrust 1995).  Displaying the unique interaction of terrestrial 

and marine ecosystems, the habitat is characterised by the presence of ocean, coastal 

mountains, cool summers and high rainfall.   They are extremely productive forests, 

storing between 500 and 2000 metric tons of organic matter (Ecotrust 1995). Historically, 
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Coastal Temperate Rainforests extended from California north to Alaska, however only 

56% of this range remains undeveloped.  The Central Pacific Coast of British Columbia 

(BC), Canada, supports the most extensive remaining habitat of this type left in the world 

(MacDonald and Cook 1996).   Combined with southeastern Alaska, the area supports the 

highest endemic species concentration for the Temperate Rainforest region of Pacific 

North America (Cook and MacDonald 2001). 

 

The island archipelago ranging from the northern tip of Vancouver Island (51° 46' N, 

127° 53' W) to Prince Rupert, BC (55° 37’N, 129° 48’W) forms 29 700 km2 of study area 

of which 19 300 km2 is land (Darimont and Paquet 2000) (Figure 1).  Coastal Mountains 

bind the area to the east and the Pacific Ocean to the west.  Temperate and wet climate 

dominates with most areas receiving more than 350cm of annual precipitation. Prominent 

tree species include Western Red Cedar (Thuja plicata), Western Hemlock (Tsuga 

heterophylla), Amabilis Fir (Abies amabilis) and Sitka Spruce (Picea sitchensis) 

(Darimont and Paquet 2000).   

 

Access to this nearly roadless study area is limited to boat and plane travel.  Development 

is minimal; few human settlements exist and consist primarily of First Nations people.  

The remoteness of this region has precluded major habitat disturbance however, mainland 

and island logging and salmon/shellfish farming exist.  More extensive logging and 

oil/gas exploration are proposed for the immediate future.  The threat of these 

developments has initiated a concerted effort to understand better the structure and 

function of the coastal system, so that the effects of further disturbance may be mitigated.  
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Ecologically, the region is understudied as it is remote and logistically challenging, 

however, bear (Ursus arctos), salmon (Oncorhynchus spp.) and wolf (Canis lupus) have 

been identified as focal species.  Most focal species research conducted to date has 

studied coastal wolves.  
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Figure 1:  Wolf study area: Central Pacific Coast, British Columbia, Canada.  Islands 
included in analysis are shown outlined in pink. 
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2.1 COASTAL FOCAL SPECIES:  WOLF 

Often conservation of habitat applies an ecosystem approach whereby the entire 

ecosystem is conserved to maintain system structure and function (Poiani et al. 2000).  

One or more focal species are chosen to represent the ecosystem and provide a means to 

understand the structure and function of a much more complex community (Zacharias 

and Roff 2001).  Four main types of focal species exist:  indicator, keystone, umbrella 

and flagship (Simberloff 1998).  Indicator species are sensitive to environmental change 

and gauge the health or quality of an ecosystem (Landres et al. 1988).  Keystone species 

have a disproportionate effect in relation to their abundance and are integral to ecosystem 

function (Miller et al. 1998).  Umbrella species are large ranging mammals and 

conservation of their habitat protects other animals within their range (Miller et al. 1998).  

Flagships are charismatic species used to gain public support for conservation issues 

(Zacharias and Roff 2001).   Wolves are suitable focal species for the coastal study area 

as they display indicator, keystone, umbrella and to a limited degree, flagship species’ 

attributes. 

 

Large carnivores often are selected as indicators of ecosystem integrity.  Because of 

shared life history characteristics including low population density, low fecundity, habitat 

specialization, and limited dispersal ability, large carnivores are considered sensitive to 

human modifications of the landscape (Carroll et al. 2000).  Wolves in particular, are 

sensitive to human disturbance and avoid developed and high road-density areas (Fritts 

and Carbyn 1995, Mladenoff et al. 1995, Weaver et al. 1996, Theuerkauf et al. 2003).  

Coastal wolves display keystone species attributes as top predators exerting prey 
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population control, which indirectly affects system biodiversity (Terbough et al 1999).  

Coastal wolves feed primarily on Black-tailed deer; if wolves were removed from the 

system, escalating deer populations could result in the exclusion of deer competitors 

vying for the same resources (Darimont and Paquet 2000).   Exclusion of a species can 

alter species assemblage and richness, and alter ecosystem structure.  Coastal wolves are 

also keystone species because of their role in nutrient cycling.   Wolves only ingest the 

head of spawning salmon leaving the remaining carcass on the forest floor (Darimont and 

Paquet 2000).  Salmon remains are rich in phosphorus and nitrogen, and essential to the 

nutrient-deprived coastal system (Darimont et al. 2003). 

 

Wolves are good umbrella focal species because they are good dispersers (Weaver et al. 

1996) and use large home ranges (Carroll et al. 2000).  Home range size varies from 500 

to 2000 km2 for Rocky Mountain wolves (Carroll et al. 2000).  Protection of wolf habitat 

would protect habitat for a multitude of other species with smaller area requirements.  

Coastal wolves also play a limited role as flagship species; wolves are of conservation 

concern worldwide and portray an image of Canada’s expansive wilderness.  

 

3.0 GIS AND HABITAT MODELLING 

3.1 GIS HABITAT MODELLING IN ECOLOGICAL RESEARCH 

To comprehend fully how a focal species interacts with its environment, habitat 

requirements must be identified in relation to landscape configuration. GIS and remote 

sensing (RS) applications are extremely useful tools to examine this relationship, and 

allow extraction of spatial attributes such as island area and isolation.  Physical habitat 
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characteristics that are costly and time-consuming to collect in the field, can be easily 

extracted from RS imagery in conjunction with GIS.  Landscape attributes can be 

combined with empirical data relating to species distribution and abundance, and 

modelled using GIS applications.   

 

GIS can analyse systems that are very complex or difficult to study in a natural setting 

(Oreskes 2000).  A greater advantage of GIS however, is the ability to make predictions.  

Models of species distribution and abundance can be used to delineate areas of 

conservation concern, and to identify and predict regions of biodiversity importance 

(Prasad et al. 1998, Debinski et al. 1999, Lenton et al. 2000).  GIS and RS technologies 

are extremely useful modelling tools for conservation planning (Poiani et al. 2000). Yet 

conservation decisions often are based on interpretations of incomplete data extracted 

using GIS (Funk et al. 1999).  Models are reflective of the quality of input data and 

should be interpreted with caution.  Errors made in the initial stages of field sampling, 

measuring, or classification of RS imagery, can propagate throughout the modelling 

process and reduce confidence in the final predictions. If predictive models are to be used 

for conservation decisions, assumptions, limitations, and sources of error or bias, should 

be clearly stated. 

  

3.1.1 Presence/Absence Habitat Models 

Despite limitations, GIS models that predict species presence are increasingly important 

tools for conservation and wildlife management (Pearce and Ferrier 2000).  Species 

presence/absence data usually are collected in the field using a GPS to mark presence or 
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absence locations.  These locations are directly transferred into GIS and used to extract 

corresponding habitat characteristics.  Statistical analysis can be run and a predictive map 

created from the final statistical model.  The predictive map shows probability of species 

occurrence throughout the study region based on the statistical model.  Presence/absence 

GIS modelling has been conducted on a multitude of species including birds (Shriner et 

al. 2002), reptiles (Raxworthy et al., 2003), and mammals (Woolf et al. 2001). 

 

3.2 LOGISTIC REGRESSION AND MODEL SELECTION 

3.2.1 Logistic Regression 

Dettmers et al. (2002) found logistic regression to be a more fully developed statistical 

technique for general wildlife-habitat modelling.   Logistic regression has advantages 

over linear and multiple regressions because it can accommodate dichotomous and 

categorical variables (Hosmer and Lemeshow 2000).  Ecological data often are recorded 

as classes (e.g. vegetation) and in presence/absence binary form (e.g. species presence).  

Moreover, prediction of regular regression models results in negative probabilities, 

whereas logistic regression generates values confined between 0 and 1.  Probabilities 

derived from logistic regression can be calculated as: 

Eq. 1  p = 1/[1 + exp(-1*(a + bX1 + cX2…))] 

where p is the probability of interest, a is the intercept, and b and c are coefficients for 

independent variables, X1 and X2 (Logan 2003).  Logistic regression is robust to 

violations of parametric assumptions (Trexler and Travis 1993) and does not assume 

normality of independent variables, although the power of analysis is increased with 

normality and linearity (Tabachnick and Fidell 2001).  Consequently, logistic regression 
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is well suited to analyse ecological data, which often does not adhere to assumptions 

required for parametric regressions.  

 

Logistic regression does however, maintain certain assumptions.  It assumes that the 

model is well-fitted to the logistic function which can be examined with the Hosmer-

Lemeshow chi-square test (Hosmer and Lemeshow 2000).  Values approaching 1 are 

considered a good fit.  Logistic regression also assumes the absence of multicollinearity 

amongst independent variables (Tabachnick and Fidell 2001).  Correlated variables can 

increase standard error and weaken the analysis.  Often correlations of 0.7 or greater are 

used as a cutoff to identify problem variables (Tabachnick and Fidell 2001).  Removal of 

one or more of the correlated variables will eliminate multicollinearity.  Assumptions of 

independent samples and removal of outliers also are necessary for logistic regression 

analysis.  In particular, logistic regression assumes that the ratio of samples to 

independent variables is sufficient.  Large parameter coefficients and standard errors, or 

complete failure of the model to derive a solution, may indicate that this assumption is 

violated (Hosmer and Lemeshow 2000, Tabachnick and Fidell 2001). For optimum 

confidence in analysis with logistic regression, data and assumptions should acquiesce.  

 

When the previous assumptions are met, GIS habitat models using logistic regression and 

presence/absence data allow effective modelling of habitat (Boyce and MacDonald 

1999).  In fact, analyses of presence/absence data using logistic regression are prevalent 

(Boyce et al. 2002) and have been applied to songbirds (Boyce et al. 2002), grizzly bear 

(Apps et al. 2004), lynx (Schadt et al. 2002), and wolves (Ciucci et al. 2003). 
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3.2.2 Model Selection and Akaike’s Information Criterion 

In the past, habitat modellers (and scientists in general) have used null hypothesis testing 

to determine if the relationship between a species and specific habitat characteristics was 

significant.  Traditional null hypothesis testing however, is rapidly being replaced with 

model selection techniques in ecology (Johnson and Omland 2004).  The main advantage 

of a model selection technique is the absence of a probability threshold (i.e. p-value).  

Null hypothesis testing requires definition of a significance (p) value to determine 

acceptance or rejection of the null hypothesis.  Selection of the p-value often is arbitrary 

(usually 0.05 or 0.01) and may not reflect biological significance of the phenomena being 

tested (Burnham and Anderson 2002).  Testing a null hypothesis also contributes little to 

the advancement of scientific information, because there is an expectation that it will be 

rejected.  Alternatively, model selection techniques do not require an acceptance 

threshold, but rather select a model from a suite of potential models, that best describes 

the process of interest.  Models can be ranked and weighted and those with similar 

weights can be averaged.  Model selection is particularly beneficial for complex systems 

(e.g. ecosystems) that are difficult to test experimentally (Johnson and Omland 2004).   

 

Model selection has philosophical differences to hypothesis testing.  It is based on 

scientific a priori  reasoning to develop a set of plausible candidate models that explain 

the process of interest.  A best approximating model for the observed data is then selected 

from the set of candidate models (Burnham and Anderson 2002).  Akaike’s Information 

Criterion (AIC) and Bayesian Information Criteria (BIC) are model selection methods 

used to determine the best model according to model fit and complexity.  However, the 
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strict assumptions of BIC that a true model exists, is present in the suite of models, and is 

equally as probable as the other candidate models before analysis, are often not met with 

empirical data (Johnson and Omland 2004).   

 

AIC derives a measure of model fit using maximum-likelihood theory and Kullback-

Leibler (K-L) information.  K-L distance is the relative distance of each model in the set 

from an approximation of reality (Burnham and Anderson 2002).  It is calculated as a 

negative loglikelihood (-2LL) score and actually measures the lack of fit of each model.  

Negative loglikelihood values between models in the set can be compared to determine 

which one best approximates the true process.  AIC not only incorporates model fit when 

selecting a best model, but also accounts for model complexity. The Principle of 

Parsimony (i.e. Ocham’s razor) is the balance of statistical bias and variance (Burnham 

and Anderson 2002).  Models with too few parameters have highly biased parameter 

estimates and can underfit the data, leaving out important predicting factors.  Models 

with too many parameters have high variance in parameter estimates and can overfit the 

data, which may inflate the importance of spurious factors (Burnham and Anderson 2002, 

Johnson and Omland 2004).  In contrast, parsimonious models balance bias with 

variance. AIC applies the principle of parsimony by penalizing models with greater 

complexity (more parameters).  AIC accounts for model fit and complexity according to: 

 Eq. 2  AIC = -2LL + 2K 

where -2LL is the loglikelihood (representing lack of model fit), and K is the number of 

model parameters representing model complexity (Burnham and Anderson 2002).  The 

best model will be that which minimizes K-L relative distance while maintaining 
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adequate complexity, and possesses the lowest AIC value.  AIC however, can perform 

poorly if the number of parameters is too large relative to sample size, n.  Specifically, 

when the ratio of sample size to parameters is less than 40, a corrected form of AIC 

(AICc) is used that accounts for sample size.  This equation is calculated as: 

Eq 3.   AICc = AIC + 2K(K+1)  (Burnham and Anderson 2002) 
     n -  K - 1 

The best model from the candidate set is selected using Akaike weights.  Weight (wi) is 

the amount of evidence that a model is the best approximation of truth. To select the best 

model, AIC assumes that one of the models is a true description of the process (Burnham 

and Anderson 2002).  Akaike weights are calculated for each model using the difference 

in AICc value between the lowest AICc model and each individual model.  If a model is 

removed from the set, weights must be recalculated.  The model with the greatest weight 

is the best approximating model. 

 

The strength of AIC analysis lies in the comparison of several competing hypotheses and 

its ability to select the best model for the observed data.  This strength assumes selection 

of candidate models is based on sound biologically-relevant reasoning (Burnham and 

Anderson 2002).  A balance must be struck between having too few and too many 

models.  Too few models may result in failure to include a potentially viable model and 

can result in a misleading outcome (Johnson and Omland 2004).  Inclusion of every 

possible explanatory model is analogous to data dredging and counter to the philosophy 

of a priori  reasoning (Burnham and Anderson 2002).   
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Although well developed in other fields (e.g. economics), AIC and model selection 

analysis is a relatively new approach to habitat modelling and represents a paradigm shift 

in ecological research.  Model selection techniques have been used primarily to model 

habitat for birds (Boyce et al. 2002, Dettmers et al. 2002, Young and Hutto 2002) and 

less frequently in mammal research (Carroll et al. 1999, Apps et al. 2004).  Model 

selection methods are however, expected to become more prevalent as time progresses. 

 

3.3 MODEL VALIDATION 

Model selection techniques like AIC may select the best model for the data but offer no 

insight into predictive accuracy.  Model evaluation is an important step in model 

development (Pearce and Ferrier 2000) but often is not applied.  A good predictive model 

will be reliable and accurately predict the probability of species presence.  It also will be 

discriminatory, correctly differentiating between species presence and absence 

irrespective of model reliability (Verbyla and Litvaitis 1989). Testing the model with 

independently collected data (not used to compile the model) is unquestionably the best 

way to determine model classification accuracy (Verbyla and Litvaitis 1989, Fielding and 

Bell 1997, Pearce and Ferrier 2000, Fielding 2002, and others).  However, testing with 

independent data is not always possible due to the cost and time involved in data 

acquisition.  

 

Several model validation methods exist that do not require independent data.  These 

involve resampling of the original dataset and include resubstitution, cross-validation, 

jackknife and bootstrap methods (Fielding and Bell 1997).  Resubstitution is simply 
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testing the model with the data it was derived from.  However, this method is biased in 

prediction success and tends to overfit the model (Fielding 2002).  Cross-validation is the 

division of the dataset into 2 subsets; one to compile the model and the other to test it.  

This method results in loss of degrees of freedom reducing model significance (Verbyla 

and Litvaitis 1989) and can be difficult to execute with a small sample size.  Jackknife 

validation is much more precise than the previous two methods and tests the model 

through resampling without replacement: a single data record is withheld from the sample 

(of size n) and a model is then compiled with the remaining (n-1) dataset.  The withheld 

record is then used to test the model.  This process is repeated for the entire sample 

resulting in n prediction and test values (Fielding and Bell 1997).  Bootstrapping is 

similar to jackknifing but entails resampling with replacement and often is repeated 200-

1000 times.  Although bootstrapping is the most precise method of resampling validation, 

it requires the most computation time (Verbyla and Litvaitis 1989).   

 

3.4 MODEL EVALUATION 

Misinterpretation of the predictive accuracy of a model could have devastating effects on 

a species, particularly if the model errs in predicting absence when a species is actually 

present (Fielding 2002).   To illustrate, traditional model evaluation is calculated using a 

2 X 2 confusion matrix, where species presence or absence is determined according to a 

probability threshold set by the researcher.  Thus, if probabilities for a species presence 

range from 0 to 1, a species can be defined as present when the probability is 0.7 or 

greater, and absent when it is less than 0.7.  The value of 0.7 is set by the researcher and 

is subjective. Four values are calculated in a confusion matrix:  sensitivity, specificity, 
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false positive fraction and false negative fraction (Pearce and Ferrier 2000).   Sensitivity 

is the percent of positive predictions that were actually present, and specificity is the 

percent of absence predictions that were actually absent.  False positive and false 

negative fractions are calculated as the percent of observed values that were not 

accurately predicted by the model, and represent commission and omission error 

respectively.  Commission error (false positive), occurs when a species is not present in a 

landscape but is predicted to be present by the model. Omission error, (false negative), 

occurs when a species is present in the landscape but not predicted by the model 

(Schaefer and Krohn 2002).  Omission errors are more troublesome from a conservation 

perspective because they remain constant and become more precise with increased 

sample size.  Commission error generally decreases with increased sample size (Karl et 

al. 2002).  Thus, omission and commission errors can be weighted to reflect the severity 

of model mis-prediction by adjusting the probability threshold.  Furthermore, if the 

dataset includes a small number of species presence points, overall model accuracy can 

be high, as it is based primarily on a high percent of correctly identified absences.  The 

percent of correct and overall classifications is dependent on the presence threshold set 

by the researcher.   Although this threshold can be adjusted to reflect species rarity and 

the severity of omission/commission error, it is still arbitrary in nature (Pearce and Ferrier 

2000) and can bias the accuracy measure (Fielding and Bell 1997).   

 

The use of Relative Operating Characteristic (ROC) curves eliminates the need to define 

a presence threshold and is a viable alternative to confusion matrices to evaluate model 

accuracy.  ROC curves depict model discrimination between presence and absence over 
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the entire range of probability thresholds. Specifically, they plot model sensitivity (the 

proportion of true predictions that are present) on the y-axis against the false positive 

fraction values (1 - specificity) on the x-axis (Fielding 2002).   A plot that results in a 45 

degree line indicates the model has no discrimination ability and is no better than chance 

at predicting presence and absence.  Discrimination ability is represented by AUC, the 

area under a ROC curve.  An area of 1 represents perfect discrimination, or high 

classification accuracy.  An area of 0.5 represents no discrimination ability and is 

represented by the 45 degree line (Fielding and Bell 1997).  AUC is used as an index of 

model performance and allows comparison between models (Pearce and Ferrier 2000).  

ROC curves offer a viable technique to test model classification accuracy without the 

ambiguity of a probability threshold, as is required with traditional confusion matrices.   

 

3.5 GIS HABITAT MODELLING OF COASTAL WOLVES IN THE STUDY AREA 

As discussed previously, GIS, logistic regression and AIC are extremely useful analytical 

tools to model and predict species presence.  Habitat associations for coastal wolves are 

unknown and these methods allow exploration of habitat factors affecting coastal wolf 

presence.  However, a priori  hypotheses of what constitutes wolf habitat are required for 

AIC.  Limited research is available on coastal wolves, yet there is an abundance of 

literature available on the ecology and life history of wolves located elsewhere in the 

world.  Wolf life history traits can provide general insight into coastal wolf ecology.  

When combined with existing research on coastal wolves, life history characteristics can 

allow derivation of well-informed hypotheses describing coastal wolf habitat. 
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4.0 GRAY WOLF (Canis lupus) LIFE HISTORY 

4.1 NATURAL HISTORY 

Gray Wolf (Canis lupus) is the largest species of the carnivorous dog family, Canidae, 

which includes such mammals as foxes, coyotes and dogs.  Wolves have thick black, 

gray, tan or white fur, are between 1.27 and 1.64m in length, and weigh between 20 and 

80 kg (Paquet and Carbyn 2003).  Wolves located in the coastal study area differ from 

interior wolves in size and fur colour; they are generally smaller and often exhibit a 

reddish-tinge coloured fur (Figure 2) (Darimont and Paquet 2000).   Although all wolves 

are good swimmers (Mech 1970), coastal wolves are extremely adept at swimming and 

are able to swim distances as far as 13 km between islands (Darimont and Paquet 2002). 

 

Figure 2:  Coastal wolves (by permission, Raincoast Conservation Society). 
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4.2 DISTRIBUTION 

In North America, wolves were historically found in all habitats north of approximately 

20° N latitude (Paquet and Carbyn 2003).  Human persecution through trapping, hunting, 

poison, predator-control programs, and excessive prey hunting, has extirpated wolves 

from many habitats in North America.  Wolves have been completely extirpated from the 

USA although reintroduction efforts in Yellowstone Park and surrounding areas have 

recolonized their populations (Smith et al. 2004).  In Canada, wolves have been 

extirpated from southern BC, much of the prairies, southern Ontario and the Atlantic 

provinces (Theberge 1991).  Canada however, continues to support the most widespread, 

unexploited population of wolves in the world, second only to the former Soviet Union 

where human persecution of wolves still exists (Theberge 1991).  Coastal wolves once 

occupied the entire temperate rainforest range extending from California to Alaska.  They 

are now isolated to central and northern BC and Alaska as a result of forestry practices 

and human development.  Population of coastal wolves in the study area is estimated at 

325-378 resident individuals (Darimont and Paquet 2000).   

 

4.3 SOCIAL STRUCTURE AND REPRODUCTION  

Wolves are social animals, hunting and living in packs that defend territories.  Alaskan 

coastal wolf pack size is estimated at 6.4 individuals (Person 2000) and is expected to be 

the same in the study area (Darimont and Paquet 2000).  Packs are family-based 

consisting of a male, female, newborn and older pups, and occasionally adults from other 

packs (Mech 1970).  The male and female parents guide the pack using a ‘division-of-

labour’ structure where the female is responsible for the care and defense of pups, and the 
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male for hunting and providing food (Mech 1999).  Wolves breed once a year between 

January and April at 2 to 3 years of age depending on pack structure (Mech 1970, 

Weaver et al 1996).   Average litter size is 6 but ranges from 1 to 11 (Paquet and Carbyn 

2003).  Average litter size for coastal wolves is estimated at 3.3 pups (Darimont and 

Paquet 2000).  Alaskan coastal wolves den under tree roots or fallen large logs in low 

elevation, old-growth forest near fresh water (Person 2000).  B.C. coastal wolves are 

thought to have denning behaviour similar to Alaskan coastal wolves, but this has not 

been researched fully (Darimont and Paquet 2000).  Rendez-vous sites usually are found 

in open, grassy areas and are used by pups to await the return of adults from hunting.    

 

4.4 PREY  

Wolves exhibit behaviourial plasticity in food selection, substituting one prey for another 

according to availability (Weaver et al. 1996).  They are prey generalists that hunt and 

scavenge a variety of species.  A single or pair of wolves can take down young or old 

prey but often the entire pack is used to take down a fully mature adult.  Coastal wolves 

feed primarily on Sitka black-tailed deer (Odocoileus hemionus) and prey more heavily 

on spawning chum and pink salmon (Oncorhynchus spp.) in the fall.  Deer and salmon 

accounted for 84% and 9% respectively of coastal wolf diet in summer and for 68% and 

24% in the fall (Darimont and Paquet 2000).  Fishing for salmon is energetically less 

expensive than hunting for ungulates (Darimont et al. 2003) and the transition to salmon 

prey in the fall may improve pup survivorship during weaning (Person 2000).  
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A variety of other animals comprise the remaining small portion of coastal wolf diet.  

Other animals that have been identified in coastal wolf scat include moose (Alces alces), 

black bear (Ursus americanus), beaver (Castor canadensis), mountain goat (Oreamnos 

americanus), river otter (Lutra canadensis), marten (Martes americana), mustelids, 

beached marine mammals, birds and rodents (Darimont and Paquet 2000).   

 

4.5 COMPETITORS 

Interspecific competition of coastal wolves with other large carnivores is not fully 

understood but may reflect resource partitioning, where species co-exist by exploiting 

different resources (Smith 1996).  Competitors of coastal wolves include large carnivores 

such as grizzly bear (Ursus arctos horribilis), black bear (Ursus americanus), wolverine 

(Gulo gulo), coyote (Canis latrans) and cougar (Felis concolor) (Darimont and Paquet 

2000).   Space and diet requirements of these species may overlap with that of coastal 

wolves and their presence may competitively exclude wolves from certain habitats. 

 

4.6 POPULATION FLUCTUATIONS 

Natural fluctuations in wolf populations can result from parasitism and disease, 

particularly Canine Parvovirus (CPV) and rabies (Mech 1970).  CPV is a disease of 

domestic dogs, usually fatal in puppies.  Although not documented in coastal wolves, 

CPV has been found to inversely affect pup proportion and percent annual population 

growth in Minnesota wolves, and is considered to be a potentially significant mortality 

factor in isolated, small populations (Mech and Goyal 1993).  The rate of rabies in coastal 

wolves has not been recorded, but was responsible for 21% of mortalities (n = 52) in 
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northwest Alaska (Ballard and Krausman 1997) and was present in 12 of 51 cases of 

documented aggressive wolf-human encounters in Alaska and Canada (McNay 2002).   

 

In populations relatively free of human disturbance, prey density is suggested to be the 

greatest limiting factor on wolf population (Fuller et al. 1992).  The ability of wolves to 

control prey populations according to a predator-prey relationship is not very well 

understood and depends on numerous factors including the specific wolf population, prey 

size and weight, and the ratio of wolves to prey (Mech 1970, Bjorge and Gunson 1989).   

With undocumented disease rates, the presence of deer is likely the most important 

natural factor affecting coastal wolf populations. 

 

4.7 HABITAT 

Wolves exhibit habitat plasticity and can occupy any type of habitat that supports their 

prey (Mech 1995).  Ungulate prey availability positively influenced wolf presence in 

northern Italy (Massolo and Meriggi 1998, Ciucci et al. 2003) and is thought to be the 

main factor contributing to viable wolf populations for the next 100 years (Carroll et al. 

2000).  Prey availability however is mediated by topographic characteristics such as 

slope, elevation and forest type, which can restrict wolf movement through a landscape.  

In the Central Canadian Rocky Mountains, elevations greater than 1850m, slopes greater 

than 30 degrees and SSW aspects were found to negatively affect wolf presence 

(Alexander et al.1996).  Ciucci et al. (2003) found wolves in northern Italy responded 

primarily to prey density but avoided high elevations, steep slopes and N-NE aspects 

during winter travels.  Vegetation types are not usually indicative of wolf presence except 
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through provision of prey habitat (Carroll et al. 2000). However, forest provides denning 

and rendez-vous sites for wolves, as well as protection and concealment (Mech 1970, 

Theuerkauf et al. 2003).  

 

Wolves are extremely efficient dispersers, observed to travel as far as 732 km in 9 

months (Ballard et al. 1983).  They require extensive areas and have large home ranges.  

Size of the home range depends on the specific pack location, and prey density and type 

(Paquet and Carbyn 2003).  Although the home range size of coastal wolves is unknown, 

Alaskan coastal wolves are estimated to occupy areas of 260 km2 (Person 2000). 

 

Exact elements constituting coastal wolf habitat are unknown but likely reflect 

characteristics associated with deer habitat.  The topographic complexity of the coastal 

region limits both deer and wolf movements through the landscape, forcing them to travel 

and habituate less steep, lower elevation valleys and estuaries.  Old growth forest also is 

an important habitat characteristic, providing browse and winter habitat for deer, as well 

as sites important for wolf reproduction (dens and rendezvous sites).    

 

4.8 HUMAN EFFECTS AND FRAGMENTATION 

Historically, human-related activities have had the greatest influence on wolf presence in 

a landscape.  In the last 200 years, wolf populations have been severely impacted by 

direct human persecution in the form of hunting, trapping and predator-control programs 

(Carbyn 1974, Kaye and Roulet 1979).  Wolf mortalities from hunters in the study area 

are estimated to be 2.3% of the annual population (Darimont and Paquet 2000), however, 
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this rate would be expected to increase with more extensive human disturbance and 

presence.   

 

Landscape modification by humans has played an indirect, yet extremely significant role 

in mediating wolf numbers through direct habitat and resource loss, but also 

fragmentation effects.  Habitat fragmentation is the subdivision of a large contiguous 

habitat into smaller fragments and can be natural (ie disease, wildfire, storms, 

avalanches) or anthropogenic (ie logging, development, road creation) in origin.   

The effects of fragmentation and habitat loss are modified by landscape configuration, 

specifically the size, shape and layout of habitat fragments (Saunders et al. 1990).  

Larger, connected fragments provide more suitable habitat than smaller, isolated 

fragments (Diamond 1975).   Isolated fragments impede species gene flow and genetic 

diversity that allow adaptation to environmental change (Britten and Baker 2002) and 

recolonization response to epidemics (Root 1998).  Conservation and management of 

fragmented landscapes usually apply island biogeography and metapopulation theories to 

predict how species will respond to changes in their landscape.  Island biogeography 

theory (IBT) maintains that species richness, as determined by the rate of immigration 

and extinction, is mediated by island area and isolation (MacArthur and Wilson 1967). A 

metapopulation is a collection of local or subpopulations, whose persistence is dependent 

on the interaction between colonization and extinction of subpopulations (Andren 1994); 

extinction of too many local populations will cause extinction of the metapopulation.  

The effects of fragmentation are complex but have three main consequences:  habitat 

loss, reduction of existing habitat patch size, and isolation of remaining habitat fragments 
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(Andren 1994).  The primary cause of modification affecting coastal wolves is clearcut 

logging and its effect on black-tailed deer populations.   Coastal wolves are highly 

dependent on deer and the long-term carrying capacity of deer populations cannot be 

sustained with current logging practices (Darimont and Paquet 2000).   Loss of habitat 

limits resource availability for both deer and wolves, and may force either species to 

relocate.  Reduction of existing habitat from logging also increases the amount of edge 

relative to interior habitat available.  Introduction of edge habitat can affect species 

functioning in a particular manner (Lidicker 1999) and alter the biotic community by 

exposing species to new competitors, predators or exotic species (Harrison and Bruna 

1999).  Road fragmentation from logging practices can directly affect wolf mortality rates 

through an increase in potential vehicle collisions or by providing previously non-existent 

access for hunters and poachers (Noss et al. 1996).   Wolves avoid high traffic and high 

road density areas (Carroll et al. 2000, Ciucci et al. 2003, Theuerkauf et al. 2003, 

Jedrzejewski et al. 2004) and are considered sensitive to human disturbance (Weaver et 

al. 1996). 

 

5.0 METHODS 

5.1 DEPENDENT VARIABLE 

Islands were surveyed for wolf presence during summer and fall from 2000 to 2003. Data 

were collected for 36 islands by C. Darimont and P. Paquet in 2000 and 2001 (Darimont 

and Paquet 2002).  During 2002 and 2003, Darimont and Paquet surveyed 14 more 

islands and re-sampled several of the islands surveyed in 2000 and 2001 (Paquet et al. in 

review).  I assisted in data collection for summer 2002.  In total, 50 islands in the 
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archipelago were surveyed, ranging in size from 0.71 km2 to 2290 km2.   Sample sites on 

islands were selected non-randomly and limited to areas where safe moorage was 

possible.   Surveys were initiated at beaches, estuaries and beach-flanked forests and 

followed wildlife trails, logging roads, forest ridgelines and the perimeters of wetlands 

and beaver ponds. Survey efforts did not extend further than 5 km inland.  Wolf presence 

on an island was determined by the existence of scat, tracks, scrapings or direct 

observation (Darimont pers. comm., Darimont and Paquet 2002).  Howls or vocalizations 

also were considered indicative of wolf presence.  Islands with wolf presence were given 

a value of 1; islands with no wolf presence were assigned a value of 0. 

 

5.2 INDEPENDENT VARIABLES 

5.2.1 Rationale 

Based on wolf life history and Alaskan wolf attributes, coastal wolves are thought to 

prefer larger, less isolated islands that are not topographically complex, which may be a 

function of prey presence and density.  Independent variables were selected to represent 

these factors affecting wolf presence (Table 1).  Variables were further broken down into 

physical, spatial and biological categories (Table 2).   

Table 1:  Wolf presence factors and associated independent variables. 

Factor Associated Independent Variables 
Presence of prey Deer density, mammal richness, prey richness, 

salmon richness, salmon biomass 
Presence of Competitors Competitor Richness 
Spatial Configuration of Islands 
and Mainland 

Island area, shape index, distance to mainland, 
distance to nearest island 

Vegetation  Vegetation index (greenness), old growth forest 
index (wetness, % old growth) 

Topographic Complexity Elevation, slope, aspect 
Human Disturbance % Logged Area 

 



 

 

27 

Table 2: Physical, biological and spatial independent variables.   
 

Physical Spatial Biological 
Elevation Island Area (km2) Deer Pellet Density 
Slope Island Shape Index % Old Growth Forest 
Aspect Distance to Mainland (km) Greenness 
 Distance to Nearest Island (km) Wetness 
  Mammal Richness 
  Prey Richness 
  Competitor Richness 
  Salmon Richness 
  Total Salmon Biomass 
  % Logged Area 

  

Considering the strong relationship between wolves and ungulate prey, black-tailed deer 

presence is expected to be the most influential factor on coastal wolf occurrence. 

However, landscape and biological characteristics also may predict wolf presence 

because of their importance to wolf reproductive ecology, or because they indicate deer 

habitat. 

 

Physical influences on wolf presence include elevation, slope and aspect (Alexander et al. 

1996).  Topographic complexity of islands in the study region necessarily limits wolf and 

deer movements to low elevation and less steep terrain often located in valleys and 

estuaries.  These areas can offer valuable deer habitat, denning sites, access to fresh water 

for pups and adults, and spawning salmon in the fall.  Aspect may also influence wolf 

presence.  South-facing slopes are warmer and drier than north slopes, and can support a 

completely different biotic community (Strahler and Strahler 2002).  Deer may be 

attracted to a specific directional aspect because of vegetative associations, and wolves 

may respond to their presence. 
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The spatial relationship of wolves and deer likely is mediated by island configuration. An 

initial survey of islands in the study area found wolves on all islands with deer presence, 

except for small, isolated islands (Darimont and Paquet 2000).  Island area, distance to 

mainland and distance to nearest island variables were selected to represent spatial 

aspects of the coastal landscape and to reflect IBT.  Larger islands are expected to 

support deer and wolf because they have more habitat area.  Islands that are closer to the 

mainland also may support deer and wolf because their close proximity to a population 

source allows efficient immigration.  Closely clustered islands may effectively increase 

the total area available for wolves and deer.  Islands with large distance to other islands 

are not expected to support wolves; wolves are capable of swimming between islands but 

are limited by island-to-island distance, wind, and water currents (Darimont and Paquet 

2002).  Shape index measures how convoluted the perimeter of an island is.  Islands with 

a shape index approaching 1 maximize island area and according to IBT, increase the 

amount of potential deer and wolf habitat available. 

 

Biological variables included vegetation characteristics, prey presence, competitor 

presence, and human disturbance.  Forest provides habitat for deer and a multitude of 

other small mammals as well as denning and rendezvous sites for wolves.  Greenness, a 

vegetation index derived from Landsat imagery using Tassel Cap Analysis (TCA), 

provides a measure of vegetation density, with higher values reflecting more vegetation.  

Wetness also is derived from TCA and is indicative of structural stages of old growth 

forest (Cohen and Spies 1992).  Islands with a higher percentage of old growth forest 

were expected to attract deer and consequently wolves. 
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Wolves were found to consume more deer on islands close to the mainland than those 

further away, where small mammals replaced deer in wolf diet (Darimont et al. 2004). On 

more isolated islands, mammal and prey richness were expected to be more important 

factors affecting wolf presence than deer occurrence.  Also, islands with more 

competitors may exclude wolves due to overlap of territories and competition for prey 

and other resources. 

 

Second to deer, salmon comprise a substantial part of wolf diet (Darimont and Paquet 

2000). Salmon richness and biomass are indicators of the number of salmon species 

present on an island, and the amount of salmon available for coastal wolves.  High 

salmon richness and biomass were expected to positively influence wolf presence. 

   

Presence of human disturbance in the form of logging is also thought to affect wolf 

presence (Darimont and Paquet 2000).  Percent logged area represents the proportion of 

island area occupied by forestry activities including actual logged area, logging roads and 

logging camps.  Islands with significant modification were expected to have lower 

probabilities of wolf presence. 

 

5.2.2 Compilation 

Predictive variables were created as GIS layers in ArcView 3.2 and ArcGIS 8.0 (ESRI 

2000)(Figure 3).  A 50m resolution Digital Elevation Model (DEM) was used to create an 

island polygon layer and its associated attribute table served as the final database, holding 

all variable data for each island. 
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Island 
Polygon 

Figure 3:  Flow chart representing compilation of (a) physical, (b) spatial and (c) 
biological GIS data layers.  Green boxes represent ArcGIS raster layers, yellow circles 
vector layers, blue boxes are data output and orange boxes, remotely sensed imagery. 
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Physical Variables 

Elevation data were extracted from the DEM.  Slope and aspect layers were derived from 

the DEM using ArcGIS modules.  Aspect was converted from degrees to radians using 

the formula:  

Radians = degrees * pi/180  (where pi = 3.14159265…) 

and subsequently transformed into northness and eastness layers to remove the circularity 

from the distribution (as per Clark et al. 1999).  Northness represents a north-south 

gradient (cos[aspect]) and eastness an east-west gradient (sin[aspect]).   Means and 

standard deviations were calculated per island for elevation, slope, northness and eastness 

layers using the island polygon layer and ArcGIS Spatial Analyst.  This statistical 

extraction was necessary to quantify the raster-based layers for analysis.   

 

Spatial Variables 

Spatial variables included island area, distance to nearest island and to mainland and 

island shape index.  Island area and perimeter were calculated with the X-Tools extension 

in ArcView3.2.  Shape index was calculated as: 

(0.25*Perimeter) / Square Root of Area 

as per Forman and Godron (1986) and McGarigal et al. (2002).   Island distances to the 

mainland and to the nearest island were calculated using the Nearest Feature extension 

(ArcView3.2).  This extension calculates the shortest distance between two designated 

polygons.  It was assumed that wolves travel the shortest distance between islands or to 

the mainland. 
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Biological Variables 

Deer Sub-Model 

A deer sub-model was built to obtain deer probability values for each island.  Deer pellet 

surveys were conducted in 2002-03 along 1km transects at 60 locations within a smaller 

3000 km2 study area (Figure 4).  At least 200m apart, transects were paired and broken 

down into 1 by 20m plots (50 plots in total per transect).  The number of deer pellets was 

recorded for each plot.  GPS readings were taken at the beginning and end of each 

transect and at 100m intervals.  These locations were then plotted as a point file in 

ArcGIS and the number of deer pellets up to and including the 100m interval point were 

tallied.   

 

A deer pellet relationship was determined using logistic regression, relating deer pellet 

density with greenness and wetness layers.  The analysis however, did not produce a 

significant model.  Slope values for each pellet location were extracted using the Get 

Grid extension in ArcView and the DEM-derived slope layer.  Curve-fitting regression in 

SPSS 10.0 (2000) quantified the relationship between deer pellet density and slope (r2 = 

0.924) according to: 

Eq. 4:  Pellet Density = 0.0000094[slope3] - 0.0009[slope2] + 0.0231[slope] – 0.0022  

Equation 4 was extrapolated to the entire study area using ArcGIS Raster Calculator, 

which created a deer pellet density layer (Figure 5).  From this layer, mean and standard 

deviations were extracted per island.  Pellets were assumed to represent deer presence; 

more pellets indicated higher deer density.  
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Figure 4:  Study area for deer pellet surveys. Transects are marked in red. 
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Figure 5:  Deer pellet density layer. 
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Remaining Biological Variables 

Percentage old growth forest per island was obtained from BC TRIM polygon data 

(Raincoast Conservation Society 2003).  Old growth areas were selected as forests >200 

years old (TRIM Class 9) and calculated as: 

(Total old growth area / total island area) x 100% 

 

Five Landsat 7 ETM+ images were used to derive surrogate layers of vegetation density 

(greenness) and structural complexity (wetness).  Landsat ETM imagery is acquired by 

satellite Enhanced Thematic Mapper (ETM) sensors that record earth surface reflectance 

of solar electromagnetic radiation.  The imagery is comprised of 7 bands that measure 

visible (Bands 1-3), infrared (Bands 4-5, 7) and infrared thermal (Band 6) spectral 

responses of features in a landscape (Lillesand and Kiefer 2000).  Using control points 

(known coordinates of surface features such as road intersections), images are often 

orthorectified by matching the corresponding location on the image to the control points.  

This process increases overall image accuracy (Government of Canada, GeoGratis 2003). 

 

Tasseled Cap Transformation (TCT) is a type of remote sensing analysis that is used on 

Landsat TM/ETM imagery to create a vegetation index.   Tasseled Cap analysis applies a 

linear transformation to 6 of the spectral bands (Bands 1-5 and 7) to reduce them to 3 

vegetation measures: greenness, wetness and brightness (Crist and Ciccone 1984, Jensen 

1996).  This transformation reduces TM/ETM imagery into more manageable 

components that account for most of the variance in the original bands, and which 

correlate with physical landscape characteristics (Crist and Ciccone 1984).  Specifically, 
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the index measures the amount of green vegetation (greenness), moisture in the canopy 

and soil (wetness), and soil reflectance (brightness) (Lillesand and Kiefer 2000).   

Greenness is often used as a surrogate of vegetation where higher values represent more 

biomass.  Wetness has been linked to structural complexity and old growth forest, where 

low values represent clearcut areas and high values, young, closed-canopy forest (Cohen 

and Spies 1992).  Brightness often is used as an indicator of human development where 

higher values represent urbanized areas (Seto et al. 2002). 

 

Orthorectified Landsat 7 ETM+ images were acquired from Government of Canada 

GeoGratis (2003) and were taken between 1999 and 2001 in July and October. Although 

ideal, Landsat images taken at one point in time were not attainable for this study.  The 

time discrepancy between wolf surveys in 2002/2003 and the Landsat imagery was 

assumed to be negligible as the study area has not been significantly altered in the 

intervening years.  Images were atmospherically-corrected and then mosaiced in ENVI 

(RSI 2001) using a mean-subtraction method, whereby individual pixel values in one 

image were subtracted from the mean of all pixel values in a second image.  Mean-

subtraction was determined to be the best method to reduce the time discrepancy between 

images. Other mosaic methods blend only the edges of images leaving interior pixel 

values unaltered (Cheng pers. comm.).  TCT analysis was then run in ENVI to produce 

greenness and wetness layers.  Brightness was not used in this analysis, as human 

development in the study area is minimal.  Means and standard deviations for greenness 

and wetness were calculated per island using Spatial Analyst and the island polygon 

layer.   
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Island mammal, prey and competitor richness values were derived from 3 pre-1990 island 

surveys (Craig 1990) and augmented with data from surveys conducted from 1999 to 

2003 (Darimont  pers. comm.).  Mammal presence was determined by scat, tracks, direct 

observation or calls where appropriate.  Mammal richness included all mammals present 

on an island.  Mammal parts found in wolf scat analysis or known prey of coastal wolves 

were tallied as prey richness (Darimont pers. comm).  Competitor richness included 

mammals that prey on similar species or are known to occupy similar habitat as coastal 

wolves (Darimont pers. comm.).   Species included in each variable are listed in 

Appendix 1.   

 

Pink, Coho, Chinook and Sockeye salmon presence data were obtained from Government 

of Canada, Department of Fisheries and Oceans FISS inventory data (2003).  Salmon 

richness was a tally of the number of species present in island streams.   An escapement 

rate database (Raincoast Conservation Society 2004) was used to determine salmon 

biomass per island.   Escapement rates for 1999 and 2000 were averaged and multiplied 

against the weight of the species (Table 3).  Male and female were assumed to be of equal 

mass.  All species were then summed to give an overall biomass per island.  Of the 50 

islands included in the sample, biomass data was only available for 20.    

 
Table 3:  Salmon species and mass (Margolis and Groot 1991). 
 

Species Mass (kg) 
Chum 4.16 
Coho 3.22 
Pink 1.87 
Sockeye 2.56 
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Percentage of logged area per island was obtained from raster data (Raincoast 

Conservation Society) and calculated according to: 

  (Total logged area / total island area) x 100% 

 

5.3 ANALYSIS 

All statistical analyses were conducted in SPSS 10.0 (2000).  Assumptions of parametric 

analysis were tested on independent variables using the Descriptive Statistics module.  

Variables were not normally distributed and were tested using Spearman’s rho, a non-

parametric correlation analysis.   Inclusion of highly correlated variables in regression 

analysis can lead to multicollinearity, weakening the analysis by inflating coefficient 

error (Tabachnick and Fidell 2001).  Highly correlated variables, defined by rho greater 

than or equal to 0.7 (Tabachnick and Fidell 2001) were examined to determine which 

variable to remove from further analysis. The variable with higher significance for 

predicting wolf presence in univariate logistic regression, was retained.     

 

Previous analysis of data showed island area to have an overwhelming effect on wolf 

presence (Paquet et al. in review).  Variables were therefore, separated into island and 

sub-island (resource) levels for separate analysis.  A global logistic regression model 

(including all variables) was run before each AIC analysis.  Global models are used to 

determine overall model goodness of fit; if the global model fits the data well, then 

empirically, sub-models of the global model will also have good fit (Burnham and 

Anderson 2002).  If the global model is not a good fit, an alternative statistical method 

must be found that will fit the data.  The Hosmer-Lemeshow test was used to evaluate 
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model fit where a nonsignificant chi-square indicated good fit (Tabachnick and Fidell 

2001).    

 

A suite of candidate models was created for island and sub-island level analyses using 

different combinations of independent variables.  Combinations of variables in each 

potential model were based on a priori  ecological reasoning.   Burnham and Anderson 

(2002) emphasized the importance of compiling candidate models that are scientifically 

(in this case, ecologically) justified to maximize the usefulness of AIC analysis.  

Candidate models constructed using a priori  reasoning also discourage data dredging.  

The choice of how many models to include must be weighed against the chance of 

omitting an important model (Burnham and Anderson 2002).  Twenty candidate models 

based on ecological reasoning were chosen for island and sub-island analyses. 

 

A logistic regression was run on each candidate model using wolf presence as the 

dependent variable.  The log-likelihood (-2LL) and number of predictors (K) were used 

to calculate an AIC value for each model (see Equations 2 and 3).   Burham and 

Anderson (2002) recommend using AICc values when the ratio of sample size to 

maximum number of model parameters is less than 40.  AICc calculations were used to 

determine the best approximating model at the island and sub-island levels.  

  

5.4 PROBABILITY SURFACES 

Probability surfaces of wolf presence were created for island and sub-island level 

analyses (Figure 6).  Probabilities were calculated manually in Microsoft Excel for the 
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island top model and assigned accordingly to the island polygon layer.  The polygon 

layer was then converted to a raster format using wolf probability as the pixel value; all 

individual pixels within an island displayed the island probability value.  Probabilities at 

the sub-island level were calculated for the top model in ArcGIS Raster Calculator, and 

manually per island in Excel.  Island and sub-island probability surfaces were then 

multiplied together in Raster Calculator to create a final probability surface of wolf 

presence.  Final island probabilities were also calculated manually in Excel. 
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Island 
Polygon 

Figure 6:  Flow chart depicting compilation of wolf presence probability surfaces.  
Colour and shape codes are identical to those in Figure 3. 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5 VALIDATION 

Model testing with independent data is ideal (Fielding 2002, Fielding and Bell 1997) but 

was not fiscally possible for this analysis.  Jackknife validation was used as it was found 

to be a superior evaluation tool for habitat models (Etherington and Lieske in review) and 

is less cumbersome to compute than bootstrapping (Verbyla and Litvaitis 1989).  The 

process of jackknife validation employed for top models at the island and sub-island 

levels, is outlined in Table 4.  A single island record was withheld and analysis run on the 

Island 
Probabilities 

(Excel) 

Independent 
Variable Independent 

Variable Independent 
Variable 

Raster Calculator 
Predictive Logistic Equation 

Island Wolf 
Probability 

Sub-Island 
Wolf Prob. 

Assign to Island 
Polygon database 

Convert To Raster: 
Pixel Value = Wolf Probability 

Final Wolf 
Presence 

Probability 

Raster Calculator: 
Island Prob. * Sub-Island Prob 
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remaining island records using only the variables found in the top AIC model.  The 

resulting logistic regression model was then used to predict the outcome of the withheld 

record.  The process was repeated for all islands in the sample, creating a set of predicted 

presence/absence values to evaluate against actual presence/absence values.  Evaluation 

of the accuracy of the models was conducted with a ROC curve.   

 

Table 4: Jackknife validation procedure.   

Islands Included in Analysis (Island #s) Withheld Island # for Testing 

2 – 50 1 

1, 3-50 2 

1,2, 4-50 3 

Etc … 

1-49 50 

 

Final island probabilities were derived by multiplying island and sub-island probabilities.  

Final probabilities were then tested against observed presence/absence using a ROC 

curve. 

 

6.0 RESULTS 

Coastal wolves were present on 42 of the 50 islands surveyed.  Independent variables 

were considered highly correlated if Spearman’s rho values were 0.7 or greater 

(Tabachnick and Fidell 2001).  Correlated variables were assessed individually using 

univariate logistic regression and the more significant variable was retained for further 

analysis.  Island and sub-island level Spearman’s rho correlation and univariate logistic 

regression results are shown in Appendices 2 and 3. Correlated variables removed from 

island and sub-island level analyses are shown in Table 5.   
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Table 5: Variables included and removed from further analysis based on Spearman’s rho 
correlation tests.  µ represents statistical mean and S, standard deviation.  Asterisks 
denote which variables were correlated within each level of analysis.   
 

Island Sub-island 
Final Variables Removed Final 

Variables 
Removed 

Island Area* Mammal Richness** Greenness (µ) Elevation (µ)* 
Island Shape Index Salmon Richness* Greenness (S) Elevation (S)* 
Distance to Mainland Salmon Biomass* Wetness (µ) Slope (S)* 
Distance to Nearest Island  Wetness (S) Northness (S)** 
% Logged Area  Slope (µ)* Deer Pellet (µ)* 
% Old Growth Area  Northness (µ) Deer Pellet (S)* 
Competitor Richness  Eastness (µ)  
Prey Richness**  Eastness (S)**  

 

 

6.1 ISLAND LEVEL 

Salmon richness and biomass were correlated highly with island area (r2 = 0.817 and r2 = 

0.737 respectively) and were removed from further analysis.  Salmon however, are an 

important prey species of coastal wolves.  To represent salmon in analysis, the less 

correlated salmon variable (salmon biomass) was included in several candidate models.  

All models that included salmon biomass excluded island area to prevent 

multicollinearity.  As a result, two global logistic regression models were run; one with 

salmon biomass and the other with island area substituted for salmon biomass.  Both 

global models were highly significant (Omnibus p = 0.00).  The global model including 

salmon biomass produced a Hosmer-Lemeshow value of 0.97 indicating good model fit.  

The island area global model showed a perfect fit of data (Hosmer-Lemeshow = 1.0) 

indicating a likely overfit of the model.  Burnham and Anderson (2002) suggested a 

model can overfit data when a small sample size is used and further, that a global model 

is not always necessary depending on the dataset used.   
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In the absence of a reliable island area global model, Hosmer-Lemeshow and Omnibus 

values were recorded for each model in the AIC suite of models.  This inclusion allowed 

assessment of goodness of fit and model significance for each model in the set.  These 

values, as well as AIC calculations and ecological justification for each model, are listed 

in Table 6.  Top AIC models were defined as any model with an AICc value less than 2 

units from the lowest AICc model (Burnham and Anderson 2002).  Top models are 

displayed in Table 7.  All top models were significant overall (Omnibus p = 0.00) and 

had good fit (Hosmer Lemeshow > 0.87).  Top model variables and coefficients are 

shown in Table 8.   
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Table 6:  Island AIC candidate models with ecological reasoning and AICc calculations.  Omn. represents Omnibus model 
significance, H-L the Hosmer-Lemeshow value, -2LL the log-likelihood, K the number of model parameters, change i the difference 
between AICc and the smallest AICc in the model set, and wi the model weight.   Model rank is based on model weight. Sample size 
(n) for all models is 50.  Top models are in gray. 
Model Variables Justification Omn. H-L -2LL K AIC AICc change i wi RANK 

1 All with SalmonMass global model with SalmonMass 0.00 0.97 7.58 9 25.58 30.08 11.38 0.0012 9 
2 Area, SI, Near, Main spatial variables only 0.00 0.94 8.15 5 18.15 19.51 0.81 0.2361 2 

3 
Prey, Competitor, %Log, 
Area, Main 

IBT theory, prey availability, 
competition and human disturbance 0.00 0.98 6.69 6 18.69 20.65 1.95 0.1338 3 

4 Area Island area effect 0.00 0.96 16.91 2 20.91 21.17 2.47 0.1032 4 
5 Area, Main IBT area-distance model 0.02 0.15 16.03 3 22.03 22.55 3.85 0.0517 6 
6 Area, Main, Prey IBT, prey availability 0.04 0.46 14.95 4 22.95 23.84 5.14 0.0271 8 

7 
Prey, Competitor, SalmMass, 
%Log 

prey availability, human disturbance 
and competition 0.03 0.21 20.31 5 30.31 31.67 12.97 0.0005 15 

8 %OldG, Prey, SalmMass old growth and prey 0.14 0.22 21.78 4 29.78 30.67 11.96 0.0009 11 

9 Competitor, Prey, SalmMass competition and available prey 0.14 0.23 21.28 4 29.28 30.17 11.47 0.0011 10 
10 Main, Area, %OldG IBT, old growth 0.00 1.00 14.39 4 22.39 23.28 4.58 0.0358 7 
11 Prey prey only 0.00 0.88 26.97 2 30.97 31.23 12.53 0.0007 13 
12 Prey, SalmMass prey and salmon 0.00 1.00 24.99 3 30.99 31.51 12.81 0.0006 14 
13 SalmMass salmon only 0.00 0.95 35.41 2 39.41 39.67 20.97 0.0000 17 

14 %Log, Prey, SalmMass 
islands with prey regardless of 
disturbance 0.00 1.00 24.03 4 32.03 32.92 14.22 0.0003 16 

15 %OldG old growth only 0.07 0.47 41.76 2 45.76 46.02 27.31 0.0000 19 
16 Main, Near IBT 0.00 0.74 37.98 3 43.98 44.50 25.80 0.0000 18 

17 Main, Near, Prey, Competitor 
stepping stone greater opportunity 
for prey and competitors to colonize  0.00 0.94 19.54 5 29.54 30.90 12.20 0.0008 12 

18 %Log human disturbance 0.00 0.84 41.79 2 45.79 46.04 27.34 0.0000 20 
19 Prey, Area prey and island area 0.00 1.00 16.01 3 22.01 22.53 3.83 0.0522 5 

20 %Log, Area, Main, Near, SI human disturbance and spatial 0.00 0.88 4.75 6 16.75 18.70 0.00 0.3540 1 
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Table 7: Top island logistic regression models based on AIC analysis of 20 candidate 
models.  K represents the number of parameters in the model, change i the difference 
between AICc value of the model and the lowest AICc model, and wi the model weight.    
 

Rank Variables Omnibus 
Hosmer-

Lemeshow K AICc change i wi 

1 

%Logged,  
IslArea, Dist.Main,  
Dist.Near, ShapeIndex 0.00 0.88 6 18.70 0.00 0.35 

2 
IslArea, Dist.Main, 
Dist.Near, ShapeIndex 0.00 0.94 5 19.51 0.81 0.24 

3 

%Logged,  
IslArea, Dist.Main,  
PreyRich, CompRich 0.00 0.98 6 20.65 1.95 0.13 

 
 
Table 8: Top island logistic regression models with variables, coefficients (B) and 
standard errors (SE). 
 

 Model 1 Model 2 Model 3 

Variable B S.E. B S.E. B S.E. 

%Logged Area -2.65 2.87   -9.18 25.21 

Island Area 0.24 0.24 0.20 0.30 0.55 0.53 

Distance Mainland -0.13 0.19 -0.04 0.13 -0.76 0.80 

Dist. to Nearest Island -0.69 1.03 -1.48 2.51   

Island Shape Index 6.89 6.79 10.11 14.90   

Prey Richness     1.94 2.08 

Competitor Richness     9.33 2726.96 

Constant -13.25 14.04 -21.96 34.17 -9.21 9.89 

 

Island physiognomy and human disturbance (logging) were the primary factors affecting 

coastal wolf presence at an island level.  Percent logged area, island area, distance to 

mainland, distance to nearest island, and island shape index variables comprised the top 

model and accounted for 35% of data variability.  Island area and shape index positively 

predicted wolf presence while percent logged area, island distance to mainland, and 



 

 

48 

distance to nearest island variables negatively related to wolf presence.  Island area and 

distance to mainland variables were present in all three top models.  The third ranked 

model also showed a negative relationship to percent logged area and a positive response 

of wolves to prey and competitor richness.  Constants for all models were negative.  

Although Salmon Biomass was included in several AIC models, it did not appear in the 

top 3 models.  The univariate regression of salmon biomass with wolf presence however, 

indicated a non-significant relationship (coefficient significance = 0.757). 

  

Wolf presence probabilities were calculated manually in Excel for the top model and are 

listed in Appendix 4.  Spatial application of the probabilities is shown in Figure 7.  Forty-

one islands showed wolf presence probabilities greater than 0.89 and nine islands 

predicted absence (p < 0.70):  Gilbert, Dixon, Moore, Lady Douglas, Saunders, 

Piddington, Goose, Spider and Ann.  Islands predicting no presence were extremely small 

in area and isolated from the mainland and other islands (Figure 7).   
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Figure 7:  Wolf presence probabilities for the top model at the island level. The mainland 
is shaded in gray and was not included in analysis.  Islands with no wolves present are 
highlighted in blue. 
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6.2 SUB-ISLAND LEVEL 

Six variables were removed from sub-island level analysis (Table 5) including deer pellet 

mean and standard deviation, mean and standard deviation elevation, standard deviation 

of slope and standard deviation of northness.  Deer pellet mean and standard deviation 

were correlated highly with slope mean, at r2 = 0.979 and r2 = 0.964 respectively 

(Appendix 3).  Black-tailed deer however, are the primary prey of coastal wolves and 

were therefore, included in several models that excluded slope mean.  The global model 

that included slope mean showed good fit (Hosmer-Lemeshow = 0.71) and high 

significance (Omnibus p = 0.00).  The global model including deer pellet mean showed 

model overfit (Hosmer-Lemeshow = 1.0).  Omnibus and Hosmer-Lemeshow values were 

recorded for all candidate models as in island level analysis.  Model fit, significance, 

ecological reasoning and AIC calculations for all models are shown in Table 9.  Top AIC 

sub-island models (Table 10) were highly significant (Omnibus = 0.00) and fit the 

logistic regression model (Hosmer-Lemeshow > 0.89).  Equations for the top 2 models 

are shown in Table 11.  
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Table 9:  Sub-island AIC candidate models with ecological reasoning and AICc calculations.  Omn. represents Omnibus model 
significance, H-L the Hosmer-Lemeshow value, -2LL the log-likelihood, K the number of model parameters, change i the difference 
between AICc and the smallest AICc in the model set, and wi the model weight.   Model rank is based on model weight. Sample size 
(n) for all models is 50.  Top models are in gray. 
 

Model Variables Justification OMN. H-L -2LL K AIC AICc 
change 

i wi RANK
1 All Global with Slope 0.00 0.71 12.90 9 30.90 35.40 12.64 0.0007 15 
2 GreenSTD Vegetation diversity 0.55 0.16 43.61 2 47.61 47.87 25.11 0.0000 20 
3 WetnessM old growth 0.00 0.80 34.73 2 38.73 38.98 16.22 0.0001 17 
4 SlopeM Topography 0.00 0.80 29.67 2 33.67 33.93 11.17 0.0014 14 
5 NorthM higher productivity on southern slopes 0.00 0.57 26.75 2 30.75 31.00 8.24 0.0062 13 
6 WetM, SlopeM, NorthM southern aspect, topography and old growth 0.00 0.89 17.89 4 25.89 26.78 4.02 0.0516 4 
7 WetM, SlopeM old growth and topography 0.00 0.99 20.48 3 26.48 27.00 4.24 0.0461 5 
8 SlopeM, NorthM southern aspect and topography 0.00 0.87 22.40 3 28.40 28.92 6.16 0.0177 9 
9 GreenM, WetM old growth and dense vegetation 0.01 0.26 33.46 3 39.46 39.98 17.22 0.0001 18 

10 
GreenM, WetM, SlopeM, 
NorthM 

dense vegetation, old growth, southern and 
topography 0.00 0.86 17.77 5 27.77 29.14 6.38 0.0159 10 

11 
GreenM, GreenSTD, 
WetM, WetSTD  vegetation only 0.02 0.22 32.39 5 42.39 43.75 20.99 0.0000 19 

12 DeerM deer (prey) only 0.00 0.42 22.77 2 26.77 27.03 4.27 0.0456 6 
13 WetM, WetSTD, DeerM old growth, structural diversity and deer 0.00 0.96 13.87 4 21.87 22.76 0.00 0.3846 1 
14 NorthM, EastM, EastSTD Aspect only 0.00 0.28 26.56 4 34.56 35.45 12.69 0.0007 16 
15 NorthM, DeerM sourthern aspect and deer 0.00 0.60 19.04 3 25.04 25.56 2.80 0.0950 3 
16 NorthM, DeerM, WetM sourthern aspect , deer and old growth 0.00 0.90 14.71 4 22.71 23.60 0.84 0.2528 2 
17 NorthM, DeerM, GreenM sourthern aspect, deer and dense vegetation 0.00 0.63 18.59 4 26.59 27.48 4.72 0.0364 7 
18 DeerM, GreenSTD deer and vegetation diversity 0.00 0.90 22.65 3 28.65 29.17 6.41 0.0156 11 

19 

GreenM, GreenSTD, 
WetM, WetSTD, NorthM, 
SlopeM vegetation, southern aspect and topography 0.00 0.99 14.29 7 28.29 30.96 8.20 0.0064 12 

20 
GreenM, GreenSTD, 
WetM, NorthM, DeerM 

High veg, veg diversity, old growth, sourthern 
and deer 0.00 0.85 14.42 6 26.42 28.37 5.61 0.0232 8 
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Table 10: Top sub-island logistic regression models based on AIC analysis of 20 
candidate models.  K represents the number of parameters in the model,  change i the 
difference between AICc value of the model and the lowest AICc model, and wi the 
model weight.    
 

Rank Variables Omnibus 
Hosmer-

Lemeshow K AICc change i wi 

1 

Wetness Mean, Wetness 
Standard Deviation, Deer 
Pellet Mean 0.00 0.96 4 22.76 0.00 0.38 

2 
Wetness Mean, Deer Pellet 
Mean, Northness Mean 0.00 0.90 4 23.60 0.84 0.25 

 

Table 11: Top sub-island logistic regression models with variables, coefficients (B) and 
standard errors (SE).  
 

 Model 1 Model 2 

Variable B S.E. B S.E. 

Wetness Mean -4.60 2.677 -2.59 2.04 

Wetness Standard Deviation 1.82 1.39   

Deer Pellet Mean 10.72 6.82 6.29 4.49 

Northness Mean   13.00 13.14 

Constant -11.92 6.71 -4.83 3.99 

 

Wolf presence at the sub-island (resource) level was influenced by forest structure and 

deer presence.  Mean and standard deviation of wetness and mean deer pellet variables 

appeared in the top model compromising 38% of data variability.   Mean wetness was 

negatively related to wolf presence while wetness standard deviation and mean deer 

density variables positively predicted wolf presence.  Mean wetness and deer density 

were found in both top models and the second rank model also included a positive 

response with mean northness.  Both models showed negative constants. 
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Wolf presence probabilities were calculated for the top model using ArcGIS Raster 

Calculator and the predictive form of the logistic regression equation (Equation 1). The 

original greenness and deer-density layers were used to represent mean variables.  A 

wetness standard deviation layer was created for inclusion in the predictive surface:  the 

island polygon layer was converted into a raster format and assigned the corresponding 

wetness standard deviation values to all pixels within an island.  Probabilities ranged 

between 0 and 1 and visually showed lower probabilities on Fin, Moore, Goose and Ann 

islands as well as those in the Hunter/Campbell region, specifically, Spider, Hunter, 

Piddington and Campbell (Figure 8).  When calculated at the island level using means 

and standard deviations however, Athlone, Ann, Gilbert, Goose, Lady Douglas, Moore, 

Piddington, Saunders, Spider and Stryker islands predicted wolf absence (p < 

0.56)(Appendix 4).  The following islands predicted absence in both island and sub-

island analyses:  Ann, Gilbert, Goose, Lady Douglas, Moore, Piddington, Saunders and 

Spider.  Stryker and Athlone islands were predicted present at the island level, but absent 

in sub-island analysis. Dixon island was predicted absent at the island level but present in 

sub-island analysis. 

 

6.3 COMBINED ISLAND AND SUB-ISLAND ANALYSIS 

Island and sub-island probability layers were multiplied in Raster Calculator to create a 

final predictive surface.  All islands predicted wolf presence (p > 0.88) except Ann, 

Athlone, Dixon, Gilbert, Goose, Lady Douglas, Moore, Piddington, Saunders, Spider and 

Stryker (p < 0.49)(Figure 9). Island and sub-island probabilities were multiplied together 

to give final island probability values (Appendix 4). 
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6.4 VALIDATION 

Model discrimination was high for all island and sub-island models, as well as final 

island probabilities (Figure 10).  Area under the ROC curves indicated 80% and 91% 

presence classification accuracy for island and sub-island jackknife validations 

respectively, and 94% accuracy for final island probabilities (Table 12).  



 

 

55 

Figure 8:  Wolf presence probabilities for the top model at the sub-island level. The 
mainland is shaded in gray and was not included in analysis.  Blue squares indicate areas 
with islands that had lower probabilities. 
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Figure 9:  Final predictive surface (island * sub-island).  The mainland is shaded in gray 
and was not included in analysis. Blue squares indicate areas with islands that predicted 
wolf absence. 
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Figure 10:  ROC curves for island jackknife validation (a), sub-island jackknife 
validation (b) and validation of final island probabilities (c). 
  
a)  Island Jackknife Validation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) Sub-island Jackknife Validation 
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Figure 10:  cont. 

c)  Final Island Probabilities 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 12: Area under ROC curves for island and sub-island jackknife validation, and 
final island probabilities. 
 

 AREA UNDER ROC CURVE 

Island Jackknife Validation 0.802 

Sub-island Jackknife Validation 0.914 

Final Island Probabilities 0.940 

 

7.0 DISCUSSION 

7.1 WOLF PRESENCE AT THE ISLAND LEVEL 

Island area, isolation (distance to mainland and nearest island), shape, and degree of 

logging determined coastal wolf occurrence on islands.  Specifically, larger islands with 

more complex shapes, situated closer to the mainland and closer to other islands, were 

more likely to support wolves.  This reflected the general tenants of Island Biogeography 
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Theory (IBT).  In addition, islands with fewer logged areas were more likely to support 

wolves, which reflected the sensitivity of coastal wolves to human disturbance. 

 

7.1.1 Island Biogeographic Influences:  Island Area, Shape, and Isolation 

Area and Shape 

According to IBT, islands with larger area provide more resources and can support higher 

species richness (MacArthur and Wilson 1967).  However, habitat quality is not directly 

related to size.  As such, island area can be misleading as a predictor of a single species 

presence because the quality of the area will depend on specific habitat requirements.  

Large islands however, are more likely to support a greater diversity of habitat, 

increasing the potential that a focal species habitat will be present.  Hence, area effects 

include response of a species to island area itself, to greater habitat diversity, and the 

interaction of these two responses (Triantis et al. 2003).  Wolves tend to be habitat 

generalists that thrive in nearly any type of habitat that supports their prey (Mech 1995). 

Consequently, wolves may respond first to island area, then to habitat diversity.   The 

large home range required by wolves supports a positive response to larger islands that 

can encompass their area needs. 

 

Island shape also can affect species occurrence and the amount of secure habitat 

available.  Island shape index (SI) calculates the amount of area relative to perimeter; SI 

values approaching 1 indicate that island area is maximized.  Coastal wolves responded 

positively to larger islands with more extensive perimeters. This response suggests that 

wolves selected islands with convoluted, perhaps dendritic shapes that may provide more 
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points of contact for wolves travelling between islands. In theory, more access points 

should minimize travel distance and decrease energy expenditure when moving between 

islands. Islands with high shape index values also may have more beach line, which often 

is used by wolves for foraging and travel (Paquet et al. in review). 

 

Isolation 

The effects of isolation are difficult to separate from island area effects.  In IBT, island 

area and isolation have an interactive effect on species occurrence.  The degree of a 

species response is based on life history traits, particularly immigration ability and 

vulnerability to extinction.  Occupation of isolated islands by species with high 

immigration abilities relative to extinction rates is mediated by island area (Lomolino 

1986).  That is, if an island is not large enough to meet a species’ requirements, isolation 

may be more influential on species presence.   

 

Wolves are extremely good dispersers (Paquet and Carbyn 2003) but also require large 

home ranges (Carroll et al. 2000).  Hence, the potential for high immigration rates for 

wolves is limited by their area requirements.  Coastal wolves are no exception; they are 

competent swimmers, able to move between islands that are as far apart as 13 km 

(Darimont and Paquet 2002), but require approximately 260 km2 for territory (Person 

2000).   Maximum inter-island distance in this study was 9.4 km for Goose Island, a 

distance that can be travelled by coastal wolves.  However, Goose Island had no wolf 

presence recorded and with an area of 18.6 km2, was too small for coastal wolves to 

establish territory.  Maximum island distance to mainland was approximately 65 km for 
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Moore Island.  This island also had no wolves present and was extremely small (area of 

4.2 km2).   The nearest island to Moore was Aristazabal situated 8.9 km away.  

Aristazabal is a large island with recorded wolf presence and an area of 443 km2, large 

enough to sustain coastal wolf area requirements and well above average island area of 

223 km2.  Hence, wolves are capable of travelling to isolated islands but may not do so if 

island area is not large enough to sustain their habitat requirements.  This interaction 

between island area and isolation makes it difficult to determine an optimum area that 

will maintain a viable coastal wolf population, unless immigration is irrelevant to wolf 

population dynamics (Lomolino 1986). 

 

Species with poor dispersal abilities may not reflect this area-isolation relationship seen 

with coastal wolves.  Nagorsen and Keddie (2000) examined 13 large islands from the 

Alexander Archipelago in Alaska, south to Vancouver Island, and found isolation to be 

the primary factor affecting mountain goat presence on coastal islands (Nagorsen and 

Keddie 2000).  Coastal mountain goats are poor dispersers and consequently would have 

low immigration rates, which could be compensated for by occupying islands closer to a 

source of immigrants (the mainland).  Conroy et al. (1999) also found isolation to be a 

better predictor of terrestrial mammal richness in the Alexander Archipelago, but found 

isolation to be correlated with island area.  Conroy et al. hypothesized that the 

relationship between mammal richness, area and isolation, reflected post-glacial 

movement of species.  The system may not yet have been at equilibrium and was still 

driven primarily by colonization events.   The coastal ecosystem in this study is assumed 

to be at equilibrium, however considering the results of Conroy et al., this may not be the 
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case.   Furthermore, equilibrium of the coastal ecosystem may be in the midst of a shift in 

response to human disturbance, primarily in the form of logging.   Russell et al. (2004) 

found large mammal richness was influenced most greatly by the level of anthropogenic 

activity on offshore islands of New Zealand.   Anthropogenic activity can reduce the 

amount of area available to a species on an island, and may interact with island area to 

determine species presence.  The appearance of the logging variable in the top model of 

this study supports the results obtained in New Zealand, and indicates wolves responded 

to increased anthropogenic activity.  This response may have resulted from sensitivity to 

human disturbance, but also from a decrease in available habitat from logging activities. 

 

7.1.2 Human Disturbance: Logging 

Wolves responded negatively to logged areas.  Coastal wolves often den in the roots of 

old growth trees (Darimont and Paquet 2000, Person 2000) and even-aged stands that 

have replaced logged old growth forests, would not be expected to provide the same 

quantity or quality of potential sites.  It is possible that wolves reacted more negatively to 

logging of a particular tree species, but this response was not discernible in this analysis.  

The negative response of coastal wolves to logging more likely reflected intolerance of 

human presence.  Sensitivity of wolves to human disturbance has been well documented 

(Mladenoff et al. 1995, Weaver et al. 1996, Massolo and Meriggi 1998, Theuerkauf et al. 

2003, Jedrzejewski et al. 2004) although the magnitude of response varies between 

individuals, packs, and populations, and depends on ecological conditions (Paquet and 

Carbyn 2003).   Wolves are particularly sensitive to road density (Mladenoff et al. 1995, 

Alexander et al. 1996, Ciucci et al. 2003) and the introduction of logging roads allows 
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access for hunters and poachers to enter previously undisturbed landscape.  The creation 

of logging roads can result in more wolf-human encounters and as hunting and poaching 

are the primary factors of unnatural coastal wolf mortality, they are reason for concern.   

 

7.2 WOLF PRESENCE AT THE SUB-ISLAND LEVEL 

Wolf presence at the sub-island or resource level was influenced most strongly by 

structural complexity (wetness) of forest stands and prey presence.  Structural complexity 

is associated with old growth forest and forest-age diversity.  Wetness standard deviation 

and deer pellet density positively predicted wolf presence, while mean wetness had a 

negative effect.  The positive relationship of deer to wolf presence was expected as deer 

comprise the majority of coastal wolf diet. 

 

7.2.1 Structural Complexity – Old Growth Forest 

The negative response of wolves to mean island wetness indicated selection for islands 

with lower mean structural complexity.  However, interpretation of this result is 

dependent on the correlation of wetness to structural complexity.  Wetness was actually 

found to be better described as ‘maturity’ because of its correspondence with the stages 

of forest stand succession (Cohen and Spies 1992). Wetness values are lowest for bare 

ground and clearcut areas, and highest for young, closed canopy stands.  Wetness values 

for fully mature, old growth forest however, are not high as would be expected, but rather 

mid-range because of its spectral response.  When forests begin to age, trees begin to die 

and the amount of woody debris and lichen growth increases.  Bark, dead wood and 

lichen all produce lower wetness values than green foliage (Cohen and Spies 1992).  As a 
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result of higher proportions of woody materials, old growth forests have lower wetness 

values than young, closed canopy forest.   Hence, wolf selection for islands with lower 

mean wetness values may have reflected selection for islands with old growth forest.  

Lower mean wetness values may also reflect however, that wolves selected for islands 

with more bare ground or clearcut areas that would lower mean wetness values.  

Considering deer response to logging is initially positive, the response of wolves to 

islands with lower mean wetness was more likely a result of bare ground and clearcut 

areas. 

 

The positive relationship of wolves to wetness standard deviation also reflected deer 

response to logging.  Greater standard deviation of wetness may have indicated a wide 

range of different-aged forest on an island, including clearcut/bare ground, old growth 

forest, and young, closed, canopy stands.   Islands that have been logged previously 

would exhibit high standard deviations as a result of the different stages of tree 

succession.  Wolf presence may be related to higher wetness standard deviation because 

of deer response to logging.  Although the long-term carrying capacity of deer cannot be 

sustained by current clearcut logging practices, deer initially react positively to the 

abundance of new browse (Darimont and Paquet 2000).  Hence, this result may be 

reflective of the temporal limitations of this study.  Deer, and consequently wolves, 

initially are attracted to islands with a variety of forest stand ages.  However examination 

of this same system 15 – 30 years from now, when canopy growth of recolonizing areas 

begins to limit forage for deer (Darimont and Paquet 2000), may generate different 
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results.  Specifically, wolves may avoid islands with a large range of wetness values in 

response to deer avoidance of these same islands. 

 

7.2.2 Prey – Black-tailed Deer Density  

A positive response of wolves to deer density was expected.  Although wolves exhibit 

behaviourial plasticity and are able to exploit food resources according to availability 

(Weaver et al. 1996), black-tailed deer remain the primary prey for coastal wolves.  

Dietary analysis showed deer was the most common food item in coastal wolf scat 

(Darimont et al. 2004) and the importance of ungulate prey to wolf populations is well 

documented (Bjorge and Gunson 1989, Fuller et al. 1992, Fritts and Carbyn 1995, 

Messier 1995, Massolo and Meriggi 1998, Ciucci et al. 2003).  The existence or nature of 

a regulatory relationship of wolf on ungulate populations however, appears to depend on 

the location of the study and the density and diversity of prey available.  Black-tailed deer 

are the most common ungulate prey available to coastal wolves; moose and mountain 

goat are found in the study area but are primarily limited to the mainland (Darimont and 

Paquet 2002). Less deer remains were found in wolf scat on the mainland, possibly 

reflecting a switch in wolf predation from deer, to moose and mountain goat (Darimont et 

al. 2004).  On islands however, deer would be more readily available prey than moose 

and mountain goat.  Consequently, islands with higher densities of deer would be more 

likely to attract wolves. 
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7.3 COMBINED EFFECTS OF ISLAND AND SUB-ISLAND LEVEL TOP MODELS 

The disproportionate number of islands with wolf presence (84% - 42 of 50) indicated 

that wolves were well distributed throughout the study area.  The final predictive map 

(Figure 9) shows the probability of wolf presence based on the integration of significant 

factors identified at island and sub-island levels.  Larger, less isolated islands with more 

convoluted shapes and less logged area had higher probabilities of wolf presence.  Islands 

with greater forest-age diversity and higher deer densities also had high wolf 

probabilities.   

 

The complexity of the coastal system precipitates interaction amongst island and sub-

island variables, although no statistical correlations were found.   Previous research on 

coastal wolves hypothesized that the presence and abundance of deer and protection from 

human activities, determine the persistence of wolves on any given island (Darimont and 

Paquet 2002).  Although island residency of wolves was not examined, results presented 

here supported this hypothesis and showed the mediating effect of island configuration on 

deer-wolf dynamics.  However, the spatial effects that determined wolf presence may not 

solely have been a function of deer density.  Darimont et al. (2004) showed small 

mammals replaced deer as the primary component in wolf scat on islands that were 

further away from the mainland.   Probability of detecting deer remains in wolf scat was 

related negatively with distance to mainland, rather than island area and inter-island 

distance.  Wolves occurred more frequently on islands that were situated closer to the 

mainland, but also on islands in close proximity to other islands.  Swimming and 

dispersal ability of wolves would facilitate access to isolated islands, which suggests 
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wolves may only access these distant islands if deer are present.  Wolves are more likely 

to minimize energetic costs and remain on islands or island groups, close to the mainland 

that support high deer densities and allow for deer recolonization. 

 

Higher occurrence of forest-age diversity and deer density predicted wolf presence on 

islands.  As habitat generalists, wolves usually are not associated with a vegetation type 

but rather with prey response to vegetation types (Carroll et al. 2000).  Wolves are 

attracted to islands with lower overall stand maturity and higher forest age diversity.  

This response was likely related to deer attraction for younger stands produced from 

clearcut logging.  Hence, wolves were sensitive to the amount of logging at an island 

level, but attracted to islands with more logging at the sub-island level because of the 

presence of deer.  A more detailed resource-level analysis may be necessary to 

understand fully the interaction of deer, forest stand age, old growth forest, logging and 

coastal wolf distribution. However, at an island level, wolves clearly selected larger 

islands that were not isolated and that retained low levels of logging disturbance. 

 

7.4 MODEL ASSUMPTIONS AND LIMITATIONS 

7.4.1 Assumptions 

The relationship of wolves to island and sub-island level variables was based on a variety 

of assumptions which limit model applicability.  First and foremost was that wolf sign 

was indicative of wolf presence.  Moreover, wolf sign did not reflect density or residency 

of wolves on islands but indicated a wolf was present on the island at one time.  

Assigning wolf presence to islands may have been a product of sampling effort and 
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assumed that wolf signs were correctly identified.  It is possible that signs were missed on 

islands designated with wolf absence.  Incorrect identification of wolf tracks and scat was 

considered negligible; wolf tracks are considerably larger than coyote (Darimont and 

Paquet 2002) and consist primarily of hair. 

 

Datasets of independent variables were assumed to be accurate and complete.  However, 

due to sampling constraints, salmon and deer variables may have been inaccurate.  

Salmon and deer comprise the majority of wolf diet (Darimont and Paquet 2000) yet data 

on density and distribution of these species is incomplete and dated.  Salmon richness 

was derived from DFO FISS database whose surveys to obtain salmon presence data 

were not extensive.  Similarly, salmon biomass was based on escapement rates measured 

per island and was only available for a subset of the islands included in this analysis.  

Salmon have been observed on islands that did not have biomass values (Darimont 

pers.comm.), however data did not exist to quantify their presence.   Salmon are an 

important part of coastal wolf diet and the absence of salmon richness and biomass 

variables in the top models may be a reflection of the limited data they were represented 

by.   

 

Assumptions also were made for statistical analysis.  Logistic regression assumes absence 

of multicollinearity, independence of sample cases, removal of outliers and anomalies, 

and a sufficient sample size with enough positive and negative cases (Tabachnick and 

Fidell 2001).  All variables were tested for multicollinearity before analysis and were 

accounted for if correlations were greater than or equal to Spearman’s rho of 0.7.   
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Independence of samples for logistic regression was not specifically tested, but assumed 

due to the nature of the intervening matrix between islands.  Although wolves are capable 

swimmers, the energetic cost of inter-island travel was assumed to render the islands 

independent cases. Sample size may be a limiting factor in application of the predictive 

model particularly as larger sample size increases statistical power of analysis 

(Tabachnick and Fiddell 2001). Furthermore, it is the number of positive and negative 

events rather than total sample size, that affects model performance when using logistic 

regression (Hosmer and Lemeshow 2000).  In particular, the proportion of presence and 

absence events and the number of predictor variables can lead to a violation of the 

logistic regression assumption that the ratio of predictors to events is sufficient.  In this 

study, 8 islands of wolf absence likely were not sufficient.  As a result, prediction of wolf 

presence using the derived model may not be justified.  Testing the models with more 

islands that do not support wolves may improve model reliability and classification 

accuracy. Alternatively, the small sample size and lack of absence points may warrant 

analysis with statistical approaches that do not require absence data, in particular, 

presence-only techniques (eg Hirzel et al. 2002) or distance from optimum habitat 

measures such as the Mahalanobis statistic (Corsi et al. 1999).    

 

7.4.2 Limitations 

As discussed above, the small sample size used here may have limited the power of 

logistic regression and consequently, the predictive power of island and sub-island 

models.  However, the ROC curve validation of the top models showed high 

classification accuracy.  Testing with independent data could reveal model variables to be 
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limited in their range of application and would be expected in such a large study area.  

Identification of these ranges would assist in determining where the model is actually 

valid (Van Horne 2002).  Both models were limited by the spatial resolution of the 

imagery used to derive independent variables.  Prediction can only be accurate to 50 m, 

based on the largest data pixel size derived from the DEM.  Spatial data and layers also 

introduce error into models that can be accounted for by ground-truthing.  Testing the 

spatial data however, was not logistically or financially possible for this study. 

 

Sampling for wolf presence only occurred in summer and fall and hence, application of 

the final models is constrained to these seasons.  During winter and spring, wolves may 

select islands according to different factors particularly because of winter storms, which 

can be severe on the coast.   

 

Model selection with AIC was limited by the models comprising the test group. 

Candidate models are selected by the researcher based on what they deem to be relevant 

hypotheses driving the process of interest.  AIC selects the best model of a group of 

models, and if the model that is the true representation of the process is not included, it 

cannot be selected.  AIC still selects a best model from a group of poor models.  Here, 

efforts were made to include all possible hypotheses to describe wolf habitat, and to base 

them on sound a priori  reasoning. 

 

Island and sub-island predictive models would benefit from larger sample size, 

specifically the inclusion of more islands with wolf absence. Further testing of the models 



 

 

71 

with a more rigorous resampling approach (i.e. bootstrap) or with independent data, is 

recommended.  As presented, the models show high classification accuracy and are 

useful to identify factors affecting wolf presence in the landscape.  

 

8.0 CONCLUSIONS 

The models created here yield accurate habitat relationships that are important to wolves 

in the coastal landscape.  Knowledge of these relationships may be used as a basis for 

further habitat modelling and enhances our understanding of coastal wolf ecology.  The 

efficacy of GIS in habitat modelling has also been evident.  GIS technology made it 

possible to analyse quickly spatial characteristics of the extremely large study area, and 

allowed extraction and effective management of a correspondingly large dataset.   

 

The results of this research underscored the importance of sample size and the need for 

extensive empirical data collection. Most importantly, improved deer and salmon species 

presence data is recommended.  Wolf density data collection also may improve the 

model, as would the inclusion of variables such as habitat diversity, water characteristics 

such as channel depth, temperature and speed, and wolf use of island groups. Exploration 

of directional (N,E,S,W) and seasonal effects on wolf distribution may also be 

informative. 

 

Wolves are focal species for the coastal ecosystem and understanding their relationship to 

landscape attributes can help guide management actions and conserve ecosystem 

structure and function.  However, the role of focal species in effective conservation 
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planning is dependent on the ecosystem of study (Fleishman et al. 2000).  If wolves are 

used for conservation planning, their role should be explicitly defined and assessment 

goals and possible shortcomings, clearly identified (Landres et al. 1988).  The status of 

wolves and their habitat requirements should not be the sole means by which 

conservation decisions are made, but should be used in conjunction with research 

relevant to other coastal focal species, specifically grizzly bear and salmon.  Responses of 

focal species should only be considered as insight into the integrity of the larger 

ecosystem (Noon and Dale 2002) and used accordingly. 

 

The central coast of British Columbia, Canada, supports rare Coastal Temperate 

Rainforest and is extremely worthy of research and conservation efforts.  Understanding 

the unique interactions of focal species with the coastal ecosystem will help to conserve 

what remains of this habitat, and contribute to a scientific base that ensures ecosystem 

integrity in the future. 
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APPENDICES 
 
APPENDIX 1:  Species list of mammals comprising predator and prey richness variables.  Mammal richness was the sum of all 
mammals per island. 
 
 Prey Predator  Prey Predator 
Shrew x  Cougar  x 
Masked Shrew x  Wolverine  x 
Northern Water Shrew x  Nutria   
Vole x  Dama Gazelle   
Deer Mouse x  Mink x  
Southern Red-Backed Vole x  River Otter x  
Mouse x  Sea Otter x  
Red Squirrel x  Norway Rat x  
Northern Flying Squirrel x  Black Rat x  
Marmot   House Mouse x  
Muskrat   Rabbit   
Beaver x  Dog x x 
Raccoon x  Northern Sea Lion (Stellers) x  
Black-tailed deer x  California Sea Lion x  
Elk   Harbour Seal x  
Dawson Caribou   Northern Elephant Seal x  
Mountain Goat x  Northern Fur Seal x  
Marten x  Fisher x  
Ermine x  Reithrodontomys sumichrasti x  
Black Bear x x Moose x  
Coyote  x Brown Bear  x 
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APPENDIX 2:  Spearman’s rho correlation (A) and univariate logistic regression results (B) for island level analysis.  Variables with 
significant correlations (r2 >= 0.7) or significant regressions (p<0.05) are highlighted.   
 
A) Island Spearman’s rho results. *Significant correlations at p= 0.05 (2-tailed). **Significant correlations at p= 0.01 (2-tailed). 

Variable 
MAMM 
RICH 

PREY 
RICH 

COMP 
RICH AREA 

SHAPE 
INDEX 

DIST 
NEAREST 

DIST 
MAIN LOG% 

% OLD 
GROWTH 

SALM 
RICH 

SALM 
BIOMASS 

MAMMAL 
RICHNESS 1.000 .979(**) .531(**) .661(**) .332(*) -.174 -.286(*) .465(**) -.001 .611(**) .553(**) 

PREY 
RICHNESS .979(**) 1.000 .479(**) .626(**) .339(*) -.130 -.213 .421(**) .011 .555(**) .553(**) 

COMP 
RICHNESS .531(**) .479(**) 1.000 .539(**) .042 -.255 -.514(**) .560(**) -.115 .623(**) .590(**) 

ISLAND 
AREA .661(**) .626(**) .539(**) 1.000 .231 -.036 -.296(*) .528(**) -.080 .817(**) .737(**) 

SHAPE 
INDEX .332(*) .339(*) .042 .231 1.000 .007 .333(*) -.168 -.285(*) .147 .003 

DISTANC
E 
NEAREST 

-.174 -.130 -.255 -.036 .007 1.000 .455(**) -.318(*) -.184 -.128 -.061 

DISTANC
E MAIN -.286(*) -.213 -

.514(**) -.296(*) .333(*) .455(**) 1.000 -
.582(**) -.311(*) -.305(*) -.294(*) 

%      
LOGGED .465(**) .421(**) .560(**) .528(**) -.168 -.318(*) -.582(**) 1.000 .207 .571(**) .539(**) 

OLD 
GROWTH
% 

-.001 .011 -.115 -.080 -.285(*) -.184 -.311(*) .207 1.000 -.063 -.024 

SALMON 
RICHNESS .611(**) .555(**) .623(**) .817(**) .147 -.128 -.305(*) .571(**) -.063 1.000 .755(**) 

SALMON 
BIOMASS .553(**) .553(**) .590(**) .737(**) .003 -.061 -.294(*) .539(**) -.024 .755(**) 1.000 
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APPENDIX 2:  cont. 
 
B) Island univariate logistic regression results 
 

Island Variable Coefficient Significance (p) 
Mammal Richness 0.003 
Prey Richness 0.003 
Competitor Richness 0.804 
Island Area 0.030 
Island Shape Index 0.054 
Distance Nearest Island 0.042 
Distance Mainland 0.036 
% Logged 0.258 
% Old Growth 0.146 
Salmon Richness 0.851 
Salmon Biomass 0.757 
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APPENDIX 3:  Spearman’s rho correlation (A) and univariate logistic regression results (B) for sub-island level analysis.  Variables 
with significant correlations (r2 >= 0.7) or significant regressions (p<0.05) are highlighted.   
 
A) Sub-island Spearman’s rho results. *Significant correlations at p= 0.05 (2-tailed). **Significant correlations at p= 0.01 (2-tailed). 
  

  
GREEN

M 
GREEN 

STD WETM 
WET 
STD ELEVM 

ELEV 
STD 

SLOPE 
M  

SLOPE 
STD 

NORTH 
M 

NORTH  
STD EASTM 

EAST 
STD DEER M 

DEER 
STD 

GREEN   
M 

1.000 .614** -.122 .354* -.056 -.081 -.005 -.101 -.083 -.067 .297* .020 -.067 -.089 

GREEN 
STD 

.614** 1.000 -.205 .667** .118 .137 .187 .140 .151 .098 .345* -.113 .150 .154 

WET M -.122 -.205 1.000 -.503** -.081 -.123 .118 .051 -.074 -.056 .048 .082 .034 .010 
WET 
STD .354* .667** -.503** 1.000 .222 .242 .131 .146 .083 -.015 .004 -.004 .156 .159 

ELEV M -.056 .118 -.081 .222 1.000 .982** .927** .933** .617** .210 -.253 -.192 .948** .948** 
ELEV 
STD 

-.081 .137 -.123 .242 .982** 1.000 .913** .936** .587** .203 -.236 -.183 .946** .947** 

SLOPE 
M 

-.005 .187 .118 .131 .927** .913** 1.000 .963** .564** .228 -.102 -.209 .979** .964** 

SLOPE 
STD -.101 .140 .051 .146 .933** .936** .963** 1.000 .581** .257 -.192 -.235 .985** .983** 

NORTH 
M -.083 .151 -.074 .083 .617** .587** .564** .581** 1.000 .220 -.171 -.196 .616** .631** 

NORTH 
STD -.067 .098 -.056 -.015 .210 .203 .228 .257 .220 1.000 -.302* -.995** .217 .222 

EAST M .297* .345* .048 .004 -.253 -.236 -.102 -.192 -.171 -.302* 1.000 .287* -.144 -.150 
EAST 
STD 

.020 -.113 .082 -.004 -.192 -.183 -.209 -.235 -.196 -.995** .287* 1.000 -.196 -.200 

DEER M -.067 .150 .034 .156 .948** .946** .979** .985** .616** .217 -.144 -.196 1.000 .994** 
DEER 
STD -.089 .154 .010 .159 .948** .947** .964** .983** .631** .222 -.150 -.200 .994** 1.000 
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APPENDIX 3:  cont. 
 
B) Sub-island univariate logistic regression. 
 

Sub-island 
Variable Coefficient Significance (p) 

Greenness M 0.471 
Greenness STD 0.569 
Wetness M 0.036 
Wetness STD 0.384 
Elevation M 0.035 
Elevation STD 0.058 
Slope M 0.013 
Slope STD 0.017 
Northness M 0.004 
Northness STD 0.979 
Eastness M 0.833 
Eastness STD 0.483 
Deer Pellet M 0.080 
Deer Pellet STD 0.053 
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APPENDIX 4:  Manually calculated wolf presence probabilities per island for island and sub-island AIC top models.  Probabilities are 
also listed for the final surface (sub-island*island).  Islands in dark gray were predicted absent in island and sub-island analyses 
(present being p >= 0.7).  Islands in light gray showed discrepancies between the two analyses. 
 

   Name Island 
Sub-

island Combined   Name Island 
Sub-

island Combined  Name Island 
Sub-

island Combined 
Anger 1 1 1 Fin 0.9497 0.9972 0.9470 Porcher 1 1 1 

Ann 0.0036 0.1616 0.0006 Gil 1 1 1 Price 1 1 1 
Aristazabal 1 1 1 Gilbert 0.0065 0.0222 0.0001 Princess Royal 1 1 1 

Athlone 1 0 0 Goose 0.0102 0.1790 0.0018 Roderick 1 1 1 

Banks 1 1 1 Gribbell 1 1 1 Sarah 1 1 1 

Calvert 1 1 1 Hawkesbury 1 1 1 Saunders 0.0003 0.1474 0.0000 

Campania 1 1 1 Hecate 0.9990 1.0000 0.9990 Spider 0.4011 0.4826 0.1936 

Campbell 1 1 1 Horsfall 0.9885 0.9961 0.9846 Stephens 1 1 1 

Chatfield 1 1 1 Hunter 1 1 1 Stryker 0.9992 0.4885 0.4881 

Cunningham 1 1 1 King 1 1 1 Susan 0.9989 1.0000 0.9989 

Denny 1 1 1 Lady Douglas 0.0255 0.5596 0.0142 Swindle 1 1 1 

Dewdney 1 1 1 Lewis 0.8992 1.0000 0.8992 Trutch 1 1 1 
Dixon 0.0003 0.7504 0.0002 McCauley 1 1 1 Wales 1 1 1 

Dowager 1 1 1 Moore 0.0353 0.0053 0.0002 Yeo 0.9972 1.0000 0.9972 

Dufferin 1 1 1 Pearse 1 1 1     

Dundas 1 1 1 Piddington 0.6967 0.5170 0.3602     

Dunira 0.9991 1.0000 0.9991 Pitt 1 1 1     

Farrant 0.9914 1.0000 0.9914 Pooley 1 1 1     
 



 

 

 




