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Abstract

Environmental exposure to toxic compounds is proposed to have a major role in the

evolution of the drug metabolizing enzymes in animals. In this study, we explored

the relationship between the level of exposure to plant-derived phenolic toxins from

the diet within the order Carnivora and the accumulation of multiple inactivating ge-

netic mutations (pseudogenization) in the major phenol detoxification enzyme, UDP-

glucuronosyltransferase (UGT) 1A6. We found evidence for pseudogenization of the

UGT1A6 gene in all 19 Felidae species studied. Furthermore out of 44 other species

evaluated, both brown hyena and Northern elephant seal showed inactivating UGT1A6

mutations. An exhaustive literature review identified 29 out of 46 species evaluated as

hypercarnivores (or true carnivores), which should have minimal exposure to dietary

phytotoxins. Importantly, all species with UGT1A6 defects were hypercarnivores, sup-

porting a critical role for diet in the pseudogenization of UGT1A6, and suggesting these

species may also be susceptible to pollutant bioaccumulation.
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1 Introduction

1.1 Species differences in drug metabolism and the role of diet in the

evolution of genes encoding drug metabolizing enzymes

Great variability has been observed among species with respect to their drug metaboliz-

ing capacity. For example, mammalian species have a higher capacity to detoxify drugs

compared to non-mammalian species (Gibson & Skett, 2001). One of the mechanisms

for this type of interspecies difference in drug metabolism is the loss of ability to express

one (or several) of the many enzymes responsible for the metabolism of drugs or xeno-

biotic compounds. Loss of enzyme expression may have arisen in a species because of a

defect in the gene coding a particular enzyme (Gibson & Skett, 2001) that was not under

evolutionary selection pressure to be maintained in a functional state (the so-called ”use

it or lose it” hypothesis).

Drug metabolizing enzymes do not exist solely for the purpose of metabolizing synthetic

human-made drugs or toxic compounds. They most likely evolved to metabolize toxic

compounds from the environment. One leading theory that has been used to explain

the evolution of drug metabolizing enzymes in animals is that they arose in response to

the presence of toxins in some plants used for food, thereby enabling a broader selection

of foods and a survival advantage for animals consuming them (Court & Greenblatt,

2000). These plant toxins (phytotoxins), in turn, might have evolved in plants as a de-

fense against plant eating animals. In the absence of the need to metabolize phytotoxins

as in the case of hypercarnivores whose diet is mainly comprised of animal matter, genes

largely responsible for metabolizing these exogenous compounds could become function-

less over several generations because of a lack of evolutionary selection pressures. Since

planar phenolic compounds represent a significant proportion of toxins found in many

plants, and uridine diphosphoglucuronosyltransferase (UGT) 1A6 is the main enzyme

detoxifying planar phenolics, inactivating mutations in this gene might be present in

species that don’t rely on plants as a source of their diet (Court, 2001).

2



1.2 Glucuronidation and UDP-glucuronosyltransferases (UGTs)

The process of metabolism of most xenobiotics can be divided into two phases. Phase I

reactions are oxidation, reduction, hydrolysis, and so on, chemical modifications that can

enable Phase II metabolism. Phase II metabolism involves conjugation of compounds

with glucuronic acid, sulfate, glycine, cysteine, methyl or acetyl groups. In this way drugs

are changed into nontoxic water-soluble products, which are easily excreted (Gibson &

Skett, 2001).

Uridine diphosphoglucuronosyltransferases or UDP-glucuronosyltransferases (UGTs) are

the group of enzymes responsible for catalyzing glucuronidation, which is one of the most

important conjugation reactions in Phase II metabolism. Glucuronidation is an essential

pathway to detoxify many xenobiotics, among them many drugs, dietary chemicals, en-

vironmental pollutants, chemical carcinogens and endogenous compounds. Thus, UGTs

are of toxicological and physiological importance (Miners et al., 2002). UGTs have

been classified into families and subfamilies based on gene sequence divergence, with

all known UGTs of importance in drug metabolism being included in the UGT 1A,

2A and 2B subfamilies (Mackenzie et al., 1997). The subfamily UGT1 is important

in the glucuronidation of bilirubin, xenobiotic amines and phenols (Nagar & Remmel,

2006). UGT1A6 glucuronidates many planar phenolic compounds like acetaminophen

(paracetamol) and acetyl salicylic acid (aspirin), while the enzyme UGT1A1 is important

for the metabolism of the endogenous compound, bilirubin which is a toxic breakdown

product of hemoglobin (Court & Greenblatt, 2000).

1.3 UGT1A6

UGT1A6 is important not only from a pharmacological point of view but is also equally

important from a toxicological perspective. The absence or presence of functionality of

UGT1A6 which metabolizes xenobiotics is of immense importance in terms of the capac-

ity to minimize the accumulation of toxic products from the environment in the body. If

UGT1A6 enzyme function is greatly reduced or becomes dysfunctional in animals living
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in the wild, they would be more susceptible to rising levels of phenolic toxins in the

environment like polychlorinated biphenyls (PCBs) and bisphenolA. Thus the inactiva-

tion of UGT1A6 has implications from the conservation point of view. Specifically the

identification of species where this gene is inactive or has very low activity might help

identify the species at risk from increasing levels of human made environmental toxic

compounds.

The likelihood of having an elaborate and extensive system to metabolize plant toxins

should be higher in herbivores, compared with carnivores, which are less likely to be

exposed to dietary phytotoxins. In general, herbivores are recognized as possessing

a greater capacity to metabolize and eliminate many drugs that are phytotoxin-like

chemicals compared with carnivores. This has been found to be true for lagomorphs

(rabbits), that have purely herbivorous ancestors, and are still herbivores in the wild

and in captivity. Due to extensive gene duplications they have a very complex pattern

of drug metabolizing genes. For example, they possess at least 5 gene copies of the

important glucuronidation enzyme, UGT1A6 (Q. Li et al., 2000). In contrast, it has

been shown that multiple mutations are present in the UGT1A6 sequence of cat (Felis

catus) and margay (Felis wiedii), representative species of the family Felidae, both of

which are considered carnivores (Court & Greenblatt, 2000).

1.4 Pseudogenes and UGT1A6

Pseudogenization is the process by which a functional gene becomes non-functional or a

pseudogene (Go et al., 2005). A pseudogene is a sequence of DNA that is very similar

to a normal gene but has been altered slightly such that it is non-functional (Cohen &

Givol, 1983). These genes develop different nucleotide sequences, insertion or deletion

at some crucial points resulting in the formation of a premature stop codon compared

to the paralogous functional gene. It might form by duplication of genomic DNA or by

retrotransposition (Mighell et al., 2000). It might not be able to transcribe or translate

and even if the protein is produced it might not be functional. Court and Greenblatt

(2000) showed that UGT1A6 is a pseudogene in domestic cat and margay with delete-
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rious genetic mutations and is unlikely to produce a functional enzyme.

Most animals form glucuronides as major metabolites of acetyl salicylic acid (aspirin),

chloramphenicol, benzoic acid, morphine, and acetaminophen (Jernigan, 1989). About 4

decades ago, it was recognized that domestic cats differed significantly from other mam-

mals in the ability to form glucuronide conjugates of certain xenobiotics, particularly low

molecular weight phenolic compounds (Court & Greenblatt, 1997). Similar observations

were made for lions (Panthera leo), African civets (Viverra civetta), spotted hyenas (Cro-

cuta crocuta) and forest genets (Genetta pardina) (Hartiala, 1954; Capel et al., 1974;

French et al., 1974; Caldwell et al., 1975; Court & Greenblatt, 2000). Thus phenolic

drugs that require glucuronidation for metabolism and excretion may be toxic to these

animals. One example is the toxicity of the standard phenolic analgesic acetaminophen

(e.g. Tylenol R©) and acetyl salicylic acid (aspirin) in cats (Court & Greenblatt, 1997).

Knowledge of species differences in drug metabolism is specially important in the field

of veterinary medicine in which a drug beneficial to one species might be harmful to the

other because of interspecies difference in drug metabolizing capacity.

Although, to date, all species shown to have inactivating mutations in the UGT1A6

gene including cat, margay, puma, Florida panther, and serval are hypercarnivores (

or ”true carnivores”) (Court & Greenblatt, 2000), but not all hypercarnivores appear

to have developed adverse UGT1A6 gene mutations. For example, the domestic ferret,

which could be considered a representative hypercarnivore, shows slow glucuronidation of

acetaminophen which is comparable to that of a cat, but no deleterious mutations could

be identified in the UGT1A6 gene (Court, 2001). Consequently, factors in addition to

diet such as stressors which contribute to population decline and genetic bottlenecking

may have played a role in the development of UGT1A6 mutations in hypercarnivores,

like the Felidae. However, as yet, not all Felidae and very few other carnivore species

have been evaluated for the presence of UGT1A6 mutations. Consequently, in this

study, we expanded our search for UGT1A6 mutations to include almost all Felidae and

representative species from the order Carnivora (Aim 1).
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1.5 Carnivora diets

In order to substantiate the role of exposure (or lack of exposure) to dietary phytotoxins

in the process of pseudogenization of UGT1A6 , it is important to know the natural

dietary preferances of the animals of interest. Most animals belonging to the order Car-

nivora are on higher food chain. According to Bininda-Emonds et al. (1999), there

are 271 extant species of Carnivora. However, not all Carnivora are carnivores (”meat

eaters”) and the relative content of animals and plants in the diet differs between species.

For our purposes, Carnivora could be classified as hypercarnivores (or true carnivores),

generalist carnivores (or omnivores) and hypocarnivores (or herbivores). However, stud-

ies defining the natural dietary habits of these species seem to be lacking. Consequently,

in this study, we wanted to classify the species in the order Carnivora based on the

relative amounts of animal and plant matter they consumed in their natural diet (Aim

2).

While evolving into their dietary niche, ancestors of the domestic cat, and probably

other Felidae seem to have adopted a highly carnivorous diet. Cats require nutrients

from animal tissues to meet their nutritional requirements and have a very high protein

requirement relative to most other species (Jernigan, 1989). Cats cannot synthesize

taurine from cysteine, vitamin A from carotene, or arachidonate from lineolate. Cats

also require the amino acids arginine and methionine in their diet (Q. Li et al., 2000).

These specific amino acid requirements of cats may have evolved as a consequence of the

fact that their natural diet contains an abundance of each of these specific amino acids

because of which the biosynthetic pathway was no longer needed in them.

1.6 Hypothesis and specific aims

In this research we planned to test the hypothesis that species with a defective UGT1A6

gene, as indicated by the presence of multiple inactivating genetic mutations, are hyper-

carnivores. We had two specific aims to enable us to test this hypothesis.

Aim 1. To identify species with defective UGT1A6 by sequencing of UGT1A6 exon1 and

6



then correlate it with the animal’s diet. Unlike UGT1A6, UGT1A1 is responsible for the

glucuronidation of endogenously generated compounds like bilirubin. So according to the

hypothesis, there should be no difference in functionality and presence of inactivating

gene mutations for UGT1A1 between hypercarnivores and other species.

Aim 2. To identify hypercarnivores, primarily within the order Carnivora, through lit-

erature review. The aim of this study was to identify and classify species of interest

based on their diet . We could then correlate this dietary classification of species with

the pseudogenization of UGT1A6 exon 1.
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2 Materials and Methods

2.1 Sources of genomic DNA

Table 1 lists the type and source of samples used in this study to obtain genomic DNA

(gDNA). Liver tissue from Indian mongoose Herpestes javanicus was collected in Hawaii

by Dr. Michael Reed of Tufts Biology Department, stored in dry ice and shipped to our

laboratory for storage at −80 ◦C. Blood samples were collected from 17 different species,

preserved in EDTA, and stored at −80 ◦C. The genus and species names follow that

of Nowak (2005, 2003). gDNA samples of 18 species were obtained from Dr. Melody

Roelke and Dr. Stephen O’ Brien (Laboratory of Genomic Diversity, National Cancer

Institute (NCI), Frederick, MD, USA).

2.2 Genomic DNA extraction

gDNA was isolated from liver tissue by using DNAzol Reagent (Life Technologies, Inc.,

Grand Island, NY, USA, Cat. No. 10503- 027) according to the manufacturer’s in-

struction. A spin column technique was used for gDNA extraction from blood samples

preserved in EDTA with the QIA amp DNA Blood Mini Kit (Qiagen, Valencia, CA,

USA, Cat no. 51104). The concentration of extracted DNA was measured using a

NanoDrop ND-1000 UV-Vis Spectrophotometer (NanoDrop Technologies, Wilmington,

Delaware USA. ).

2.3 Design of polymerase chain reactions primers

All available UGT1A1 and 1A6 exon 1 gene sequences of different mammalian species

available in the GenBank database were downloaded and aligned to design UGT1A1

and UGT1A6 specific PCR primers. The DNA regions within and outside the exon 1

coding regions of the UGT1A1 or 1A6 DNA which are highly conserved between species

and yet different than other UGTs were selected so as not to amplify genes other than

UGT1A1 or UGT1A6. Oligonucleotide primers were synthesized by the Tufts Core

8



Facility at Tufts University, Boston, MA using a DNA synthesizer (ABI 394 and an

Expedite 8909). Table 2 lists all PCR primers used in this study.
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2.4 Polymerase Chain Reaction (PCR) and sequencing of genomic

DNA

For most PCR reactions, Platinum PCR SuperMix or Platinum PCR SuperMix High

Fidelity (Invitrogen, CA, USA), which contains all components except DNA, and primers

were used according to the manufacturer’s instruction. A mixture of separate PCR

components ( Table 3) was also prepared and used for some reactions.

Optimization of PCR reaction conditions was attempted using first gradient PCR and

then touchdown PCR. Gradient PCR was for selected gDNA samples using annealing

temperatures ranging from 50 ◦C to 72 ◦C in a thermal cycler (PTC200; MJ Research,

Waltham, MA, USA). This worked only for some samples. Touchdown PCR (GeneAmp

PCR System 9600, PE Applied Biosystems) was then used, which successfully amplified

UGT1A6 exon 1 and UGT1A1 exon 1 in most of the study species.

The method used for touchdown PCR was denaturation at 95 ◦C for 10 min; then each

cycle consisted of 15s or 30s of denaturation at 95 ◦C and then annealing at 60 ◦C to

45 ◦C for the first 30 cycles (decreasing by 0.5 ◦C per cycle) followed by 45 ◦C for the next

15 cycles; with extension at 72 ◦C for 1 minute at every cycle. A final cycle of 10 minute

extension at 72 ◦C was also used. For optimization of some PCR reactions that amplified

UGT1A1, up to 3 uL of 50mM MgS04 was added to the PCR mix. Table 4 lists primer

pairs that were able to amplify the indicated sequences of the study species.
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Table 4: PCR primers that successfully amplified UGT1A6

and UGT1A1

Species UGT1A6 (Primer) UGT1A1 (Primer)

Canada lynx 447-448; 449-450 490-491

Bobcat 447-448; 449-450 467-468 490-491

Serval 447-448 467-468; 490-491

Asiatic golden cat 473-450 490-491

African golden cat 473-450; 473-448 490-491

Leopard cat 473-450 490-491

Pampas cat 476-474 490-491

Geoffroy’s cat 473-450 490-491

Little spotted cat 473-450 490-491

Margay 447-448; 449-450;476-477 467-468; 490-491

Mountain lion 447-448; 449-450 490-491

Florida panther 447-448; 449-450 490-491

Tiger 449-450 467-468

Snow leopard 476-477; 476-450; 476-475; 449-477 467-468; 490-491

Leopard 449-450 490-491

Jaguar 449-450 490-491

African lion 476-450; 473-450 490-491

Cheetah 447-448; 449-450 467-468; 490-491

Ferret a 467-468

Binturong 447-448; 449-450; 473-474 467-468

African civet 476-474 490-491

Spotted hyena 447-448; 449-450; 473-450 490-491

Brown hyena 476-474; 447-448 490-491

Aardwolf 476-474; 473-474 490-491

Mongoose 449-450 490-491

Raccoon 447-448; 473-448 467-468
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Table 4: (continued)

Lesser red panda 476-474 b

Asiatic black bear 447-448 467-468

Polar bear 447-448 467-468

Red wolf 447-448; 449-450 467-468

Maned wolf 447-448 467-468; 490-491

Red fox 447-448 467-468

Northern fur seal b 490-491

Southern fur seal b 490-491

New Zealand sea lion b 490-491

Northern elephant seal 473-450; 447-448 490-491

Dog 449-450 467-468; 490-491

a Not evaluated since sequence known ( GenBank accession AF333815 )

b None of the primer pairs were successful

2.4.1 Analysis of PCR product

DNA was analysed by agarose gel electrophoresis with 1.2 % agarose (Fisher Chemical)

in 1X TAE buffer or 1X Sodium boric acid buffer and ethidium bromide solution ((10

mg/ ml), Sigma, St. Louis, MO, USA). A 100bp DNA sizing ladder (Invitrogen, CA,

USA) was used to estimate the size of PCR product. PCR products that showed a single

band of the expected size were then sequenced.

2.4.2 Preparation of PCR product for sequencing

2uL of ExoSap-IT (USB, Cleveland, Ohio, USA) was mixed with 5uL of the PCR prod-

uct. Then the mixture was incubated in a water bath at 37 ◦C for 15 minutes and then at

80 ◦C in hot block for 15 minutes. Sample was then stored at 4 ◦C until sequenced. This
15



method was used to prepare the PCR product for sequencing by degrading the primers

and the dNTPs which would interfere with the sequencing reaction.

2.4.3 DNA Sequencing

The PCR products were sequenced by the DNA Sequencing Facility at Tufts University,

Boston, MA, USA using a cycle sequencing technique with dye terminator chemistry and

an automated DNA sequencer (ABI 3100, Foster City, CA, USA). DNA sequences were

confirmed as being from UGT1A1 and UGT1A6 by sequence alignment and molecular

phylogenetic analysis using Clustal W (Vector NTI 9.0) with all available UGT1A1 and

UGT1A6 sequences.

2.4.4 UGT1A1 and UGT1A6 sequences from the Genbank database

All available UGT1A1 and UGT1A6 exon 1 sequences were downloaded from the Gen-

bank database. The GenBank accession numbers are as follows:

1. AF104339 (UGT1A1); AF104337(UGT1A6)- Crab-eating macaque

2. DQ052657(UGT1A1); BC019861(UGT1A6)- Chimpanzee

3. M84125 (UGT1A1); M84130 (UGT1A6)- Human

4. AF093878 (UGT1A1); U09930(UGT1A6a); AY22719(UGT1A6b)- House mouse

5. U09030(UGT1A6)- Rabbit

6. AB008677(UGT1A6)- Cattle

7. AB018477(UGT1A6)- Sheep

8. D38065 (UGT1A1); D38061 (UGT1A6)- Norway rat

9. AF039137 (UGT1A1); AF064085(UGT1A6P)- Cat

10. NM 001003078(UGT1A6)- Dog

11. AF333815 (UGT1A6)- Ferret

12. AF177922(UGT1A6P)- Margay
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2.5 Initial UGT sequence alignment and translation analysis

The Vector NTI WorkGroup 9.1 Data Management Software (Invitrogen, Carlsbad, CA)

was used for initial sequence analysis. Clustal W, a multiple sequence alignment program

and a component of Vector NTI was first used to align the DNA sequences, which helped

to identify possible insertion or deletion mutations in the UGT1A1 and UGT1A6 exon

1 coding regions of the species under study with reference to the species with known

functional sequences. This program was also used to perform translation analysis to

identify possible premature stop codons.

2.6 Phylogenetic tree construction

All the UGT1A1 and UGT1A6 sequences were then aligned manually using Clustal X

before phylogenetic analysis using PAUP. Human UGT1A9 (GenBank accession number

NM021027) was used as an outgroup. Phylogenetic trees were created using PAUP*

Version 4.0b10 for 32-bit Microsoft Windows PAUP (Swofford, 2003). Neighbor- joining

trees were constructed using the default parameters for the program. Sequence identity

was confirmed and the phylogenetic relationship was obtained between species based

upon the topology of the resultant tree.

2.7 Literature study

An exhaustive search of the scientific literature was conducted between December 2005

and June 2006 to classify the Carnivora based on their diet and also to identify potential

species of interest for UGT1A6 and UGT1A1 sequence analysis. Literature reviewed

included published papers, text books and various internet sources.

Search engines and other sources used for finding the relevant information were as follows-

1. Google scholar- Search engine

2. BIOSIS Previews- Article Databases

3. http://www.blackwell-synergy.com

4. BioOne- Electronic Journals Collection
17



5. Cambridge journals online

6. Scopus.com

7. References cited in published journals

The key words used in the different search engines included- ”carnivore diet/s”, ”carni-

vore feeding ecology”, ”felid diet”, ”carnivore nutrition”, ”carnivore food”, and ”hyper-

carnivory”.

Since very few published papers included both plant and animal consumption informa-

tion, other sources of information available on the web were also searched including zoo

diet, commercial feed composition, and information on animal diets posted on university

web pages. Insects were considered to be animal matter.
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Table 2: Oligonucleotide primer sequences

PrimerID Sequence 5’ to 3’ Primer Primer position

Typea (bp)

Primers for UGT1A6 exon1 b

PRI 447 TRGGKGACARGCTKCTGGTGGTYC F 74 to 97

PRI 448 TYRARCACAAARTCRTAYYKTAASAGCCA R 746 to 774

PRI 449 GGGCAAAATTCAGAGCCAGGAGAGGTAG F -145 to -118

PRI 450 CAAAGAGCCAAATGCACGAGGGA R 921 to 943

PRI 473 GCAGCCCTGAAGCTGAGAGATCG F -73 to -51

PRI 474 ACTGACCTGAGACAGGACTCC R 835 to 855

PRI 475 ACACACAGAGCGATCAAATGAGAAACC R 861 to 886

PRI 476 GCTGGTGTCAGAGGTCAATCTGCTTC F 174 to 199

PRI 477 CTGGTCTGGGATACTCGAACACAAAGTC R 761 to 788

Primers for UGT1A1 exon1 c

PRI 467 CCHRTRGATGGMAGCCACTGGC F 100 to 121

PRI 468 GGGCCTRGRGTAATCYTTBACAAAGTC R 775 to 801

PRI 490 GARGAVSTWCCCYGTSCCATTCC F 228 to 250

PRI 491 CAAGKGDYBCATABGGGGARTAAACC R 675 to 700

Nucleotide Codes: A= Adenine, T= Thymine, G= Guanine, C= Cytosine.

Degenerate nucleotide codes: R=AG, Y=CT, M=AC, K=GT, S=CG, B=CGT,

D=AGT, H=ACT.

aF is 5’ or forward primer and R is 3’ or reverse primer.

bPrimer position with reference to the cat gDNA UGT1A6 sequence (GenBank Accession

No.: AF064084.2). Nucleotide positions are relative to adenine of start codon (ATG) of

cat UGT1A6P exon1 located at nucleotide position 315 bp of AF064084.2

cPrimer position with reference to human gDNA UGT1A1 exon 1(GenBank Accession

No.: M84125). Nucleotide positions are relative to adenine of start codon (ATG) of

human UGT1A1 exon1 located at nucleotide position 85 bp of M84125.
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Table 3: PCR reaction constituents in 200uL PCR tube

Item

PCR water 17.9uL

dNTP (10uM) 0.5uL

MgCl2 (50uM) 1uL

PCR Buffer (10X) 2.5uL

Platinum Taq DNA Polymerase 0.1uL

Forward primer (5 pmoles / uL) 1uL

Reverse primer (5 pmoles / uL) 1uL

10-20 ng genomic DNA 1uL
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3 Results

3.1 Comparative sequence analysis of UGT1A6 and UGT1A1 exon1

region in Felidae and representative Carnivora species

3.1.1 UGT1A6 exon 1 sequences

The UGT1A6 exon 1 sequence could be determined for all species except Southern fur

seal, Northern fur seal, and New Zealand sea lion (all in the family Otariidae). Figure 1

(top) shows a portion of the Clustal W alignment of UGT1A6 exon1. Figure 1 (bottom)

shows the protein sequence generated with virtual translation of UGT1A6 in Vector NTI

including the corresponding position of the premature stop codon TGA first identified

in the domestic cat.

Brown hyena and Northern elephant seal were the only species apart from the Felidae that

showed premature stop codons. We had two individual brown hyena samples and both

showed the premature stop codon at the same site as in the Felidae shown in Figure 2.

However, we don’t know if they represent the same subpopulation (related individuals) or

come from different populations. Figure 3 is the DNA sequence chromatogram showing

the position of the premature stop codon found in brown hyena. No other mutations were

found in either brown hyena. The Northern elephant seal did not have this particular

stop codon. Instead, as shown in Figure 4, the Northern elephant seal UGT1A6 sequence

showed an insertion of one nucleotide compared with other sequences. This resulted in a

reading frame shift (Figure 7) with a premature stop codon about 40 amino acids after

the shift. To see whether this was the only mutation, we manually removed the nucleotide

inserted and repeated the translation. This corrected the amino acid mismatches (Figure

7), but also showed an ”in-frame” stop codon at a position that is a tyrosine (Y) amino

acid in human UGT1A6 (Figure 6).
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Figure 1: Clustal W alignment of a segment of UGT1A6 exon 1 nucleotide sequence

showing the stop codon TGA (top) and corresponding amino acid sequence (bottom)

showing the position of the premature stop codon (*) . The nucleotide positions are

relative to the start codon adenine of ATG in human and amino acid sequence positions

are relative to the start translation methionine of human UGT1A6 sequence.
22



Figure 2: Clustal W alignment of UGT1A6 exon 1 nucleotide sequence of two individual

brown hyenas aligned with cat and human sequence shows the premature stop codon TGA

in brown hyena at the same position as in cats. The nucleotide positions are relative to

the start codon ATG in humans.

Figure 3: Chromatogram showing the premature stop codon TGA in a brown hyena.
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Figure 4: Chromatogram of UGT1A6 exon1 of Northern elephant seal showing location

of a single nucleotide insertion (highlighted nucleotide is same as that highlighted in figure

5)

Figure 5: UGT1A6 exon 1 of Northern elephant seal showing position of a single nu-

cleotide insertion compared to that of human. The nucleotide positions are relative to

the start codon ATG in humans. The exact nucleotide inserted is not known since there

appears to be other substitutions in this region.

Figure 6: Alignment of amino acid sequence of Northern elephant seal and human. N. E.

seal (Insertion removed) denotes the N. E. seal sequence translated after the nucleotide

insertion (Figures 4 and 5) was manually removed. Amino acids positions are relative

to the start translation methionine of human UGT1A6. Bold and italicized portion of N.

E. seal represent the unmatching sequence which is caused by the frameshift mutation.
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Figure 7: Alignment of amino acid sequence of Northern elephant seal and human. N. E.

seal (insertion removed) denotes the N. E. seal sequence translated after the nucleotide

insertion was manually removed. Amino acid sequence positions are relative to the start

translation methionine of human UGT1A6. Note the presence of 2 premature stop codons

(*) in N. E. seal sequence caused by the frame shift. However, even if the nucleotide

insertion is removed, an in-frame premature stop codon (*) is present in N. E. seal

(insertion removed) sequence.

Table 8 shows the position, number and type of mutations observed in the UGT1A6 exon

1 of felids, Northern elephant seal and brown hyena. In contrast to the brown hyena

which only showed one mutation (stop codon), multiple mutations were observed in all

the Felids and the Elephant seal consistent with this gene being a pseudogene in those

species. Note that UGT1A6 exon1 sequence of pampas cat in Table 8 is incomplete in

that we were only able to sequence from bp 118 to bp 836.
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3.1.2 UGT1A1 exon 1 sequences

The UGT1A1 exon 1 sequence could be determined for all species except for the lesser

red panda. Sequence abnormalities were not detected in any of the UGT1A1 sequences

evaluated, which is consistent with the importance of this enzyme in glucuronidation of

endogenous compounds (Figure 8).

Figure 8: Clustal X alignment of UGT1A1 exon 1 nucleotide sequence. No DNA sequence

abnormalities were found.

3.1.3 Phylogenetic analysis

Figure 9 and 10 show the molecular phylogenetic trees as neighbor joining trees generated

using PAUP* Version 4.0b10 for 32-bit Microsoft Windows PAUP (Swofford, 2003) based
27



on the trimmed DNA sequence alignments.

The general topology of both UGT1A1 and UGT1A6 trees were similar to each other

and were consistent with currently accepted phylogenetic relationships (Johnson et al.,

2006). The only exceptions were ferret UGT1A6 which was clustered with N. E. seal

UGT1A6 rather than with raccoon UGT1A6 (as for UGT1A1 ).

3.2 Classification of Carnivora species based on their diet

3.2.1 Literature review

The purpose of this review was to classify representative species in the order Carnivora

based on their natural diet. In particular, we wanted to identify those species with a diet

consisting primarily of animals with little or no plant material, previously referred to as

”hypercarnivores”. We focused on all Felidae species, as well as Carnivora species for

which we had DNA available for sequence analysis. The first step was to identify available

literature that quantitatively reported the proportion of plant and animal matter these

species consumed. However, while conducting the search we found a general lack of

quantitative information for many of the species. For most Carnivora species where

information was available, they only reported the different types of animals consumed

and did not quantify the amount of plant material. Only 2 papers were found that

reported the animal and plant matter the species consumed (expressed as a percent of

total biomass) (Table 6). Although there were many more papers identified involving

more species than the ones listed in Table 6, which addressed the types of plant and/

or animal matter consumed, it was not possible to convert the measurements used to a

percent biomass estimate. So, reports that used units other than percent biomass were

not included in Table 6, but are given in Table 8.



Figure 9: Neighbor- joining tree (PAUP) of UGT1A6 exon 1 nucleotide sequence
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Figure 10: Neighbor- joining tree (PAUP) of UGT1A1 exon 1 nucleotide sequence

30



T
ab

le
6:

P
ub

lis
he

d
lit

er
at

ur
e

th
at

qu
an

ti
ta

te
d

pl
an

t
an

d
an

im
al

co
nt

en
t
of

ca
rn

iv
or

a
sp

ec
ie

s

G
en

us
Sp

ec
ie

s
C

om
m

on
N

am
e

A
ni

m
al

M
at

te
r

P
la

nt
M

at
te

r
U

ni
de

nt
ifi

ed
R

ef
er

en
ce

D
ie

t
ex

pr
es

se
d

in
te

rm
s

of
%

bi
om

as
s

C
an

is
ad

us
tu

s
Si

de
-

st
ri

pe
d

ja
ck

al
60

%
32

%
8%

(N
ow

ak
,
20

05
)

C
hr

ys
oc

yo
n

br
ac

hy
ur

us
M

an
ed

w
ol

f
45

.4
%

54
.6

%
-

(J
ua

re
z

&
M

ar
in

ho
-F

ilh
o,

20
02

)

L
yc

al
op

ex
ve

tu
lu

s
H

oa
ry

fo
x

38
.4

%
61

.5
%

-
(J

ua
re

z
&

M
ar

in
ho

-F
ilh

o,
20

02
)

C
er

do
cy

on
th

ou
s

C
ra

b-
ea

ti
ng

Fo
x

43
.6

%
56

.4
%

-
(J

ua
re

z
&

M
ar

in
ho

-F
ilh

o,
20

02
)

31



3.2.2 Protein content of commercial zoo diet

Table 7 lists the protein content of commercial diets that are currently being marketed

(Mazuri, Nestle-Purina, St. Louis, MO) for exotic and domestic species from the exotic

animal feeding resource, PMI Nutrition International 1. Highest protein levels are used

in diets designed for ferrets and felids (35-38%). Lowest protein levels are used in typical

herbivore diets (14%). While the remaining species, primarily referred to as ”omnivores”

are intermediate (25-30.5%)

Table 7: Protein content in the Mazuri diet

Species Crude Protein(% not less than)

Ferret 38

Small felines 36

Large felines 35

Polar bear 30.5

Canine 28.5

Omnivores (wide range), Bears, Wild pigs, 25

Rodents, Beavers, Marmots, Porcupines,

Flying Foxes, Raccoons, Opossums

Rabbit, Sheep 14

3.2.3 Criteria for dietary classification

Based on the preceding observations, the following 3 dietary classifications were pro-

posed

1. Hypercarnivore (or ”true carnivore”): Requires high protein diet (30.5% or more

crude protein) and consumes more than 70% animals and less than 30% plant

matter in its natural environment. This is best exemplified by the Felidae family.
1http://mazuri.com/

Date accessed- 06/09/06
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2. Hypocarnivore (or ”herbivore”): Consumes more than 90% plant matter and less

than 10% animals in its natural environment. This is best exemplified by the Giant

panda. Protein content of the diet is low (25% or less crude protein)

3. Generalist carnivore (or ”omnivore”): Diet is intermediate between a hypercarni-

vore and hypocarnivore.

Using these criteria the Carnivora species of interest (with available DNA for analysis)

as well as species with known UGT1A1 and UGT1A6 sequences were placed into one

of the 3 categories as shown in Table 8. In summary, out of 38 Carnivora species eval-

uated, 29 species (including all 19 Felidae) were classified as hypercarnivores, 8 species

were classified as generalist carnivores, and 1 species (the red panda) was classified as

a hypocarnivore. Polar bears were problematic since during winter they are hypercar-

nivores but during the summer they also consume much non-animal food (berries, etc.)

and so they could be considered ”opportunistic generalist carnivores”. We classified

them simply as generalist carnivores for the purposes of this study. Regarding the 8

species outside of the order Carnivora with known UGT1A1 and UGT1A6 sequences,

all primates (human, crab-eating macaque, chimpanzee) and rodents (rat, mouse) were

determined to be generalist carnivores, while the ruminants (cow and sheep) were con-

sidered hypocarnivores.
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3.2.4 Correlation of diet with UGT1A6 gene defects

The molecular phylogenetic relationships shown in Figures 9 and 10 were further re-

fined to include information regarding the dietary classification of each species. The

color red in the trees designates hypercarnivores, green designates hypocarnivores and

black designates generalist carnivores. Figure 9 shows that UGT1A6 is only defective

in Carnivora species that are hypercarnivores (Felidae, brown hyena and Northern ele-

phant seal). All other hypercarnivores (ferret, mongoose, aardwolf and spotted hyena),

generalist carnivores and hypocarnivores showed no genetic lesions in UGT1A6.
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4 Discussion

The most important result of this research is that we found multiple inactivating muta-

tions in the UGT1A6 exon 1 sequence of all 19 species in the Felidae family we evaluated

(Table 5). The presence of multiple mutations is consistent with the UGT1A6 gene be-

ing a pseudogene, and not simply a common polymorphism with the potential for some

individuals within a species to lack these mutations.

Interestingly, 5 of the mutations (2 premature stop codons, and deletions at 3 positions;

Table 5) were common to all the Felidae species studied suggesting that these 5 mutations

may have arisen in a common ancestral species. Based on a recently established timeline

of the phylogenetic relationships among Felidae species (Johnson et al., 2006), these

mutations, most likely occured more than 10.8 million years ago. The first Felidae-like

carnivores appeared during the Oligocene Epoch around 35 million years ago Johnson et

al. (2006). Later, during the late Miocene, the true cat species evolved. Study of dental

and skull morphology indicates that these species may have become hypercarnivores

before 15 million years ago (Morris, 2002).

Although we know the likely timeline, we do not as yet know the reason for fixation of

the founding mutations in the Felidae lineage. One of the possible scenarios could be

that due to the loss of functionality and selection pressure, deleterious mutations might

have occurred in the UGT1A6 gene of the ancestors of the modern felids. Fixation of

the mutation then might have occured either through genetic drift (neutral evolution) or

through genetic selection associated with the energy cost of producing a nonfunctional

enzyme. However, this does not appear to have occured with other hypercarnivores

such as ferrets suggesting that an additional factor (or factors) might be involved. In

particular, establishment of nonfunctional genes such as this within an entire population

is more likely at times when the species population is severely restricted (i.e. a population

bottleneck) and followed by rapid amplification of the genetic trait when the population

recovers (founder effect)(Stearns & Hoekstra, 2000). Following fixation of the founding

mutation (pseudogenization), further mutations would then be possible probably as a
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result of neutral evolution in parallel with speciation (Stearns & Hoekstra, 2000; Kimura,

1968). In support of this, we have seen several lineage-specific additional mutations,

including a 100 bp deletion in all the Panthera species studied, and a 4 bp deletion in

the mountain lion and Florida panther subspecies. Several additional insertion/deletion

mutations were also found in jaguar, pampas cat, serval, domestic cat, and leopard

cat.

Brown hyena and Northern elephant seal were the only other (non-Felidae) species to

have inactivating mutations in UGT1A6 . Interestingly, the 2 brown hyena DNA sam-

ples showed a single inactivating UGT1A6 mutation (in-frame premature stop codon)

that was identical to one of the 5 ancestral Felidae mutations. There are several ex-

planations for this observation. Firstly, since hyena and Felidae are closely related, it

may represent an ancestral mutation that was fixed in the felid lineage and possibly

maintained as a polymorphism in the brown hyena but not in spotted hyena and aard-

wolves, which are more closely related to brown hyena. Secondly, it may represent an

independent event that occurred at the same position that is highly prone to mutation

(Duncan & Miller, 1980). Specifically, the ancestral codon at this position in closely re-

lated species including aardwolf, Indian mongoose, African civet and binturong is CGA

which normally codes for the amino acid arginine. It is well known that methylated cy-

tosine can spontaneously deaminate to thymidine thereby creating the stop codon TGA

from CGA (Duncan & Miller, 1980). In either case, since no other aberrant mutations

were found, the premature stop codon probably represents either a fixed mutation that

occured recently or is a polymorphism (with allelic variants CGA and TGA) in the

entire population and by chance the individual animals we sampled were homozygous

variant for that polymorphism. Consequently, future work is needed to determine the

prevalence of this mutation in the entire brown hyena population through study of many

more, unrelated individuals.

In contrast to brown hyena, Northern elephant seal showed at least 2 inactivating mu-

tations that make it more likely pseudogenization of UGT1A6 rather than genetic poly-

morphism. Again, evaluation of more, unrelated individual animals would help clarify
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this. We were unable to successfully amplify and sequence UGT1A6 in the closely related

Otariidae species. This was not a problem related to poor DNA quality since we could

easily amplify UGT1A1. Consequently, either UGT1A6 is not present in Otariidae, or

the sequence at all of our primer sites in UGT1A6 is quite different from UGT1A6 in

all other species. In future work the presence of a UGT1A6 region of DNA in these

species could be confirmed by low stringency genomic DNA hydridization analysis using

a probe specific for UGT1A6 as was previously done for cat UGT1A6 (Court & Green-

blatt, 2000). Furthermore, with molecular biology techniques such as inverse PCR, as

was used for ferret and cat UGT1A6, it may be possible to obtain surrounding UGT1A6

sequence in the Northern elephant seal and design PCR primers that are more specific

to the Otariidae UGT1A6 (if present).

Evidence from this study supports our hypothesis that all species that have UGT1A6

defects (Felidae species, Northern elephant seal, and brown hyena) are hypercarnivores.

The fact that the UGT1A6 mutations in these 3 groups of animals may have arisen

independently supports the notion of a common environmental factor such as diet in

influencing the ability of these mutations to become fixed in the species. Again as in

the Felidae, there are probably factors in addition to diet required to enable the fixation

of the mutation. Interestingly, both the Northern elephant seal and brown hyena are

known to have severely reduced populations in recent history, which may have promoted

this defect (Hoelzel et al., 2002; Rohland et al., 2005). This possibility is of major

concern from the species conservation and restoration point of view. When an animal

species is about to go extinct and the few remaining animals at the zoo are bred to bring

their population to surviving levels, deleterious genes are more likely to be retained and

amplified in their offspring (Hedrick & Kalinowski, 2000).

Animals that are generalists are assumed to be better adapted to changing environments

(Morris, 2002) while animals that are specialists, such as the hypercarnivores may be

more at risk. Living organisms get exposed to a wide variety of environmental chemicals,

which either exist naturally or because of humans (Watkins & Klaassen, 1986). UGT1A6

plays an important role in the detoxification of many compounds including environmental
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toxicants (Saeki et al., 2005). Consequently, inactivation of this gene may enhance the

effects of environmental toxicity. This might be particularly true in the case of elephant

seals whose environment is being increasingly polluted. This shows the importance

from the conservation point of view of identifying species with dysfunctional UGT1A6

that are more likely at risk from increasing levels of human made environmental toxic

compounds.

Polychlorinated biphenyls (PCBs) are toxic environmental compounds which are poorly

degraded and are metabolised slowly so even low levels lead to bioaccumulation. These

chemicals mostly are in the environment because of their industrial use and accumulate

in land and water resulting in bioaccumulation in the animals (Rice et al., 2003; Niimi,

1996). This poses a potential danger to humans and animals. The atmospheric contami-

nation has contributed to the contamination of plants leading to the bioaccumulation in

animals feeding on them (Rice et al., 2003). These stressors might be contributing to the

diseases in these animals. The animals like elephant seals which lacks proper metabolism

for these phenolic toxins might be in the danger in terms of growth, reproduction and

survival.

Diclofenac is a nonsteroidal anti-inflammatory drug metabolized through the process of

glucuronidation. The mortality of vultures in South Asia has been found to be due to

consumption of livestock carcasses treated with diclofenac before they died (Swan et al.,

2006). This has led to the rapid decline in vulture population of South Asia. This shows

the ecological consequences of phenolic toxic compounds in the animals which have defect

in glucuronidating them. This could be due to bioaccumulation of toxic compounds that

the animal acquires from the pollutants of natural or human-made origin affecting their

growth, reproduction or survival. Thus, the study of UGTs in carnivore birds could be

an interesting future study.

With regards to the categorization of the species based on their diet, the major limi-

tation was the lack of sufficient information for most species. Even if there were many

studies conducted with respect to the food the animals consumed, most of the studies

concentrated on the type of animals the hypercarnivores consumed and didn’t take into
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account the plant matter during the analysis. So more observational studies of carnivores

in their natural environment needs to be done to assess the amount of both the animal

and plant matter they consume.

Finally, Felidae species appear to have other metabolic adaptations to a hypercarnivorous

diet. In addition to UGT1A6, the domestic cat also exhibits deficiencies in other enzyme

systems that are related to their diet (Court & Greenblatt, 2000). Being on top of

the food chain, cats rely on nutrients from animal tissues to meet their requirements.

They cannot synthesize taurine from cysteine, vitamin A from carotene and arachidonate

from lineolate. The inability to synthesize vitamin A from carotenoids is because of the

complete deletion of an enzyme required for the oxidation of carotene to retinal (Morris,

2002). Their metabolism is better adapted to protein utilization compared to fat and

carbohydrate utilization. They lack the enzyme salivary amylase, which is responsible

for the initial CHO digestion (Jernigan, 1989). The domestic cats apparently prefer food

flavored with animal products like fats and meat. So, in contrast to taste preferences

of dogs and people, cats may not be attracted to foods with sweet taste or they might

not be able to detect the sweetness of sugars (Jernigan, 1989). A recent study by X.

Li et al. (2005) indicated that cats lack the ability to detect sweet stimuli. This could

be due to the adaptation to the highly specialized animal diet, which generally lack

carbohydrates and simple sugars. Sweet taste is sensed by a special taste bud receptor

which is the product of two genes. One of these genes was found to be a pseudogene

in cats (X. Li et al., 2005) and also in several other Felidae species including lion and

tiger. This is an interesting parallel to the presence of a pseudogene UGT1A6 in cats

and other Felidae. In future work, it would be interesting to determine whether all

species that lack a functional UGT1A6 also lack this sweet receptor. Furthermore, it

would be interesting to determine whether defects of other gene products related to an

adaptation to a hypercarnivorous diet are present in the domestic cat and also whether

these findings in the domestic cat extrapolate to all other Felidae species.

44



Appendices

A Clustal W alignment of UGT1A6 exon1 sequence.
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B Clustal W alignment of UGT1A1 exon1 sequence.
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