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Abstract 

 
Approaches to Modelling Raccoon Rabies  

 
Erin Elizabeth Rees 

 

A modelling approach was used to increase understanding of the raccoon-rabies 

disease-host system.  This was achieved through the development and application of the 

Ontario Rabies Model (ORM).  The ORM is a spatially explicit individual-based model 

(IBM) that simulates raccoon demographics, rabies disease transmission and various 

rabies control strategies.  An important first step before using this new tool for genetic 

analyses was to validate model processes by assessing parameter input values and their 

impact on simulated outcomes, and model structure and system processes.  This resulted 

in the creation of a Raccoon Ecology Database (REDB), development of a novel 

approach to density estimation from capture-mark-recapture data and the incorporation of 

information theoretic methods into model sensitivity analysis (SA).  The REDB 

confirmed ORM default parameter values fell within known variation, provided sources 

for citing their values and data for meta-analysis.  The REDB also enables 

parameterisation of the ORM in geographic regions beyond southern Ontario and can be 

used as an example data model for creating other ecological databases.  The method for 

estimating density from capture-mark-recapture data is applicable to systematic or non-

systematic trapping arrays.  Raccoon densities in the St. Lawrence region (44°N 75°W) 

were found to range from 5 to 6 raccoons / km2 for forest and agricultural habitat, 

respectively.  The SA further ensured that the ORM functions as intended and that the 
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major factors implicated to affect disease-host systems (e.g. density, transmission rate) 

are also critical factors in the simulated raccoon-rabies system. 

Once validated, the ORM was extended to simulate and track maternal and bi-

parentally inherited neutral genetic markers.  Additional model validation became 

possible by comparing simulated and empirically derived genetic population structures.  

The revised model was used to quantify the effect of the Niagara River as a 50 % barrier 

on raccoon movement in the Niagara Region (43°N 79°W) to infer the effect of this 

landscape barrier on the spread of raccoon-rabies.  This work provided further validation 

of the ORM simulation tool by comparing simulated and empirically derived genetic 

population structures.  Model development and application has increased understanding 

of the raccoon-rabies system and demonstrated the value of a modelling approach for 

ecological explorations. 

Keywords: individual based model (IBM), raccoon (Procyon lotor), raccoon rabies, 
infectious-disease modelling, ecological database, density estimation, sensitivity analysis, 
neutral genetic markers, landscape genetics, landscape barriers 
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Chapter 1  

Introduction 

Spatial epidemiology is the analysis of factors affecting the spatial-temporal 

distribution of disease incidence.  This field of research has received increased attention 

as human globalisation and climate change make our communities more susceptible to 

exotic diseases, as was recently demonstrated with SARS (Severe Acute Respiratory 

Syndrome), and the current threat of avian influenza.      

Raccoon rabies 

Rabies is also a significant public health concern.  The classic rabies virus still 

causes 1000’s of human deaths annually in parts of Africa and India that lack effective 

public health and pet vaccination programs (Sterner and Smith 2006).  More specifically, 

the raccoon rabies strain is estimated to cost the US economy over $USD 400 million per 

year due to loss of livestock, quarantining suspect animals, human post-exposure-

prophylaxis, rabies control programs (Sterner and Smith 2006). 

Raccoon rabies is a variant rabies virus specifically adapted to infect raccoons 

(Procyon lotor) (Winkler and Jenkins 1991).  It was first detected in Florida in the 

1940’s, and a second major epizootic emerged in the late 1970’s along the West 

Virginia/Virginia border (Winkler and Jenkins 1991), spreading northwards at a rate of 

about 30 - 47 km/year (Childs et al. 2000), (Rupprecht and Smith 1994).  It was first 

detected in Canada near Brockville, Ontario, in 1999 (Wandeler and Salsberg 1999) and 

the disease continues to threaten becoming established in south-eastern Canada from 

infected animals crossing the US-Canada border.  There is an epizootic in Quebec 
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(currently, as of August 2007), but the disease is under control in Ontario and New 

Brunswick (Rick Rosatte, pers. comm). 

Infectious disease control 

Raccoon rabies threatens the health of humans, domestic animals, and many other 

wild animals, including skunks and foxes.  Public health and animal welfare agencies in 

Canada and the US exert tremendous effort to prevent, control and ultimately eliminate 

this disease (Rosatte et al. 2001).  A variety of strategies are used such as public 

education, surveillance, depopulation and vaccination (Rosatte et al. 1997).  The goal of 

disease eradication is to reduce the density of susceptible individuals below a threshold 

for which the average individual has less than one contact resulting in the successful 

transmission of the disease (Anderson and May 1991).  This can be achieved through 

population reduction (e.g. culling, fertility control) or by increasing the proportion of 

immune animals (e.g. vaccination) (Ferguson et al. 2003).     

The challenge for designing infectious disease programs is determining which 

type(s) of control to use and their timing, frequency, duration and location of 

implementation, while staying within available resources and public health, animal and 

environmental regulations.  For example, the most effective time for raccoon rabies 

vaccination in Ontario is from early summer, when the young-of-year are old enough to 

respond to vaccination (at least 3 months) (Rosatte et al. 1990), to before periods of 

higher dispersal in the fall so the disease is not spread further afield (Rosatte et al. 2001).  

Appropriate control strategies require knowledge about the disease-host biology and 

ecology and an understanding of factors in the environment that affect the spatial-

temporal spread.  This information can be gained from the analysis of field data and 
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through simulation modelling.  I use both of these approaches to accomplish the goal of 

my thesis: to further develop an infectious disease simulation model, the Ontario Rabies 

Model (ORM; Appendix), to utilise raccoon genetics as another perspective for 

understanding the spread of raccoon rabies.   

Infectious disease modelling 

The development and application of infectious disease models have contributed 

greatly to current understanding of disease-host systems (Anderson and May 1991).  One 

example is by determining conditions under which a disease will become epidemic and 

the proportion of the population needing to be vaccinated to eradicate the disease 

(Anderson and May 1979) (Anderson and May 1982) (Coyne et al. 1989) (Ferguson et al. 

1997) (McCallum et al. 2001).  Advances in ecological and epidemiological theory and 

computing power have enabled the development of different types of models.  For 

example, “classical” state variable models (SVMs) are well-known to ecologists (e.g. 

Lotka-Volterra predation model {Lotka 1925 290 /id}, {Volterra 1926 291 /id})) and 

epidemiologists (e.g. susceptible-infected-recovery (SIR) model {Kermack & 

McKendrick 1927 56 /id})).  More recently, individual-based models (IBMs) have 

emerged as a promising modelling strategy (Sterner and Smith 2006). 

IBMs are built from the “bottom-up”, such that individuals are explicitly 

represented, and it is the sum of the individual behaviours that characterise the 

population(s) (Grimm 1999).  Model processes are stochastically or deterministically 

determined from a set of rules.  The simulations may progress continuously or in discrete 

time steps {Berec 2002 289 /id}.   Model parameters tend to be more mechanistic than 

phenomenological because they often explicitly represent the processes defining the 
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system.  The ORM is an individual-based spatially explicit model that simulates raccoon 

demographics, rabies disease transmission and rabies control strategies, and was recently 

created by the Ontario Ministry of Natural Resources (OMNR) and the Queen’s 

University GIS Lab.     

Why use an IBM? 

The raccoon rabies system has been explored using SVMs {Coyne, Smith, et al. 

1989 54 /id}, {Broadfoot, Rosatte, et al. 2001 20 /id}, and spatial-temporal statistical 

analysis {Rupprecht & Smith 1994 15 /id}, {Wilson, Bretsky, et al. 1997 12 /id}, {Moore 

1999 13 /id}, {Childs, Curns, et al. 2001 132 /id} {Lucey, Russel, et al. 2002 148 /id} 

Tinline et al. 2002, {Guerra, Curns, et al. 2003 136 /id} {Jones, Curns, et al. 2003 146 

/id} {Gordon, Curns, et al. 2004 137 /id}.  Stochastic spatial simulation modelling has 

also been used as a predictive tool and for assessing the effects of rivers and mountains 

on the spread of the disease in Connecticut, New York and Ohio {Smith, Lucey, et al. 

2002 110 /id}, {Russell, Smith, et al. 2004 280 /id} {Real, Russell, et al. 2005 293 /id}.  

An IBM approach has not been applied to the raccoon rabies system, though they have 

been used with success in other disease-host systems (e.g {Fa, Sharples, et al. 2001 296 

/id} {Murray 2002 297 /id} Leung and Grenfell 2003, {Viet, Fourichon, et al. 2004 295 

/id} {Bar-David, Lloyd-Smith, et al. 2006 294 /id}). 

A primary motivation for modelling raccoon rabies with an IBM is to simulate 

disease spread as a spatial process.  Many studies have reported an irregular wave of 

rabies spread across the landscape (Coyne et al. 1989) (Rupprecht and Smith 1994) 

(Wilson et al. 1997) (Moore 1999), (Childs et al. 2000) (Childs et al. 2001) (Lucey et al. 

2002) (Smith et al. 2002) (Tinline et al. 2002) (Guerra et al. 2003), (Jones et al. 2003) 
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(Russel et al. 2003).  More specifically, (Childs et al. 2001)) found significant differences 

in frequency, size and duration of epizootics among the mid-Atlantic States, such that the 

southern States had fewer, smaller, and shorter epizootics than the northern States.  

Moore (1999) used trend surface analysis to show the greatest rate of disease spread was 

from the south-central to northeast regions of Pennsylvania.  It then slowed and 

progressed westwards towards Ohio.   

Infectious disease transmission is a spatial process.  Disease is transmitted along a 

network of individuals, and the spatial-temporal rate of spread is affected by 

heterogeneous environments and varying characteristics of host and disease populations 

(e.g. population density, disease susceptibility and virulence) and how these maybe 

affected by habitat types, landscape barriers, and disease control programs; (Voigt et al. 

1985) (Fahse et al. 1998) {Murray 2002 297 /id}, {Bar-David, Lloyd-Smith, et al. 2006 

294 /id}.  IBMs are suitable for incorporating space because of their non-analytical 

framework, whereas, SVMs commonly define systems with differential equations and 

adding a spatial dimension often makes them unsolvable. 

A second major motivation for using an IBM is the ability to define individual 

genetics and simulate their inheritance.  Infectious disease models typically use empirical 

disease incidence data to construct and calibrate models or validate model outcomes.  

Unfortunately, the quality of disease incidence data is often poor, for reasons discussed in 

Chapter 5, increasing model outcome uncertainty.  Hence, the ORM was further 

developed to simulate inheritance of genetic markers.  Genetic measures from simulated 

genetic output (e.g. ST (Nei 1977)) can be compared with those derived from the 
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empirical raccoon genetic population structure.  And in doing so, it is possible to estimate 

animal disease flow across the landscape for which genetic data are available. 

Approaches to Modelling Raccoon Rabies 

My thesis uses multiple approaches to modelling raccoon rabies.  This was 

necessary to continue evaluating the ORM, if it is to be valued as a tool for understanding 

the raccoon-rabies system, since there were no published studies using the ORM when I 

began my research. 

Parameterisation 

My role in model development began with parameterisation.  Model 

parameterisation defines the parameter input values.  Ideally, the values should lie within 

the known ecological and biological variation.  Furthermore, it is necessary to document 

the sources and justifications for parameter estimates used in the model to make it 

transparent for evaluation {Bart 1995 99 /id}, {Conroy, Cohen, et al. 1995 100 /id}.  

There are 20 parameters defining the fundamental disease-host dynamics in the ORM 

(Table 1.1).  Their input values had been determined from OMNR, or OMNR-partnered 

(e.g. Canadian Food Inspection Agency) field and laboratory studies (e.g. (Rosatte et al. 

1990) (Rosatte et al. 1992) (Wandeler and Salsberg 1999)).   

Before commencing my research, initial parameter testing had been done in the 

context of variation of those data within the province. To further test the inherent theory 

in the ORM and to extend the spatial extent over which the model can be used I wanted 

to see how the initial parameter set compared with observed variation within North 

America. This was accomplished by developing and populating a Raccoon Ecology 
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Database (REDB) that contained peer-reviewed and unpublished ecological and 

biological data on the raccoon rabies system acquired from searching over 800 

documents (Chapter 2).  The REDB is available to researchers for meta-analyses and 

other ecological and biological explorations and this thesis discusses the role of this type 

of meta-data tool in other analyses. 

Subsequent work with the ORM and the REDB confirmed the initial concerns of 

the ORM’s builders that animal densities were a very important component in raccoon 

and raccoon-rabies ecology.  Density is a critical factor in disease spread, hence is a 

fundamental component in infectious disease models (Anderson and May 1991).  

Furthermore, in the ORM, varying the target density of cells composing the virtual 

landscape is one means creating a landscape of different habitat. 
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Table 1.1 ORM parameters defining the fundamental disease-host dynamics.  ORM age 
classes: young of year (0 – 52 weeks), juvenile (>52 - <75 weeks), adult (>75 weeks). 
Parameter: 
Male juvenile/adult dispersal distance 
Female juvenile/adult dispersal distance 
Male young of year dispersal distance 
Female young of year dispersal distance 
Average litter size 
Mean percent mortality 
Density dependent mortality control 
Age of independence from mothers 
Juvenile pregnancy rate 
Adult pregnancy rate 
Birth week 
Litter size variance 
Male juvenile/adult permissible movement 
period 
Female juvenile/adult permissible 
movement period 
Young of year permissible movement 
period 
Target cell population density 
Disease transmission rate 
Mean incubation period 
Contact rate 
Time of infection 
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Consequently an important part of my work was to determine more accurate 

raccoon density estimates.  Density data for the ORM has come from OMNR capture-

mark-recapture studies.  Density is calculated using a modified Lincoln-Petersen to 

estimate population size, N {Krebs 1989 235 /id}, and then dividing N by the entire area 

of the trapping cell.  While this has been sufficient for the OMNR to monitor the raccoon 

rabies control program, other methods are available for calculating more accurate density 

estimates.  Chapter 3 describes how distance sampling methods {Buckland, Anderson, et 

al. 2001 233 /id} were used to improve raccoon density estimates from OMNR capture-

mark-recapture data.  Program MARK {White & Burnham 1999 238 /id} was used to 

derive N using estimators that account for unequal capture rates relative to capture date, 

behaviour, unknown population heterogeneities and known factors (e.g. sex, age) {Otis, 

Burnham, et al. 1978 217 /id}, unlike the Lincoln-Petersen method which assumes equal 

capture rates {McCallum 2000 70 /id}.  Density estimates were further improved by 

refining the area over which N is applied to account for the trap layout and raccoon 

movement characteristics.  This was advantageous for reducing variation in habitat-

density analyses, enabling the discrimination of raccoon densities relative to different 

types of rural landscapes in the St. Lawrence region of Ontario.   

Sensitivity Analysis 

The ORM was intentionally developed as an individual-based and complex model 

mirroring what was thought to be important biological processes underlying raccoon 

demography and rabies spread within raccoon populations.  A more highly parameterised 

model enables detailed representations of the system being simulated, but also means 

there are more parameter values to estimate and contribute to outcome uncertainty. The 
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design philosophy of the ORM is that parameters/processes can be turned off or left as 

fixed values to simplify model input and experiments where possible (Tinline et al. 

2007).  Thus, some form of model sensitivity analysis (SA) is required to determine the 

importance of parameters by examining their impact on response variables chosen for the 

particular investigation.   

I developed a novel SA approach using information theory methods (Chapter 4).  

Ideally a fully factorial design is used to define parameter input specifications for running 

models that test every combination of parameter values over the range of parameter space 

{Box, Hunter, et al. 1978 59 /id}.  This is impractical for parameter-rich models because 

it would require mn runs when checking m number of input values for n number of 

parameters {Voight, Tinline, et al. 1985 1 /id} {Blower & Dowlatabadi 1994 60 /id}.  

Instead, Latin hypercube sampling (LHS) was used as a more efficient method defining a 

set of parameter input specifications for multiple runs of the model that cover the full 

range of parameter space {McKay, Conover, et al. 1979 203 /id}; Chapter 4).   

The next challenge was then to partial out the effects of parameters on model 

outcomes to determine if the parameters “sufficiently” contributed to characterising 

system behaviours.  There are a variety of sensitivity testing procedures {Hamby 1994 68 

/id},{Hamby 1995 69 /id}, though surprisingly none quantifiably assess whether the 

benefit of including a parameter to increase explanation of outcome variation outweighs 

the cost of increasing outcome uncertainty.  Hence, this issue was explored using 

analytical methods founded on information theory, which also had the benefit of 

overcoming some inherent problems in frequentist statistical testing (Chapter 4). 



 

 11  

In sum, the advantages of SA are to a) check for proper model functionality, b) 

identify parameters having the greatest impact on model outcomes to determine the 

parameters requiring the most accurate input values, c) increase understanding of the 

factors affecting the modelled system, and d) assess for model parsimony.  SA was a 

particularly important step of ORM development because there has been a lack of 

empirical data to support or validate model results. 

Genetic Simulation Modelling 

Further developing the ORM through parameterisation and sensitivity analysis 

resulted in identifying and correcting coding errors (e.g. injecting rabies into a simulation 

when time of initial infection set to not occur but percentage of animals initially infected 

set to be greater zero), confirmed the accuracy of density input values, but also instilled 

more confidence in the ability of the ORM to model raccoon-rabies.  Hence, in the belief 

of starting simply, and then validating before using the model or adding more 

complexity, I believed it was time to develop the ORM as a “genetic” simulation model. 

Genetic data have been used in IBMs in two ways.  One approach is to use 

functional genes, because they influence the fitness (or behaviours) of the individuals 

{Murray 2002 297 /id}, (Leung and Grenfell 2003)).  For example, (Leung and Grenfell 

2003) used an IBM to incorporate genetics in the form of disease resistant alleles, 

because this was found to be a critical factor for successfully modelling the 

epidemiological patterns of the coyote-scabies disease system.  The second approach is to 

use neutral genes because they do not affect individual fitness, hence, experience no 

selective pressures.  The ORM was further developed to define and implement 

mechanisms for maternal and bi-parental genetic inheritance of neutral markers.  This 
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enables tracking of population-level movements because gene flow of these markers will 

only be indicative of dispersal and mating systems.   

Modifications to the ORM required adapting the individual tracking processes and 

adding a mating system. This enabled using the ORM in a novel fashion to develop a 

method that has the potential to measure the impact of physiographic features on raccoon 

movement and potentially the spread of rabies.  The specific application of this approach 

was to measure the effect of the Niagara River to raccoon movement, an area of great 

concern to raccoon rabies spread in Ontario and an area where appropriate genetic data 

were available (Chapter 5).  This work had the additional benefit of providing further 

evidence to validate demographic behaviour within the ORM model and to develop 

further insight into the design of rabies control measures. Most importantly, this part of 

my research demonstrates the value of using an infectious disease model, which 

simulates genetic inheritance, to predict disease flow in an uninfected landscape. 

 Increasing Understanding through Model Development and Application 

Thus, my infectious disease modelling approach has concentrated on testing the 

ORM, increasing its range of potential applications and, in doing so, examining how 

simulation modelling (and development) contributes to our understanding of disease-host 

systems. 
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Chapter 2  

Raccoon Rabies Database: a meta-analysis tool for data storage, management and 

retrieval  

Abstract 

The value of scientific studies increases and is extended when their data are stored in a 

manageable and accessible format.   This is demonstrated through development of a 

raccoon ecology database (REDB) to store, manage and disseminate available peer-

reviewed and unpublished data on raccoon (Procyon lotor) biology, ecology and raccoon 

rabies, including citations for data sources.  Over 800 documents were identified and 

citations for them entered into the database as literature references.  Almost 1000 

parameter values were entered from approximately 200 of these sources; these data 

included estimates of population density, survival rates, rabies incubation period, litter 

size, body weight, dispersal distance and home range size, often by age or sex class.  

Each datum is linked to a citation for its source, and to information about location and 

land use in the study area, time of year the study was undertaken, sample size, and 

variance.  The relational database design enables querying and easy updating and 

manipulation of data.  Hence, the REDB is well-suited for meta-analyses.  The relational 

data model is presented and the application of the REDB to sensitivity testing of an 

individual-based, spatially explicit population model of raccoon rabies.  Also given are 

example queries and interesting aspects of preliminary meta-analysis results.  The REDB 

is a useful research tool that will increase in value with ongoing inclusion of data from 
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future raccoon and raccoon rabies studies and serves as a model for database design and 

research applications to other species. 

Introduction 

The synthesis of data from many independent studies into data warehouses 

encourages a more comprehensive analysis of ecological systems (Jones et al. 2006).  

This is useful for advancing ecological theory, for developing appropriate nature 

conservation strategies and extracting additional value from past research studies.  

Traditionally, ecological reviews were qualitative and used a standard “vote counting” 

approach.  However, progress in the methodology of meta-analysis is increasing the 

ability of review studies to analyse and present their results more objectively and 

quantitatively (Arnqvist & Wooster 1995b).  There are now well-established 

methodologies for properly undertaking such studies ((Gates 2002), (Roberts et al. 206)), 

and consequently the need for ecologists to systematically preserve and make their data 

available has become increasingly important and feasible (Michener et al. 1997, 

Michener 2006). 

The multifaceted value of ecological databases is demonstrated through the 

creation of a raccoon (Procyon lotor) ecology database (REDB).  The REDB was 

designed to store and manage parameters about raccoon biology, ecology and rabies 

collected from available peer-reviewed literature and unpublished “grey literature”, and 

includes citations referencing the data sources.  Parameters were collected primarily from 

ecological and biological field and laboratory studies undertaken in North America.  

Examples of the collected data include: mortality rates, litter size, home range size and 

raccoon rabies incubation period.  Meta-data, such as sample size, a measure of the 
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variance for each demographic and disease parameter, sex and age class, time of year and 

geographic coordinates of the study area, also were collected. 

All of the data were organised in a relational database.  Relational databases store 

data in tables.  A table represents an entity set, which is the generic structure of the 

objects being modelled in the database.  Each row in the table contains data for an 

individual entry.  Each column holds data for one attribute of the entity.  A relational 

design enables tables to be linked to each other using a relational join.  The function of a 

relational join is to link a table to another table by matching data values from a column or 

columns from one table to corresponding values in a column or columns in the other 

table.  Column(s) in a table that uniquely identify each row are referred to as a primary 

key.  The primary key is then used to establish a link with another table that has 

column(s) matching the primary key.  These matching column(s) are referred to as a 

foreign key.  Relational joins enable data to be queried across multiple tables.   

There are many advantages to using a relational data model.  Less data 

redundancy occurs than when data are stored in 2-dimensional data matrices (e.g. 

spreadsheets).  Modifications to information are only necessary in tables that relate to that 

information.  Relational databases are easy to use and implement compared to other data 

management systems (e.g. network and object-oriented systems).  The relational 

approach is widely available through good proprietary software systems (e.g. Microsoft 

Access 2000®).  Furthermore, extensive querying of the database is possible through a 

powerful and standardized query language facilities using Structured Query Language 

(SQL).   
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For these reasons, an important advantage of the REDB is that it is possible to 

query the database for numerous types of user-defined information.  For example, queries 

can be run for i) raccoon densities grouped by rural, suburban and urban landscapes, ii) 

mortality rates for winter, spring, summer and fall, iii) sizes of male and female home 

ranges, or iv) litter size values reported at different geographic latitudes.  The REDB is of 

value to wildlife biologists, ecologists and infectious disease researchers whose studies 

pertain to raccoons and raccoon rabies.  Also, managers of raccoon populations and/or 

raccoon rabies disease control programs would benefit by having access to a wide range 

of data from many North American locations spanning decades of time to enable more 

informed decision-making.  The REDB was used to determine parameter values and 

examine their variation within North America for sensitivity testing of a raccoon rabies 

individual-based spatial simulation model.  

In this paper the REDB data model is presented, data are summarised and applied 

to a meta-analysis, and the utility of the REDB for sensitivity testing a simulation model 

is revealed.  Similar studies have created databases that are also available for research 

(e.g.(Gachet et al. 2005), Onstad 2007).  The REDB is a useful research tool that will 

increase in value with on-going inclusion of data from future raccoon and raccoon rabies 

studies. 

Methods 

An extensive literature search was performed using the ISI Web of Science® and 

Google Scholar ™ search engines.  The aim was to obtain data from primary sources as 

opposed to review articles or books.  Full citations of all raccoon and raccoon rabies 

literature sources were managed in ProCite version 5.0 (www.procite.com) and also 
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stored for the convenience of data users in the REDB.  As many publications as were 

accessible from university and Ontario Ministry of Natural Resources (OMNR) 

provincial government libraries were reviewed.  Statistics were collected for 56 different 

parameters (Table 2.1).  Parameters were chosen based on their importance in defining 

raccoon biology, ecology and raccoon rabies disease dynamics.  Parameters commonly 

reported in the reviewed studies were also included.  For every parameter value entered 

into the database, ancillary data were collected pertaining to the value (e.g. sample size, 

variance, sex class) and study site (e.g. location coordinates, season) (See Figure 2.1. 

tables [T3_Parameter_Values] and [T2_Study_Area] for a complete list).  A “comments” 

field in table [T3_Parameter_Values] was used to record information specific to each 

parameter value.  For example, for the “movement_rate” parameter, the comments field 

was used to record if telemetry data were acquired during the hunting season, because 

hunting may affect raccoon movement.  The “comments” field was also used to store 

verbal definitions of parameter values; for instance, providing the following detail about 

the “species range” parameter: “Assiniboine and Red River valleys limit the northern 

range of raccoons in Manitoba.” 
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Table 2.1 REDB parameters and their description.  
Parameter Description 

age_of_first_ 
movement_with_ 
mother 

Age at which an offspring explores freely, but is still dependent on 
its mother 

age_of_ 
indepedence_from_
mother 

Age at which an offspring is no longer dependent on its mother for 
survival 

age_of_weaning Age at which an offspring is being weaned by its mother 
age_ratio Ratio of juveniles to adults 
birth_period Time of year when mothers are giving birth 
body_condition Body condition 
body_weight Body weight 
body_weight_ 
change 

Change in body weight over time 

breeding_period Time of year when animals are mating 
capture_rate Rate at which animals are captured in traps 
chance_of_giving_ 
birth 

Chance of a raccoon giving birth 

consortship_ 
duration 

Length of time spent courting and mating with another animal 

consortship_ 
partners 

Number of partners an individual has mated with during a breeding 
season 

consortship_success The percentage of consortships that resulted in the production of 
offspring 

contact_rate A measure of animals interacting among each other per unit time 
core_home_range The area of the most highly used portion of an animal's home range 

(e.g. daily activity space) 
Dens Number of dens used by a animal for a defined period of time (e.g. 

season, year) 
Density Density of animals: density = population size / area 
density_ 
dependence 

Documented factors regulating population levels of animals 

disease_cycling_ 
period 

Duration of a period in a cycling pattern of disease incidence in a 
population 
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Table 2.1. con’t 
Parameter Description 

disease_prevalence Prevalence of disease among a group of animals (e.g. percentage, 
count) 

dispersal_distance Distance that an animal disperses 
dispersal_period Time of year an animal disperses from its mother 
enzootic_duration Length of time an established disease exists in an animal population 
epizootic_period Duration of time between cycling peaks of disease incidence 
Fecundity Offspring/individual productivity of an animal 
first_epizootic_ 
duration 

Length of time of the first epizootic (e.g. number of consecutive 
months when disease incidence is greater than median; Childs et al. 
2000) 

first_epizootic_ 
maximum 

Number of rabid raccoons in the first epizootic (Childs et al. 2000) 

first_epizootic_ 
period 

Length of time of the first epizootic AND the interepizootic period 
before the start of the second epizootic (Childs et al. 2000) 

Gestation Length of the gestation period in days 
habitat_selection Proportion and/or type of habitat which the animal chooses to 

occupy 
home_range Area of the activity space of an animal 
incubation period Length of time an animal carries the disease from infection until 

they are symptomatic 
infectious_period Length of time an animal is symptomatic and can infect another 

individual 
life_span Length of time an animal lives 
litter_size Number of live offspring in a litter 
mating_system A numerical value indicating the type of mating system: 1 = 

polygynous (single male mates with multiple females), 2 = 
promiscuous (both males and females have multiple mates) 

mortality_causes Amount of mortality (e.g. count, probability) attributable to 
documented factors, as reported in the "comments" field 

movement_rate Rate of movement of animals 
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Table 2.1. con’t 
Parameter Description 

natural_immunity Measure of animals natural immunity to a disease 
neck_circumference Circumference of an animal's neck 
oestrus_duration Length of time a female is in oestrus  
oestrus_period Time of year a female is in oestrus 
overlapping_core_ 
home_range 

Area that animals’ core home ranges overlap 

overlapping_home_ 
range 

Area that animals’ home ranges overlap 

Parous Percentage of females that have given birth more than once relative 
to all the sampled females 

placental_scars Number of placental scars  
population_size Number of animals within a population 
positive_cases_ 
time_to_peak 

Length of time from initial outbreak to the time of maximum disease 
incidence 

roadkill_index Index of roadkills 
sex_ratio Ratio of males to females (or indicate if otherwise) 
site_fidelity Measure of site fidelity 
species_range Description of species range recorded in “comments” field 
Survival Survival of animals (e.g. proportion) for a defined period of time 
tail_length Tail length of an animal 
total_length Total length of an animal 
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Figure 2.1 Relational database design between the four tables of the raccoon ecology 
database.  Primary keys are in bold. 
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 Multiple individuals reviewed studies to enter study sites and parameter 

information into the REDB.  To check for bias and consistency in reader interpretations, 

all readers initially reviewed and entered data for the same 10 studies and the results were 

compared.  Readers also entered study site and parameter information using data input 

forms built into the REDB to ensure consistency and minimise data entry errors.   

Commonly entered information was selected from predefined lists stored in the database 

in lookup tables. For example, “hectares”, “square kilometres”, or “square miles” could 

be selected from the units field. 

Overview of the REDB 

The data were organized and stored in a relational database using Microsoft 

Access 2000®.  Four tables store the data.  “T” prefixes the names of these tables.  

Lookup tables are prefixed by “LUP”, and are linked to commonly entered fields in the 

data tables.  One remaining table serves as a reference for users needing to convert 

calendar dates into Julian days [REFERENCE_Julian_dates], as was required for some of 

the temporal parameters (e.g. birth period, dispersal period) (Table 2.2). 

Relational Database Design 

The data tables are related to each other using one-to-many relationships (Figure 

2.1).  Starting with the [T1_Authorship] table, this means that every study reviewed is 

listed once in the table using the “study_id” field as the primary key.  This field relates 

data from [T1_Authorship] to the [T2_Study_Area] table using one-to-many 

relationships, where the “study_id” field is the foreign key.     

Table 2.2 Names and descriptions of the lookup and data tables found in the raccoon 
ecology database.  
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Table Name Description 
LUP_age_class Age class categories 
LUP_capitivity_status Captivity status categories 
LUP_country Countries where studies were undertaken 
LUP_data_entry_person Names of people reviewing and entering data into the database 
LUP_disease Types of diseases potentially affecting the animals 
LUP_estimate_source Type of study undertaken (e.g. field, lab) 
LUP_landscape Types of landscape where studies were undertaken 
LUP_latitude "North" and "south" hemispheres for study location 
LUP_longitude "East" and "west" hemispheres for study location 
LUP_method Methods used to collect data (e.g. radio collars, mark recapture) 
LUP_organisation Organisation to which the person entering data into the database is 

affiliated 
LUP_parameter_name Parameter names for data values (See Table 2.1 for list) 
LUP_period Periods of time as months and seasons 
LUP_season Periods of time as the seasons and an overall annual period 
LUP_sex Gender codes (e.g. male, female, both, unknown, N/A) 
LUP_state Provinces in Canada and states in the USA 
LUP_study_area_name Names of common study areas 
LUP_units Common units pertaining to measurement data (e.g. "hectares" for area 

of home range) 
LUP_USA_counties All counties by state in the USA 
LUP_year Years from 1930 to 2010 from which studies have been (and will be) 

undertaken 
REFERENCE_Julian_dat
es 

User reference table containing calendar days of the year and the 
Julian date equivalent 

T1_Authorship Data table containing full citation information for every study found 
during the literature search, and for those subsequent studies that have 
parameter values stored in the REDB.  This table also stores the names 
of the “readers” who reviewed the studies and entered the data into the 
REDB  

T2_Study_Area Data table containing information about the study area (e.g. 
geographic, time at which the study was undertaken) 

T3_Parameter_Values The main data table of the database that contains the biological and/or 
ecological information published in the study 

T4_Disease Data table listing the types of diseases present in the studied animals 
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Consequently, the [T2_Study_Area] table can have more than one entry of a “study_id” if 

there are multiple study areas associated with one publication.  The “study_area_id” is 

the primary key in the [T2_Study_Area] table and is used to form a one-to-many 

relational join with the [T3_Parameter_Values] table through its foreign key, 

“study_area_id”.  Hence, one study area may have information pertaining to more than 

one parameter.  There is a unique record for each statistic reported in the results section 

of a study, as identified by the “parameter_id” primary key field.  The “parameter_id” 

field in the [T3_Parameter_Values] table is used to form a one-to-many relational join 

with the “parameter_id” foreign key field in the [T4_Disease] table.  Thus, animal(s) 

from which the parameter value is derived can be affected by more than one disease.   

Meta-Analysis 

 A meta-analysis was performed on data for home range size, density, and litter 

size.  Within the REDB, the data for these parameter values were converted to common 

units (e.g. raccoons/km2 for density, and hectares for home range).   

 A meta-analysis, analogous to a one-way analysis of variance (ANOVA) {Lipsey 

& Wilson 2001 270 /id}, was used to assess the effect of sex on home range size.  QB was 

used as the test statistic since it accounts for the portion of variation in the dependent 

variable, home range size, which is explained by the categorical variable, sex.  A 

weighted least squares regression model was used to test for the relationship between 

latitude and density.  Both analyses used a mixed-effects model.  Mixed-effect models 

account for variation that results from known factors within studies (e.g. sex, latitude, 

season), while still accounting for the existence of factors causing variation among 

studies that are not being explicitly modelled (e.g. different sampling protocols, unique 



 

 25  

study area characteristics, unknown random factors) {Lipsey & Wilson 2001 270 /id}.  

Mixed-effect models are also among the most “appropriate, powerful, and informative for 

the analysis of weighted meta-analysis data” {Gurevitch & Hedges 1999 276 /id}.   

Effect size (ES) and inverse variance weight (w) variables were calculated to 

standardise the results among studies so that they could objectively be compared.  These 

variables were calculated as outlined by Lipsey and Wilson (2001) for arithmetic means: 

ES = X = 
n
xi                   (Eqn. 1) 

 

w = 
v
1                     (Eqn. 2) 

where xi is an individual observation within a study, from i = 1 to n, n is the sample size 

of the observations and v is the variance of the observations.  The weighted least squares 

mixed-effects regression models were performed in SPSS for Win/Version 11.0 as 

specified from macros provided by Lipsey and Wilson (2001) and available at 

http://mason.gmu.edu/~dwilsonb/ma.html. 

A formal meta-analysis was not possible with the litter size data because too few 

studies reported information on the variation of the litter size statistic; thus, w could not 

be calculated.  Insufficient data is common in meta-analysis, but does not always 

preclude analysis from the raw data, since it still can be informative {Gurevitch & 

Hedges 1999 276 /id}.  Therefore, correlation analyses were used to test the correlation 

between degrees of latitude and litter size. 
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Sensitivity Analysis 

The initial motivation for creating the REDB was to enable sensitivity testing of a 

raccoon rabies spatial simulation model, the Ontario Rabies Model (ORM).  The ORM is 

an individual-based spatially explicit simulation disease-host model currently configured 

for raccoons.  It simulates raccoon population dynamics, raccoon rabies viral 

transmission, and rabies control strategies.  A sensitivity analysis procedure was 

developed to test model behaviour for the 16 demographic and 5 disease parameters that 

characterise raccoon rabies dynamics.  Parameter input values were defined using Latin 

hypercube sampling (LHS) because it is substantially more efficient than using a fully 

factorial design when assessing highly parameterised models (McKay et al. 1979).  LHS 

draws parameter values without replacement and with equal probability over the entire 

parameter space of its probability distribution function (pdf).  Thus, it was necessary to 

obtain as much information as possible for each parameter to define their pdf, and the 

REDB was an efficient means of storing, managing and querying these data for 

sensitivity testing.  In this paper, example pdf’s are given for home range size by sex and 

litter size.  Parameter pdf’s were fitted using Palisade Corporation’s @RISK software, 

version 4.5.4 (www.palisade.com).   Furthermore, the REDB was used to demonstrate 

that the ORM default values, as defined from Ontario field data (e.g. Rosatte 2000), fall 

within the range of known variation for rural raccoons across North America.  

Results  

 The search of literature pertinent to raccoon biology, ecology and raccoon rabies 

produced a list of 864 documents.  Approximately 200 of these articles and books were 

obtained, and of these sources, 114 contained relevant data (993 parameters) that were 

http://www.palisade.com/
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entered into the REDB.  The data entry readers were consistent and accurate in their input 

of data from the initial review of the same 10 studies.  The majority of published data 

available for entry into the REDB pertained to density, litter size, survival, home range, 

dispersal period and incubation period (Table 2.3). 

The query created to retrieve information for the meta-analysis of home range size 

yielded 116 parameter estimates for home range size from the database. The SQL query 

and the Microsoft Access Design View version of the query are shown in Table 2.4 and 

Figure 2.2.   

 Meta-analysis indicated that males had significantly larger home ranges (HR) than 

females (HRmale = 352.1 hectares ± SE 52.5, HRfemale = 128.1 hectares ± SE 52.6; QB (one 

tailed, =0.05) = 9.1, P-value = 0.003).  There was a significant negative relationship of 

latitude and raccoon densities (density = 584.2 – 12.3latitude, R2 = 0.11, p = 0.04).  Meta-

analysis of litter size reveals a significant positive correlation with latitude (r = 0.38, p = 

0.032, n = 32).  The correlation is strongest when studies are restricted to those occurring 

in rural landscapes and pertains to adult reproduction, omitting juvenile mothers (r = 

0.74, p < 0.001, n = 18); a second order polynomial model fits most closely to the data 

than linear, power or exponential models (Figure 2.3; Table 2.5).   
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Table 2.3 Parameter names and the associated number of useable studies from which data 
was collected to contribute to the REDB. 
Parameter Name Count Parameter Name Count 
age_of_first_movement_with_mother 1 first_epizootic_period 1 
age_of_indepedence_from_mother 1 Gestation 1 
age_of_weaning 1 habitat_selection 7 
age_ratio 2 home_range 18 
birth_period 5 incubation_period 10 
body_condition 1 infectious_period 4 
body_weight 6 life_span 2 
body_weight_loss 1 litter_size 22 
breeding_period 2 mating_system 2 
capture_rate 1 mortality_causes 6 
chance_of_giving_birth 5 movement_rate 3 
consortship_duration 1 natural_immunity 1 
consortship_partners 1 neck_circumference 1 
consortship_success 4 oestrus_duration 1 
contact_rate 1 oestrus_period 1 
core_home_range 3 overlapping_core_home_range 1 
Dens 2 overlapping_home_range 3 
Density 34 Parous 2 
density_dependence 1 placental_scars 1 
disease_cycling_period 1 population_size 7 
disease_prevalence 6 positive_cases_time_to_peak 1 
dispersal_distance 13 roadkill_indice 1 
dispersal_period 1 sex_ratio 2 
enzootic_duration 1 site_fidelity 1 
epizootic_cycling 3 species_range 1 
epizootic_period 1 Survival 19 
Fecundity 2 tail_length 1 
first_epizootic_duration 1 total_length 1 
first_epizootic_maximum 1   
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Table 2.4 SQL query used to retrieve home range size information from the REDB.  
SQL Query 
SELECT DISTINCT T3_Parameter_Values.parameter_name, T1_Authorship.lead_author, 
T1_Authorship.year, T2_Study_Area.landscape_type, T3_Parameter_Values.season, 
T3_Parameter_Values.sex, T3_Parameter_Values.age_class, T3_Parameter_Values.value, 
T3_Parameter_Values.units 
FROM (T1_Authorship INNER JOIN T2_Study_Area ON T1_Authorship.study_id = 
T2_Study_Area.study_id) INNER JOIN T3_Parameter_Values ON T2_Study_Area.study_area_id = 
T3_Parameter_Values.study_area_id 
WHERE (((T3_Parameter_Values.parameter_name)="home range" Or 
(T3_Parameter_Values.parameter_name)="home_range" Or 
(T3_Parameter_Values.parameter_name)="core_home_range")) 
ORDER BY T1_Authorship.lead_author, T1_Authorship.year, T2_Study_Area.landscape_type, 
T3_Parameter_Values.season, T3_Parameter_Values.sex, T3_Parameter_Values.age_class, 
T3_Parameter_Values.value; 
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Design View 

Figure 2.2 Design view of the query used to retrieve home range size information from 
the REDB. 
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Figure 2.3 Scatterplot showing the correlation between the mean number of juveniles per 
litter and degrees latitude, and the associated 95% confidence bands.  
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Table 2.5 Parameters for which meta-analyses were conducted and the studies used for 
each meta-analysis.   
Meta-analyses Studies 
Density Broadfoot et al. 2001; Caro 2000; Dorney 1954; Endres and Smith 1993; Fritzell 1978b; 

Gehrt 2002; Gehrt and Fox 2004; Gehrt and Fritzell 1998; Hable et al. 1992; Hartman et 
al. 1997; Hoffmann and Gottschang 1977; Kennedy et al. 1986; Kissell and Kennedy 
1992; Leberg 1988; McCleery et al. 2005; Nottingham 1982; Perry et al. 1989; Prange 
et al. 2004; Ratnaswamy et al. 1997; Ratnayeke et al. 2002; Riley et al. 1998; Rivest and 
Bergeron 1981; Schubert et al. 1998; Seidensticker et al. 1988; Smith and Engeman 
2002; Smith et al. 1994; Sonenshine 1972; Stevens et al. 1995; Twichell 1949; Urban 
1970 

Dispersal 
distance 

Belant 1992; Cowan 1973; Fritzell 1978b; Gehrt and Fritzell 1998; Hartman and 
Eastman 1999; Hoffmann and Gottschang 1977; Lynch 1967; Mosillo et al. 1999; 
Rosatte et al. 1991; Rosatte et al. 1992; Seidensticker et al. 1988; Tabatabai and 
Kennedy 1989 

Home range Chamberlain et al. 2003; Chamberlain and Leopold 2002; Cowan 1973; Fritzell 1978b; 
Gehrt and Fox 2004; Gehrt and Fritzell 1997; Gehrt and Fritzell 1996; Hodges et al. 
2000; Hoffmann and Gottschang 1977; Kamler and Gipson 2003; Prange et al. 2004; 
Ratnayeke et al. 2002; Rosatte 2000; Rosatte and MacInnes 1989; Rosatte et al. 1991; 
Roscoe et al. 1998; Totton et al. 2004; Urban 1970 

Litter size Asano et al. 2003; Bigler 1981; Broadfoot et al. 2001; Cagle 1949; Cowan 1973; Fiero 
and Verts 1986; Fritzell 1978a; Junge and Sanderson 1982; McKeever 1958; Mech 
1966; Ritke 1990b; Ritke 1990a; Rosatte 2000; Rosatte et al. 1991; Sanderson 1987; 
Sanderson 1950; Scheffer 1950; Schneider et al. 1971; Smith 1985; Stuewer 1943; 
Wood 1955; Zeveloff 1981 
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The pdf’s for male and female home range sizes illustrate that males have significantly 

larger home ranges than females, as determined by meta-analysis of raccoon home-range 

size (Figure 2.4). The pdf of litter size indicates that most studies report a litter size of 4 

juveniles per litter, and that litter size ranges between 2 to 5 juveniles per litter for the 

North American studies reviewed (Figure 2.5).  ORM default values are found to lie 

within the variation for rural raccoons across North America (Table 2.6). 

Discussion 
 

 The relational design of the REDB follows the well-established relational data 

model for storing parameters from available literature, and enabled subsequent flexible 

management and manipulation of these data.  The REDB was initially used to extract 

parameter values for sensitivity testing of the ORM, to define biologically appropriate 

values of the parameters.  Biologically-defined values are necessary for determining 

processes that most significantly affect model outcomes (Ginot et al. 2006).  This also 

means that the effect of the parameters on model outcomes can be interpreted in a more 

biologically meaningful context.  This is more appropriate for a primarily mechanistic 

biological model than halving or doubling parameter inputs as described in Voigt et al. 

(1985), because even a parameter of minor importance could impact model results given 

a large enough input value. Doubling or halving input values has the potential to create an 

unrealistic scenario for the natural system being modelled, and might yield results that are 

less informative in terms of understanding the true biological effect of the parameter 

being examined.   
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Figure 2.4 Probability distribution function of male and female home range sizes.
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Figure 2.5 Probability distribution function of litter size reported in 32 studies.   
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Table 2.6 ORM parameter default values from Ontario field data and range of values 
found for rural raccoons in the REDB. *mean of values defined by a probability 
distribution function; unlisted REDB range values were not definable using the REDB.   
Parameter ORM default  REDB range 
Annual rural raccoon 
density  5 raccoons / km2 4.6 – 13.6 raccoons / km2 
Age of independence  20 weeks  20 – 36 weeks 
Adult age  75 weeks -  
Year 0 male (female) 
mortality rate 0.6 sub-adult: 0.4 – 0.51 
Year 1 male (female) 
mortality rate 0.4 
Year 2 male (female) 
mortality rate 0.3 
Year 3 male (female) 
mortality rate 0.3 
Year 4 male (female) 
mortality rate 0.3 
Year 5 male (female) 
mortality rate 0.6 
Year 6 male (female) 
mortality rate 0.6 
Year 7 male (female) 
mortality rate 0.6 adult: 0.3 – 0.9 
Mortality adjuster 0.2  - 

Birth week 
calendar week 18 (end of 
April / beginning of May) 

mid-end April to end of 
May 

Juvenile birth rate 60% 29 – 66% 
Adult birth rate 95% 73 – 100% 
Average litter size 4 2 – 5 
Litter size variance 1 1 
Sex ratio at birth  50:50 male:female 50:50 male:female 
Male juvenile/adult 
movement weeks 

calendar weeks: 8-43 
(spring, summer, autumn) 

no movement during severe 
winters  

Female juvenile/adult 
movement weeks 

calendar weeks: 12-17, 38-
43 (spring, autumn) 

no movement during severe 
winters 

Male young-of-year 
movement weeks 

calendar weeks: 38-43 
(autumn) 

no movement during severe 
winters; disperse July to 
November  

Female young-of-year 
movement weeks 

calendar weeks: 38-43 
(autumn) 

no movement during severe 
winters; disperse July to 
November 
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Table 2.6.  con’t 
Parameter ORM default  REDB range 
Juvenile/adult male 
dispersal distance* 1.36 km 1.2 – 10.2 km 
Juvenile/adult female 
dispersal distance* 0.68 km 0.3 – 8.5 km 
Young-of-year male 
dispersal distance* 2.12 km 0.2 – 16.1 km 
Young-of-year female 
dispersal distance* 1.02 km 0.4 – 6.3 km 
Incubation period* 6.47 weeks 1 – 6 weeks 
Infectious period* 1.00 week 1 week  
Chance of spread 1.5% - 
Contact within cell  77.8% - 
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Furthermore, the REDB confirms that default ORM values fall within the range of known 

raccoon variation.  The ORM was built using the expertise of field biologists who have 

studied Ontario raccoons.  To increase credibility in model design and results beyond the 

builders it is necessary to document sources of model design as extensively as possible 

{Bart 1995 99 /id}, {Conroy, Cohen, et al. 1995 100 /id}. 

 Another important and more common benefit of databases like the REDB is the 

contribution that they make through meta-analyses.  Science is advanced by comparing 

new ideas to old ideas ((Arnqvist & Wooster 1995b), (Gates 2002)), and in the case of the 

REDB, the analysis of raccoon biology, ecology and raccoon rabies is advanced by 

enabling comparisons among different landscapes, seasons, age classes, sexes and 

geographic locations.  Results from a single study may seem unimportant, but may 

appear more meaningful when observed in the context of other studies.  For instance, 

meta-analysis of litter size versus latitude clearly demonstrates a trend of larger litter size 

at higher latitudes (Figure 3.2).  Positive relationships between litter size and latitude has 

been reported in many species (e.g. Conaway et al. 1974, Innes 1978, Cockburn et al. 

1983, Bilenca et al. 1994).  A possible casual mechanism causing this relationship is 

attributed to higher latitudes having more extreme environments, causing increased 

mortality risks due to seasonal variation in food, hence, a shorter breeding period.  To 

increase fitness, animals must invest more per reproductive event, such as, by having 1 

large litter.  This is opposed to have 2 or 3 smaller litters at lower latitudes, spread over a 

longer period of time coinciding with more favourable weather (Zeveloff 2002, 

Rademaker and Cerqueira 2006). 
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Latitude also had a significant negative correlation with density.  This result may 

be consequence of the geographic sampling distribution of the studies.  Species are 

expected to have higher densities at the core of their range (Hengeveld and Haeck 1982, 

Williams et al 2003), because of habitat limitation at range peripheries (Erb and Boyce 

1999).  The raccoon species range extends as far south as Central America (Zeveloff 

2002).  Meta-analysis for this study did not include studies further south than the United 

States.  Thus, it is conceivable that the negative correlation between density and latitude 

is caused by sampling raccoons at the core of the range in the United States, and then 

northwards to studies sampled at the periphery of their range in Canada. 

With regards to home range size, males were found to have significantly larger 

home ranges than females.  This is also expected since raccoons are mostly solitary 

carnivores ((Kaufmann 1982), (Sanderson 1987)) that demonstrate sexual differences in 

behavioural strategies for habitat use and breeding success ((Fritzell 1978b), (Gehrt and 

Fritzell 1997), (Kamler and Gipson 2003)).  Furthermore, male raccoons tend to be larger 

than female raccoons (Zeveloff 2002), and the positive correlation between larger body 

size and home range size has been reported in other species (Grigione et al. 2002, 

Anderson et al. 2006), as is likely due to larger energetic requirements needed to support 

a greater mass (White et al. 2007). 

 An initial review of the same 10 studies by the data entry readers was important to 

ensure quality data collection and enhance the database design.  This exercise 

demonstrated that readers were similarly thorough and accurate in their data input.  Also, 

it adjusted the design of the database to be more efficient and helped formulate more 

useful lookup tables.  Despite this, there are a number of cautions for using data compiled 
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from multiple studies (Arnqvist & Wooster 1995b), (Kotiaho 2002)): 1) They can present 

a biased estimate of a true effect.  This has largely been attributed to the “file drawer 

problem” {Bauchau 1997 266 /id}.  Since most published studies report significant 

effects, the data used in the meta-analysis can be unrepresentative of the true system 

(Kotiaho 2002).  This bias can be countered by collecting data from grey literature, 

unpublished Master’s or PhD theses and government reports (Roberts et al. 206).  An 

attempt was made to include as much grey literature as possible; unfortunately, searching 

for grey literature requires far more effort than acquiring data from published literature.  

However, because grey literature is not peer-reviewed, and is therefore potentially more 

erroneous, it could be viewed as a benefit to meta-analyses to limit data from these 

sources or account for an effect of grey literature on the variation of reported results.  2) 

The research question or interpretation of data can bias selection of data for entry into the 

database.  The REDB is largely free from this bias because all available data were 

collected without filtering to predetermined ecological questions.  Furthermore, several 

observers collected and entered data, hence reducing the potential bias of reader-

misinterpretation.  3) Poor quality studies will degrade the value of the meta-analysis.  

These studies need to be identified through objective measures and eliminated from 

analysis.  Roberts et al. (2006) recommends “assessing the experimental design, 

implementation and analysis” of each study being included in the meta-analysis.  It was 

difficult to rigorously assess every study, given the high number included in the database; 

however, a field was included in the database to “comment” on any cautions or 

peculiarities of a study.  
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 Health sciences have made the greatest contribution, of all the scientific 

disciplines, to advancing the quality of meta-analysis.  The Cochrane Collaboration 

details 27 criteria for undertaking and reporting meta-analyses (Higgins and Green 2005).  

Gates (2002) and Roberts et al. (2006) advocate a similar standard to improve the quality 

of ecological meta-analyses.  These standards should be applied in the creation of 

ecological databases and in subsequent meta-analyses.   

Conclusions 

 The availability of the REDB and other similar databases contribute greatly to the 

exhaustive effort required to locate, store, manage and query data needed for meta-

analyses.  Results from meta-analyses are frequently used by conservation and wildlife 

managers, biologists and ecologists ((Pullin et al. 2004)).  Ecology benefits from 

databases like REDB by increasing the amount of data accessible for comparative and 

broad-scale analyses and thus, increasing the value of science’s investment in past 

studies. 

 The REDB itself offers a robust and simple data model for compilation, 

maintenance and analysis of ecological parameters from published studies.  The database, 

and an empty database for used with other species, composed of empty data tables, 

lookup tables and their relationships, are available from the author (erin.rees@nrdpfc.ca). 
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Chapter 3  

A new approach to density estimation: exploring the density-area relationship 

Abstract 

Knowledge of animal densities is invaluable for understanding, managing and 

conserving wildlife and ecological systems.  Density, D, is commonly calculated from 

capture-mark-recapture (CMR) data using estimates of population size, N, and effective 

trap area, AE, as D = N/AE.  Since a major difficulty of this approach is determining AE, its 

estimation procedure is refined to be more representative of the true area corresponding 

to N.  A distribution of distances characterising consecutive captures of raccoons 

(Procyon lotor) from a trapping program in Ontario, Canada, are used to develop the 

buffered trap area (BTA) approach.  The density estimates were within the range for 

North America and those derived using an established direct density estimation 

procedure.  Negative density-area relationships are characteristics of study designs that 

compromise the accuracy of density estimates.  This trend is detected for “crude” density 

estimates that used the entire trapping cell area for AE, but not for the BTA estimates.  

Further advantages of BTA were an explicit estimation of N, AE and its geographic 

boundary, trap configuration, overall capture probability, CMR distances and density.  

These estimates enable assessment of factors such as habitat, season or trap configuration 

on the methodological parameters and permit more precise exploration of ecological 

relationships.  
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Introduction 

 Animal population density estimates are essential for wildlife biologists and 

ecologists.  Knowledge of densities is used to understand animal population dynamics 

and how they may be affected by other species, disease, habitat quality and 

anthropogenic factors.  This information is fundamental to furthering understanding of 

principles of population dynamics and for creating effective conservation and 

management strategies. 

 Animal density (D) is typically calculated indirectly as the ratio of population size 

(N) to area over which the population estimate applies (A): D = N/A.  The relationship 

between D and A is of particular interest in studies of ecological factors affecting animal 

densities and population extents.  Gaston and Matter (2002) categorise two types of D-A 

relationships: "patch" individuals-area relationships (PIARs) and "generalized" 

individuals-area relationships (GIARs).  In PIARs, A is defined as an isolated habitat 

patch, island, or experimentally created habitat where the population exists.  PIARs can 

be used to explore whether species density differs with the size of a patch.  D-A 

relationships have been hypothesized to be non-existent, positive or negative by the 

equilibrium theory of island biogeography (MacArthur and Wilson 1967), density 

compensation (MacArthur and Wilson 1972) and resource concentration (Root 1973), 

respectively.  PIARs have been used to understand the scale of habitat use by a species, 

and this information is used to determine whether a species is better protected using 

fewer large habitats instead of many small habitats (see the single-large or several-small 

(SLOSS) debate, Simberloff 1988). 
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 GIARs differ because A is defined simply as the area over which density is 

calculated, irrespective of habitat.  GIARs can reveal how various estimates of A affect 

density estimates ((Blackburn and Gaston 1996)(Gaston and Matter 2002), (Mayor and 

Schaefer 2005)).  Capture-mark-recapture (CMR) data are used from a raccoon rabies 

control program to calculate D-AE relationships, where AE is the effective trap area.  A 

negative GIAR is indicative of underestimated density estimates as a consequence of 

methodological problems; 1) inclusion of non-habitat or low density areas; 2) not 

accounting for the edge effect (trapping animals whose home ranges are entirely outside 

of the grid, but are attracted to the traps, or partially enclosed within the boundary of the 

grid; (Dice 1938)) and the fact that smaller areas are more affected than larger areas 

because of having a larger edge area to core area ratio; 3) the tendency to establish larger 

AE’s when animals occur at low densities or are rare and 4) the decline in sampling 

efficiency with increasing AE (Conner et al. 2000, Gaston et al. 1999, Gaston and Matter 

2002, Matter 2000).  

The first issue is most obvious when N is applied to an administrative unit such as 

a park boundary rather than to the habitat occupied by the population of interest or the 

specific area subject to trapping.  There is a greater likelihood of including areas of non-

habitat, meta-population patches currently uninhabited or untrapped areas (Bender et al. 

1998, Conner et al. 2000, Gaston et al. 1999).  Distance sampling techniques (Buckland 

et al. 2001, Efford 2004, Parmenter et al. 2003) can be used to minimise this problem 

because they estimate N for the area over which the organism of interest could be 

detected.   
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The simplest approach for accounting for the edge effect is to use only data from 

the interior traps of a trapping grid (Hansson 1969).  This provides a relatively unbiased 

estimate but causes a significant loss of data.  A more widely used strategy is to increase 

AE by adding a boundary strip around the trapped area, but then the difficulty lies in 

choosing an appropriate strip width (W) (Wilson and Anderson 1985).  The value chosen 

for W is one-half the home range radius (Dice 1938); however, this strategy simply shifts 

the challenge to defining a suitable radius for home range.  More recently Efford (2004) 

proposed a distance–based strategy where density is estimated directly from CMR data, 

without calculating AE, by using a spatial simulation model and inverse prediction (SSIP).   

A model is run repetitively for random permutations of input: D, number of home range 

centres in the model landscape, g0, maximum probability of capture, and , maximum 

distance over which the probability of capture varies from a trap.  The aim is to minimise 

the deviation between simulated and calculated values of N, p̂ , estimated capture 

probability, and d , mean successive capture-recapture distance per animal.  In addition 

to accounting for edge effect, SSIP reduces the issues of rare species and sampling 

inefficiency respectively, by avoiding the requirement to explicitly define AE in deriving 

density.   

In this study GIARs are used to explore the accuracy of density estimates, using 

data from a raccoon (Procyon lotor) CMR program in south-eastern Ontario, where 

raccoons were trapped in multiple trapping cells (Rosatte et al. 2001).  A "crude" density 

was estimated with AE defined by the area of the entire trapping cell and was compared to 

a novel density estimator that refines estimation of AE to produce a more representative 

estimate of density.  This strategy used a detection function curve fitting facility of the 
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distance sampling program DISTANCE (Thomas et al. 2004) to estimate AE based the 

frequency distribution of CMR distances and on the overall probability of capture (OPC) 

of all traps, as calculated in Program MARK (White and Burnham 1999).  Program 

MARK was also used to estimate N, so density could be calculated as: D = N/AE.  The 

method presented in this study for estimating density is referred to as the buffered trap 

area (BTA) approach. 

Crude density estimates are expected to have a negative GIAR because of the 

discussed methodological problems.  BTA was further assessed by comparing its density 

estimates to those produced by SSIP, using DENSITY 3.3 software (Efford et al. 2004).  

SSIP is an elegant direct approach to density estimation, but does not explicitly estimate 

AE nor delineate the AE spatially.  In contrast, the BTA method is explicit in the definition 

of N and AE and its spatial expression.  This enabled exploring effects of trap layout, 

habitat, season, trapping cell and year on CMR distances and OPC and account for 

significant effects that could improve the estimate of AE.  Furthermore, an explicit 

empirically derived definition of AE that is more ecologically related to raccoon activity 

space enables a clearer exploration of habitat effects, and addresses the contentious issue 

of estimating an appropriate AE for density calculation.  

Methods 

Four years of CMR data, from 2000 to 2003, were acquired from the Ontario 

Ministry of Natural Resources (OMNR) St. Lawrence trap-vaccinate-release and point-

infection-control programs located in eastern Ontario (45°N 75°W).  These programs are 

designed to prevent spread of raccoon rabies from New York State into Ontario (Rosatte 

et al. 2001).  Trapping occurred in contiguous trapping cells generally 10 km2 that were 
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roughly rectangular in shape over an area approximately 760 km2 (excluding water 

bodies; Figure 3.1).   Standard protocol required trapping each cell once a year for two 

consecutive weeks.  The trapping season occurred during May-November, when raccoons 

were most active.  Live traps were placed randomly though out the area, with approx. 100 

traps per trapping cell.  Trap configurations were often irregular because of trap 

placement constraints, such as private land and habitat heterogeneity (Figure 3.1).  For 

each animal trap location, age class, sex, and weight were recorded, and uniquely-coded 

eartags were applied.   

Density estimates were calculated by trapping cell to produce a sufficiently fine 

spatial grain.  At this scale, Program MARK (White and Burnham 1999) was used to 

estimate N for each trapping cell, per year, using the CMR encounter history data.  N was 

calculated from multiple closed-capture population estimators (M0, Mt, Mb, Mh, Mth, Mbh, 

Mtb, Mtbh (Otis et al. 1978), to account for factors potentially influencing density: 

temporal, t, (trap night), behavioural, b, (trap happy / shy) and unknown, h, and known 

individual heterogeneities (sex, age).      
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Figure 3.1 Trapping cell configuration for 2000, and an example of trap locations in cells 
near Kingston, Ontario. 
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Models were ranked using Akaike’s Information Criterion (AIC) (Burnham and 

Anderson 2002).  A final estimate of N was achieved by using model-averaged 

coefficient estimates (Burnham and Anderson 2002).  Dividing the trapping cell N by 

trapping cell area produced crude density estimates for each trapping cell.   

BTA also used Program MARK estimates of N, but calculated AE using CMR 

distances of raccoons and their OPC, the latter as estimated by Program MARK.  The 

first step in deriving AE was to produce frequency distributions of CMR distances 

compiled for any animal caught two or more times (Figure 3.2), at the scale of the entire 

study area and on a yearly basis.  To assess whether the trap configuration (density and 

spatial layout) influenced the CMR distances of raccoons, because high trap densities or 

clustering of traps might result in smaller CMR distances and higher OPC.  If this were 

true, the data would need to be normalized to account for trap configuration.  To test for 

this, the spatial configuration of neighbouring traps around each trap from which an 

animal was released were quantified using a spatial autocovariate (Weiner 1982),(Weiner 

1984); Eqn. 1):   

SAi = 
1

( )

1T

j ij
i j

dα
=
≠

          Equation 1 

where SAi is the spatial autocovariate of a trap i relative to all the other traps j, (j = 1 to T, 

i  j, T is the number of traps), that might recapture the animal in the trapping cell, dij is 

the distance between traps i and j, (i  j), and  is a weighting factor of  = 0.5, 1 and 2, 

where higher values decrease the effect of distance on SAi (Weiner 1982, 1984).    
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Figure 3.2 An example of successive CMR distances (AB, BC, CD) of one animal 
captured at traps A, B, C then D. 
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To explore the effect of neighbouring traps, quantified by the spatial autocovariate in 

relation to CMR distances, the correlation between the distribution of mean CMR 

distance raccoons travel from each trap and the spatial autocovariates were tested, for 

each level of .  Both variables were log transformed to be normally distributed, and 

linear correlations were performed using simple Mantel’s tests (Mantel 1967).   

The Mantel’s test is appropriate for assessing correlations between distance 

measures because it takes into account a spatial effect of nearer samples being more 

similar than distant samples.  Furthermore, this test uses a random permutation procedure 

to define the null hypothesis distribution; thus, does not require the assumptions of 

parametric tests.  To remove the effect of trap configuration, CMR distances were 

adjusted by using residuals of the CMR distance predicted by the best fitting model of the 

spatial autocovariate. 

CMR adjusted = 10 ( )residualCMRmean +)(log(       Equation 2 

where CMR adjusted is the adjusted CMR distances; CMR  is mean CMR distance at a trap 

and residual is: 

residual  = log(CMR) – (a + b(log(spatial autocovariate)) Equation 3 

where a is y-intercept and b is the slope of the relationship between mean CMR distance 

by trap and the spatial autocovariate.  After the adjustment was made to the CMR data, 

these data were averaged per animal, per trapping cell, so that each animal contributed 

equally to the subsequent analysis occurring at the level of the trapping cell. 

The next step was to determine whether it was justifiable to calculate AE at a 

coarser spatial grain than the individual trapping cell to increase sample size of CMR data 

per spatial unit.  Analysis of variance (ANOVA) was used to test for effects of year, 
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habitat and season on CMR distances and OPC, calculated as a mean overall measure for 

each trapping cell.  To determine the habitat factor levels for the ANOVA, satellite 

landcover classes were aggregated into water (wetlands and open water), urban, 

agriculture and forest.  The proportion of each habitat type was calculated for each 

trapping cell.  Cluster analysis was then used to group the cells into composite landcover 

classes, which maximized their distinctiveness.  This analysis resulted in two levels for 

the ANOVA: predominantly forest (>50%) and predominantly agriculture (>60%).  

Trapping seasons for the ANOVA were partitioned into “nursing” (May, June), 

“weaning” (July, August) and “dispersal” (September, October, November) based on 

seasonal variation in raccoon movements (Sanderson 1987).  If the ANOVA results 

indicated significant yearly, habitat and seasonal effects then multiple AE’s were 

calculated for each of the factor levels.   This would also require calculation of densities 

specific to the factor levels and enable ANOVA testing for the effects of these factors on 

the density estimates.  Conversely, in the absence of significant effects, one AE would be 

calculated from all trapping cell data across all years, seasons and habitats.  

AE was estimated using Program DISTANCE version 4.1 release 2 (Thomas et al. 

2004) to fit a curve to the frequency distribution of CMR distances, averaged per animal.  

The program default uses a maximum probability capture, g0 = 1, when distance from the 

trap is zero.  The fitted function defined the decline in capture probability as distance 

from the trap increased.  With the known function, it was analytically possible for the 

software to calculate the area under the curve and derive an effective trap radius, r.  Since 

g0 is likely below 1, because a 100% capture success is not expected directly at the trap, 

g0 was reduced to OPC, while holding the area under the curve constant to determine an 
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adjusted r.  Then by assuming the trap-specific effective trap area, Atrap, was circular, r 

was used as the radius to calculate the Atrap (Figure 3.3). 

All traps are used in the calculation of AE, including traps that did not capture 

raccoons, because the number of available traps influences the frequency of captures.  

Some traps were discovered to have coordinates which positioned them outside their 

known trapping cell. These traps should neither contribute a whole Atrap to calculation of 

AE , since they would likely overlap the Atrap of other traps, nor should they make no 

contribution to AE.  Random locations of a trap were defined within a trapping cell for 

each trap which was mapped outside its identified trapping cell.  The AE for a trap cell 

was calculated as the area enclosed by the boundary of the spatial union of Atrap, for all 

traps in the trap cell.  The resulting overall AE for each trap cell was then used to estimate 

raccoon densities: D = N / AE, and produce the BTA estimates of density.   

BTA density and AE estimates at the trapping cell level defined a GIAR, for each 

year of data.  At the same spatial and temporal scale, GIARs were estimated for the crude 

density estimates using AE, defined as the entire trapping cell area.  While the logic may 

seem circular to use the correlation of density with AE when AE is a component of the 

dependent variable, Prairie and Bird (1989) and Gaston et al. (1999) indicate that this 

analysis is permissible when the variables for correlation do not violate the assumptions 

of correlation analysis, "are meaningful, that is, they represent the concepts of interest 

and not just a component of them" and "do not share a large measurement error term” 
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a)  

  
 
b) 

Figure 3.3 a) The area under the curve of the function modelling the frequency 
distribution of CMR distances is used to determine the effective trap radius, r, b) which 
defines Atrap, assuming it is circular.  

 

Atrap 
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(Prairie and Bird 1989); all of which applied to the present study. 

Comparing BTA density estimates to SSIP estimates generated using Program 

DENSITY 3.3 (Efford et al. 2004) were further BTA values.  This program required trap 

location and trap encounter history data, to estimate density at the level of trapping cells.  

Several population estimators were considered.  To choose a final estimator, AIC model 

comparison facility in DENSITY 3.3 ranked estimators, and the top ranked estimator was 

used to calculate population size and, subsequently, density.  SSIP estimates of AE were 

produced by rearranging D = N / AE.  Values of D, N and AE were calculated for 27 

trapping cells from the year 2000 data.  BTA and SSIP estimates of D, N, and AE were 

compared for these trapping cells using basic statistical descriptors (mean, minimum, 

maximum and standard error) and correlation analyses between the two methodologies. 

Results 

 The top N estimators indicated by AIC rankings differed among trapping cells.  In 

general, the models providing strongest inference were mixture models, Mh, that account 

for unknown individual heterogeneity (Pledger 2000), temporal models, Mt, that account 

for variation attributable to trap night (e.g. weather), and behavioural models, Mb, that 

differentiate between initial and recapture behaviours (e.g. trap happy / shy).  Models 

accounting for individual covariates, sex and age, were less significant (Table 3.1).   
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Table 3.1 Percentage of models selected as AIC best model for estimating population 
size.  Model factors were time (Mt), behavioural difference (Mb) between capture (p) and 
recapture rates (c), unknown heterogeneity between two groups (A and B), in the sense of 
Pledger’s (2000) mixture models (Mh), individual covariates (sex, age), and any 
combination of all of these factors.  
Dominant Model Percentage 
(Mbh p_A(.) p_B(.) c_A(.) c_B(.)} 9.7 
(Mth p_A(time) p_B(time)} 9.7 
(Mt p(time)} 9.2 
(Mth p_A(time sex age) p_B(time sex age)} 6.0 
(Mth p_A(time sex) p_B(time sex)} 6.0 
(Mtbh p_A(time) p_B(time) c_A(time) c_B(time)} 5.5 
(M0 p(.)} 5.1 
(Mb p(.) c(.)} 4.1 
(Mt p(time age)} 4.1 
(Mt p(time sex)} 4.1 
(Mtbh p_A(time age) p_B(time age) c_A(time age) c_B(time age)} 3.7 
(Mbh p_A(age) p_B(age) c_A(age) c_B(age)} 2.8 
(Mbh p_A(sex age) p_B(sex age) c_A(sex age) c_B(sex age)} 2.8 
(Mh p_A(.) p_B(.)} 2.8 
(Mt p(time sex age)} 2.8 
(Mb p(age) c(age)} 2.3 
(Mh p_A(age) p_B(age)} 2.3 
(Mth p_A(time age) p_B(time age)} 2.3 
(Mtb p(time) c(time)} 1.8 
(Mtbh p_A(time sex) p_B(time sex) c_A(time sex) c_B(time sex)} 1.8 
(M0 p(age)} 1.4 
(Mb p(sex) c(sex)} 1.4 
(Mbh p_A(sex) p_B(sex) c_A(sex) c_B(sex)} 1.4 
(Mh p_A(sex) p_B(sex)} 1.4 
(Mtbh p_A(time sex age) p_B(time sex age) c_A(time sex age) 
c_B(time sex age)} 1.4 
(Mb p(sex age) c(sex age)} 0.9 
(Mh p_A(sex age) p_B(sex age)} 0.9 
(Mtb p(time age) c(time age)} 0.9 
(M0 p(sex)} 0.5 
(Mtb p(time sex age) c(time sex age)} 0.5 
(Mtb p(time sex) c(time sex)} 0.5 
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Trap configuration significantly influenced the CMR distances (Table 3.2).  The 

linear relationship regressing the log transformed spatial autocovariates, calculated with 

α = 2, and the log transformed mean CMR distances was used to adjust the successive 

CMR distances to account for trap configuration, since this relationship had the strongest 

significant correlation (r = -0.35, P< 0.0001).   

Year, habitat and season influenced mean successive CMR distances, whereas 

only season affected OPC (Table 3.3).  The significant effects of year, habitat and season 

on mean trapping cell CMR distances, and of season on OPC, necessitated calculating 

effective trap radii and trap-specific effective trap area (Atrap), for each permutation of 

factor levels (Table 3.4).  The resulting effective trap radii and Atrap ranged from 613.8 m 

and 1.18 km2 (year: 2000, habitat: forest, season: dispersal) to 1615.1 m and 8.19 km2 

(year: 2000, habitat: agriculture, season: nursing) with a mean of 899.4 m and 2.74 km2.  

Buffering traps by the effective trap radius delineates the AE boundary to extend several 

hundred metres beyond the border of trapping cells, and results in a few small areas 

within the trapping cell that are not covered by AE (Figure 3.4).  Seasonal and habitat 

specific BTA density estimates fluctuated over the four years (Figure 3.5).  Over all years 

and seasons, forest and agriculture estimates of density were significantly different 

(F=4.58, P=0.03), and over all years and habitat types, trapping season significantly 

affected density estimates (F=3.16, P=0.04; Table 3.5).   
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Table 3.2 Simple Mantel test results correlating distributions of spatial autocovariates, 
indexing trap configuration, and the mean CMR distance travelled from each trap, for 
three spatial autocovariate a levels.  

correlation 
coefficient 

P-value αααα level 

-0.16 < 0.001 0.5 
-0.33 < 0.0001 1 
-0.35 < 0.0001 2 
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Table 3.3 Significant three-way ANOVA results from testing the effects of year, season 
and habitat on mean trapping cell CMR distance, in metres, and OPC.  The mean, 
standard error (SE) and sample size (n) of trapping cells for factor levels are also given.  

Data Factor F-ratio P-value Level Mean SE n 
2000 700.10  37.17 63 
2001 1865.98 102.49 67 
2002 1655.97 76.88 69 

Year 75.45 0.00 

2003 731.75  45.46 45 
nursing 1332.47 222.08 14 
weaning 1303.81 75.31 101 

Season 7.09 0.001 

dispersal 1286.65 71.66 129 
forest 1131.08 57.81 137 

mean 
trapping 
cell CMR 
distance 

Habitat 6.00 0.01 
agriculture 1508.03 84.12 107 
nursing 0.53 0.02 13 
weaning 0.66 0.003 98 

OPC Season 3.88 0.022 

dispersal 0.58 0.004 126 
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Table 3.4 Effective trap radii (ETR), individual effective trap area (Atrap), mean density 
( D ) and standard deviation (stdev) relative to the levels of year, season and habitat. 
Season Habitat Year ETR (m) Atrap (km2) D  stdev 

2000 1141.40 4.09 8.46 5.79 
2001 1269.98 5.07 5.45 1.48 
2002 - - - - 

forest 2003 - - - - 
2000 1615.09 8.19 6.24 3.97 
2001 1023.57 3.29 4.69 1.41 
2002 - - - - 

nursing agriculture 2003 - - - - 
2000 750.95 1.77 7.29 2.39 
2001 1166.23 4.27 4.57 2.84 
2002 661.24 1.37 7.47 3.15 

forest 2003 762.41 1.83 5.86 2.11 
2000 766.62 1.85 8.11 4.41 
2001 701.77 1.55 10.08 3.73 
2002 814.89 2.09 5.96 3.36 

weaning agriculture 2003 698.32 1.53 10.62 5.24 
2000 613.76 1.18 10.03 5.73 
2001 725.43 1.65 6.08 3.36 
2002 620.09 1.21 9.12 6.89 

forest 2003 791.60 1.97 3.93 2.09 
2000 991.78 3.09 5.65 3.62 
2001 1030.36 3.34 2.75 2.24 
2002 1015.81 3.24 4.82 2.60 

dispersal agriculture 2003 827.22 2.15 4.32 2.60 
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Figure 3.4 An example of the refined effective trapping cell areas produced by the BTA 
method for data from 2002, near Brockville, Ontario.  The trapping cell boundaries for 
the 2002 trapping program are also shown.  
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Figure 3.5 Trend in BTA density estimates over time for estimates specific to habitat 
(forest, agriculture) and season (nursing: N, weaning: W, dispersal: D).   
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Figure 3.6 Frequency of density values (raccoons/km2) reported for rural areas across 
North America in comparison with the mean BTA density.  
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Table 3.5 Habitat and season specific BTA estimates of density, D, (raccoons/km2).   
Factor Level Mean 

D 
Standard 

error 
Minimum Maximum Sample 

size 
forest 6.38 0.44 0.83 16.74 54 Habitat 
agriculture 5.00 0.46 1.13 12.56 41 
nursing 6.96 1.19 3.34 18.17 14 
weaning 7.07 0.35 1.38 19.9 100 

Trapping 
Season 

dispersal 5.70 0.41 0.70 30.0 127 
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BTA density estimates were lower than crude estimates, with yearly means ranging from 

5 to 8 raccoons/km2, while the crude estimates ranged from 10 to 15 raccoons/km2 (Table 

3.6).  Correlation analysis of the GIARs for BTA showed no significant relationship, 

whereas, crude density GIARs demonstrated a significant negative relationship for all 

years except for 2003 (Table 3.7). There was a significant association between BTA and 

SSIP estimates of D and N, and to a lesser extent with AE (Tables 3.8 and 3.9). 

Discussion 

Negative GIARs produced by correlating crude density estimates and the entire 

trapping cell areas are attributed to the: 1) inclusion of non-habitat or low density areas; 

2) not accounting for the edge effect; 3) tendency to establish larger AE’s when animals 

occur at low densities or are rare and 4) decline in sampling efficiency with increasing 

AE.  BTA density estimates are more accurate because its GIARs do not exhibit a 

significant negative correlation between density and AE, and density estimates agree more 

highly with those produced by SSIP.  BTA estimates of 5 to 8 raccoons/km2 (6.3 ± 1.1 

SE) are also within the range of densities reported for rural areas throughout North 

America (7.5 ± 1.1 SE; Figure 3.6; Dorney 1954, Sonenshine and  Elton L. Winslow 

1972, Hoffmann and  Gottschang 1977, Fritzell 1978, Rivest and  Bergeron 1981, 

Nottingham et al. 1982, Kennedy et al. 1986, Leberg 1988, Seidensticker et al. 1988, 

Perry et al. 1989, Hable et al. 1992, Kissell and  Kennedy 1992, Smith et al. 1994, Smith 

et al. 1994, Stevens et al. 1995, Endres and  Smith 1993, Hartman et al. 1997,  
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Table 3.6 Summary statistics for the BTA and crude densities (raccoons/km2) for all four 
years of data.   

Year Method 
Mean 

density 
Standard 

error 
Minimum Maximum 

BTA 7.6 2.3 2.4 23.0 2000 
Crude 15.2 11.9 3.7 54.3 
BTA 4.7 1.4 0.7 16.1 2001 

Crude 9.6 5.6 1.1 26.2 
BTA 7.1 2.7 1.4 30.0 2002 

Crude 12.2 10.3 2.1 55.6 
BTA 5.8 1.9 0.8 19.9 2003 

Crude 9.6 4.1 1.4 21.6 
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Table 3.7 Correlation coefficient and P-values from the GIAR correlation analysis for 
each year of data.  *Significant correlation   
Year Dataset Correlation (P-value; sample size, n) 

BTA -0.17 (P = 0.176; n = 63) 2000 
Crude -0.35 (P=0.005; n=63)* 
BTA -0.20 (P = 0.114; n = 66) 2001 
Crude -0.26 (P=0.035; n=65)* 
BTA -0.15 (P = 0.21; n = 68) 2002 
Crude -0.27 (P=0.025; n=68)* 
BTA -0.14 (P = 0.36; n = 45) 2003 
Crude -0.22 (P=0.129; n=45) 
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Table 3.8 Correlation coefficients and P-values for the correlation between BTA and 
SSIP, and Crude and SSIP estimates of a) population size and b) density values and c) 
area, for 27 trapping cells in year 2000.  *Significant correlation   
 a) Population Size b) Density c) Effective Trap 

Area 
BTA vs SSIP 0.72 (P<0.001)* 0.68 (P<0.001)* 0.45 (P=0.02)* 
Crude vs. SSIP 0.72 (P<0.001)* 0.37 (P=0.06) 0.11 (P=0.60) 
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Table 3.9 Basic statistical descriptors of the estimates of a) density, b) population size 
and c) effective trap area for 27 trapping cells in year 2000 for BTA and SSIP.     
Parameter  Estimator Mean Minimum Maximum Standard 

error 
SSIP 18.3 2.60 41.7 1.9 a) Effective 

trap area (km2)  BTA 21.8 10.0 37.6 1.3 
SSIP 150.5 49.00 444.0 17.0 b) Population 

size BTA 186.7 45.56 666.3 26.1 
SSIP 11.1 2.32 37.2 1.8 c) Density 

(raccoons/km2) BTA 8.8 2.4 23.0 1.0 
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Ratnaswamy et al. 1997, Gehrt and  Fritzell 1998, Caro et al. 2000, Rosatte et al. 2001, 

Gehrt 2002, Ratnayeke et al. 2002, Gehrt 2004, Prange et al. 2004, McCleery et al. 2005, 

Rosatte et al. 2007a, 2007b, 2007c). 

Density estimates are strongly influenced by study design and in particular by the 

definition of the study area.  BTA estimates of density differed from the crude approach 

by using an estimate of area that was more reflective of the true area where raccoons are 

susceptible to trapping.  BTA is a trap-centric approach.  The frequency distribution of 

mean CMR distances can be modelled as a three-dimensional continuous surface defining 

the probability of a trap to capture an animal.  Maximum capture likelihoods exist as 

peaks in the surface, whose locations correspond with trap locations and have a 

magnitude of 1, defined as g0 in the DISTANCE software (Thomas et al. 1994).  The 

surface extends infinitely outwards because there is always a possibility of capturing 

animals, though, the likelihood becomes increasingly negligible with distance.  The BTA 

approach generalises this continuous surface into a discrete definition of a geographically 

bounded AE over which to apply the estimated N to derive density.  The generalization 

reduces the maximum probability of capture to OPC (area “A”, Figure 3.7) and defines a 

distance over which it applies.  This does not preclude that animals outside AE are not 

being captured or do not exist; rather, the tail of the distribution extending beyond the 

effective trap radius represents their probability of capture (area “C”, Figure 3.7), and 

their presence is evidenced by the CMR data that creates the tail and is used in 

formulating the AE generalization. 
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Figure 3.7 The continuous probability surface modelling the frequency distribution of 
CMR distances, with a maximum probability of capture, g0, and its generalisation to a 
discrete function, bounded by the overall probability of capture (OPC) and the effective 
trap radius (r).  The area within the rectangle is equal to that under the curve; the sum of 
the area of regions “A” and “C” is equivalent to the area of region “B”.
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BTA’s ability to define an AE reflective of population presence accounts for the 

edge effect, and this is the major benefit of BTA for the trap configuration used in this 

study.   There were few areas within the trapping cell that were not covered by the AE, 

making it very similar to using the entire trapping cell area for estimating crude densities 

(Figure 3.4).  However, the BTA approach produced larger AE’s per trapping cell than the 

crude method because BTA AE’s extended beyond trapping cell boundaries (Figure 3.4).  

This addresses the edge effect by recognizing that traps close to the trapping cell 

boundary are likely capturing raccoons from outside of the trapping cell.  Furthermore, 

the “reach” of a trap to capture these animals is defined by movement data of the animals 

in the study.  A negative GIAR relationship can develop by not accounting for the edge 

effect because this effect has a greater impact on smaller trapping areas since the 

edge:area ratio is larger.  There is a higher contribution of animals attracted to the 

trapping area relative to the trapping area then would occur for larger trapping areas; 

thus, smaller trapping areas would experience a more inflated estimate of N than larger 

trapping areas. 

Problems that might arise from surveying scarce or rare animals and issues of 

sampling efficiency were not expected to affect density estimates for this study.  

Raccoons are not scarce animals in the St. Lawrence region and the size of the trapping 

cells was developed considering the need for trappers to maximize capture rates.     

Thus in light of the GIAR analysis, the BTA density estimates are more accurate 

representations of the area on which the population estimates are based than the crude 

density estimates, as further supported by the agreement with the SSIP density estimates.  

Efford’s (2004) SSIP procedure is an effective means of calculating density; however, it 
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is the differences in estimation flexibility and the parameters estimated that make BTA a 

more attractive method than SSIP when there is an interest in further ecological analysis. 

BTA explicitly delineates the geographic extents of AE (Figure 3.4), and this is more 

easily utilised by ecologically focused management programs and habitat analyses.  The 

habitat composition within this refined AE serves as a more accurate representation of the 

habitat of the animals on which the population estimate is based than one based on the 

entire trapping cell because areas that do not contribute to the population size estimate 

would be excluded.  This would decrease the noise when investigating habitat to density 

relationships. 

Another advantage of BTA is that Program MARK is used as a more flexible 

means of estimating N than that which can be accomplished using the DENSITY 3.3 

software (Efford et al. 2004).  Program MARK offers a wider array of population 

estimators that are able to account for variation in capture probabilities attributable to 

time, behaviour and unknown individual heterogeneities (Otis et al. 1978).  Program 

MARK also enables covariates to be included in the population estimators that can 

account for heterogeneity caused by known biological differences in individuals (e.g. sex, 

age class).  Models that accounted for variation in capture rates were most often the best 

predictive model (Table 3.1).  It is important to account for a wide array of factors 

causing variation in capture rates that affect N estimation to prevent spurious estimates of 

N (Boulanger et al. 2004), (Conn et al. 2006).  Program MARK can also produce an 

overall model-weighted estimate of N.  In this approach, AIC was used to estimate the 

likelihood of each model being the best representation of variation given the data and 
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other candidate models.  These likelihoods were used to derive weightings for calculating 

a composite model averaged value of N. 

A further benefit of BTA is enabling more comprehensive ecological analyses 

than SSIP data because data from BTA calculations are transparent.  BTA produces 

explicit estimates of N, trap configuration, OPC, AE and density, and frequency 

distributions for mean CMR distances.  It is possible to test for factors believed to have a 

significant effect on these variables.  Year, trapping season and habitat are hypothesised 

to influence OPC and mean CMR distances, affecting the derivation of AE and 

subsequent density estimates.  These hypotheses were not rejected except for the effects 

of year and season on OPC, resulting in multiple AE’s and densities being defined for the 

different levels of the effects.  However, if effects were not found to be significant, data 

could be pooled for the derivation of AE, which beneficially serves to increase sample 

size for estimation of AE.  Pooling data advantageously supplements areas where capture 

rates are low or trapping is restricted to small temporal windows, thus, increasing the 

precision of AE and reducing its variation.   

Ecological analyses using BTA data found raccoons to have higher mean CMR 

distances in 2001 and 2002 (Table 3.3), possibly a consequence of intensive raccoon 

depopulation efforts in the study area during 1999 and 2000 in response a raccoon rabies 

outbreak (Rosatte et al. 2001).  There may have been a time-delayed increase in raccoon 

movements, such that by 2001 and 2002 the raccoons discovered the depopulated voids 

and moved greater distances to inhabit them, which was reflected in greater mean CMR 

distances in those years (Rosatte et al. 2007b).  Other possible explanations for yearly 
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effects may be due to annual weather variation or differences in agriculture crops and 

their ability to attract foraging raccoons (Schneider et al. 1971).  

Season significantly affected mean CMR distances.  Distance decreased from 

springtime nursing to summertime weaning to a low in autumn when raccoons dispersed.  

This result is in accordance with known raccoon ecology, where for the same region, 

Totton et al (2004) found summer raccoon home ranges to be larger than fall home 

ranges.  It is believed that raccoons decrease their movements in the fall to conserve their 

physiological energy stores in preparation for winter denning when food resource 

availability is lowest (Rosatte 2000).  A significant effect of trapping season was also 

found for density (Table 3.5).  Densities are expected to decrease over the trapping 

season as mortalities reduce the population from the spring birthing season.  The trend 

was reproduced from data in this study, except “nursing” densities were slightly lower 

than “weaning” densities.  This is attributed to a small sample size of cells trapped during 

the nursing season, and also that raccoons may have been harder to capture during this 

season because newly born young are within dens. 

Density is a critical factor influencing whether an infectious disease becomes 

established or burns itself out (Anderson and May 1991).  More accurate density 

estimates will help determine the threshold density of susceptible animals (Rosatte et al 

2007b) below which the disease will not spread ((Kermack and McKendrick 1927), 

(Anderson and May 1985)).  In areas where raccoons exceed this density, rabies control 

measures (e.g. oral vaccination baiting, trap-vaccinate-release, depopulation) can 

decrease the susceptible population below the threshold.  Furthermore, season and habitat 

specific estimates of effective trap radii and Atrap give an indication of the size of raccoon 
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activity space relative to these factors in south-eastern Ontario.  The larger these values, 

the greater the activity space.  Consequently, it is more likely a raccoon will come in 

contact with other raccoons because it is travelling greater distances (Totton et al 2002), 

which also means it can spread the disease further afield.  Therefore, disease control 

would need to be applied to a sufficiently large area to at least encompass raccoon 

activity space.  Also, it would be possible to investigate directional biases in capture 

locations and to assess this in relation to landscape features (e.g. water barriers, 

topography, habitat quality).  Thus, coupling an understanding of factors influencing 

movement patterns with the knowledge of season and habitat specific densities would aid 

the development of rabies control programs targeting areas of high movement and 

densities, as well as contribute to spatial ecological studies that explore dispersal and 

foraging behaviours. 

The inevitable issue arising from using BTA is whether CMR data sufficiently 

represents movement patterns of animals to derive AE.  CMR data only give “snapshots” 

of the spatio-temporal activity of animals.  The actual travel path of raccoons between 

capture locations is unknown.  This means it is possible that captured animals use areas 

outside of the refined AE but within the trapping cell.  The degree to which this occurs 

can be explored by tracking animals at finer spatial and temporal resolutions using Global 

Positioning System collars.  An assessment can then be made whether finer grained 

location data improve the estimate of AE beyond that calculated using CMR data.  

Conclusions 

CMR studies are commonly employed for investigating wildlife population 

dynamics.  Unfortunately competing research questions and/or limited resources can 
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hamper the ability to design a trapping grid suitable for density estimation.  A common 

circumstance is contending with a trapping configuration that inadequately measures 

population size for a defined area.  The uneven spatial distribution in traps of this study 

may have left gaps in the landscape where raccoons were present, but had no chance of 

being trapped.  Thus, it was inappropriate to apply N to the entire trapping cell to 

calculate density; however, as the entire area raccoons travel before capture is not known, 

the true effect this had on density estimation is also unknown.  BTA addressed the edge 

issue by using movement data to define areas beyond the trapping cell potentially 

contributing animals to N to be included in the estimation of AE.  BTA makes feasible the 

exploitation of data sets not specifically designed for estimating N or density, such as 

from disease monitoring programs (e.g(Henning et al. 2006)).  Changes caused by 

improving density estimates could have important consequences for operational and 

policy decisions (Rosatte et al. 2007a, 2000b, 2000c) and for use in wildlife models such 

as the Ontario Rabies Model (Tinline et al. 2007).  

BTA and SSIP are applicable to any trapping design (e.g. grid, web, line, or 

irregular trap placement).  Investment in time and the software requirements of BTA are 

greater than SSIP because Program MARK is used to estimate N, and a Geographic 

Information System is needed to calculate the AE.  However, the more segmented 

approach of estimating density with BTA exposes data intermediary to density 

calculations that are useful for addressing interesting ecological questions.  This is 

valuable to researchers exploring seasonal, habitat or landscape effects on animal 

movements and capture probabilities, and their implications for conservation, disease 

spread, or climate change induced range shifts.       
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Chapter 4  

Sensitivity analysis of a raccoon rabies disease simulation model using Information 

Criteria 

Abstract 

Sensitivity analysis is a fundamental step in model development.  Akaike’s and 

Bayesian information criteria are used in combination with regression analysis to 

examine the relative contribution of 17 demographic and 3 disease parameters that 

characterise raccoon rabies behaviour in the Ontario Rabies Model (ORM).  Two 

different types of information criteria were used to more comprehensively evaluate 

whether the benefit of including a parameter to increase the explanation of outcome 

variation outweighed the cost of increasing outcome uncertainty.  Univariate results were 

most useful because the sample size of the multivariate analysis was too small to discern 

parameter effects.  Overall, an assessment of parsimony was achieved by identifying 

parameters a priori defined to be superfluous and parameters representing system 

components not found to affect system dynamics (e.g. separating birth rates of juveniles 

and adults).  The ORM was found to be functioning as intended (e.g. population density 

and transmission rate are critical factors of disease dynamics), and ecological insight was 

gained from the sensitivity analysis (e.g. female mortality has a greater affect on system 

dynamics than male mortality).  Hence, Information Theory Sensitivity Analysis (ITSA) 

approach enabled a more in-depth analysis of model parsimony while still yielding the 

traditional benefits of sensitivity analysis.      
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Introduction 

Computer models are used in epidemiology to understand the dynamics of disease 

transmission and spread, and to assess efficiency of alternate control strategies (Coyne et 

al. 1989, Barlow et al. 1996, Smith and Cheeseman 2002, Sterner and Smith 2006).  

Modelling disease-host systems necessitates making assumptions about underlying 

mechanisms so they can be simplified for representation.  Advantages of simple models 

include having fewer processes to parameterise, validate, and contribute to outcome 

uncertainty.  Simple models can effectively capture general trends of disease-host 

systems (Anderson and May 1991), e.g. simulating population dynamics of average 

individuals in a homogenous environment of contact rates and disease susceptibility.  

More complex models are required to explore heterogeneous rates of disease spread over 

spatially varying populations and landscapes.  Detail is added by modelling the 

population as individuals or structuring the population into classes (e.g. age, sex), contact 

networks, or patches in which each individual, class, network node, or patch are defined 

to reflect the heterogeneous nature of the population and disease (Ferguson et al. 2003).   

Increasing model realism in these ways requires more parameters.  An issue that 

inevitably arises is the degree of complexity required to fulfil modelling objectives.  

Application of the principle of parsimony (in the sense of Burnham and Anderson 2002, 

pp.31-35) is advocated to choose among models of varying complexity.  Adhering to this 

principle requires balancing the benefits of few parameters, which will minimise outcome 

uncertainty arising from parameter estimation error, against the benefit of having a 

sufficient number of parameters to adequately represent the modelled system (Snowling 

and Kramer 2001, Burnham and Anderson 2002).   
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Sensitivity analysis can assess whether model dynamics appropriately represent 

system behaviours.  A variety of sensitivity analysis techniques are used to develop 

disease simulation models (Voigt et al. 1985, Blower and Dowlatabadi 1994, Sanchez 

and Blower 1997).  Hamby (1994) provides a thorough description of numerous 

sensitivity analysis techniques.  A general framework i) identifies parameters for testing, 

ii) defines a probability distribution function (pdf) of values for each parameter, iii) 

applies a sampling strategy to determine input parameter value and iv) analyses the effect 

of the parameters on one or more response variables characterising model outcomes.  The 

final step can be used to identify parameters needed to model system behaviours.  If a 

model process is defined by more than one parameter, and independent variation of their 

values does not have an effect on model outcomes, then the process can be modelled 

more succinctly.  In this instance, a more parsimonious model can be defined by 

combining the parameters of the modelled process.   

One concern for using current sensitivity analysis techniques to evaluate model 

complexity is that null hypothesis significance testing (NHST) is used to determine 

whether parameters have an effect on model outcomes.  NHST is a poor approach for 

model selection for several reasons.  NHST uses P-values to define the probability of 

obtaining a result, or one more extreme, given the null hypothesis is true, and sampling is 

random.  One problem with P-values is that cases identified as being significant may be 

beyond the true value in order for the case to be sufficiently different from the sample 

mean to reject the null hypothesis (Whittingham et al. 2006).  P-values are also criticised 

because conclusions concerning significance are not based entirely on the observed data 

when a predefined distribution of the test statistic is used to derive P-values (Johnson 
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1999, Anderson et al. 2000).  Predefined distributions are not reflective of the true data 

distribution.  Fortunately, randomisation tests that derive a test statistic’s distribution 

under a null hypothesis from numerous random sampling of the data can be used to 

overcome this concern.   

Other shortcomings of NHST arise from its relationship with sample size.  As 

sample size increases the probability of making an incorrect interpretation should 

decrease.  However, in hypothesis testing, the probability of committing a Type I error 

(rejecting the null when it is true) remains the same regardless of the sample size.  

Conversely, the probability of committing a Type II error (accepting the null when it is 

false) decreases with increasing sample size.  As sample size increases, the variance of 

the sample group decreases, and the sample mean becomes closer to the true mean.  

However, as the power to detect a difference increases, a significant difference may be 

detected when it is not biologically meaningful, because the sample mean is so close to 

the population mean (Johnson 1999, Anderson et al. 2000, Robinson and Wainer 2002).   

NHST is also criticised for the arbitrary choice of significance levels (α).  A level 

of significance allows for a degree of deviation of data from the null hypothesis; 

however, this level is arbitrarily chosen, and can lead to differences in interpretation.  For 

example, with a P-value of 0.03 one fails to reject the null hypothesis at a significance 

level α = 0.01, but the null would be rejected at a significance level α = 0.05.  The 

classification of results into significant or non-significant categories is uninformative 

when no estimate of effect size or its certainty is given (Anderson et al. 2000).  Though, 

Robinson and Wainer (2002) state that even if this information is given it provides little 

context for choosing among models. 
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Two common sensitivity analysis procedures from which conclusions are based 

on P-values are analysis of variance (ANOVA) and regression.  ANOVA can be used to 

test for significant main and interaction effects of the parameters on the model outcomes.  

This technique has the advantages of being a simple and well-known statistical procedure 

that can easily assess the effect of parameter interactions (Ginot et al. 2006).  The main 

disadvantage is that input values must be discrete in order to conform to “levels” of 

ANOVA factors.  Furthermore, it is too computationally expensive to test more than a 

small subset of parameters that have a limited number of levels.  Regression analysis is a 

more comprehensive model selection technique (Hamby 1994).  It is feasible to analyse 

models with a high number of parameters and test for a limited number of interactions, if 

desired.  The coefficient of determination, R2, quantifies model predictive power by 

defining the amount of variation in a dependent variable explained by the linear 

combination of independent variables.  Similarly, residual sum of squares (RSS) in an 

ANOVA quantifies the deviance of the predicted model from the data.  However, if 

candidate models have similar R2 or RSS values but differ in their number of parameters, 

there is no accounting for the cost of increasing model complexity on outcome 

uncertainty.  Thus, the second reason current sensitivity analysis techniques are less 

suitable for model selection is that they fail to evaluate model parsimony.  Akaike’s 

Information Criterion (AIC) and the Bayesian Information Criterion (BIC) provide a 

means of selecting the most appropriate model.  Furthermore, these information criteria 

avoid the problems of null hypothesis testing described above because they do not use P-

values.  In this study, Information Theory Sensitivity Analysis (ITSA) technique is 

presented as a means of overcoming these problems by using AIC and BIC. 
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AIC and BIC can choose among models by measuring whether the benefit of 

allowing a parameter to vary and potentially improve model prediction outweighs the 

cost of increasing uncertainty in model outcome through parameter estimation error.  

Given outcome uncertainty inherent with any analysis, using two different types of 

information criteria enables a more comprehensive assessment of model parsimony.  AIC 

unites theory from Kullback-Leibler information and maximum likelihood (Anderson et 

al. 2000).  Kullback-Leibler information measures the difference between truth and a 

modelled approximation.  Since the truth about a phenomenon is often unobtainable, 

Akaike’s information theory derives an estimate of Kullback-Leibler truth from the 

maximized log-likelihood function.  The estimated maximized log-likelihood function 

forms the backbone of AIC,  

 

AIC = -2loge(l(θ|data)) + 2K         Equation  1 

 

where loge(l(θ|data)) is maximized log-likelihood over the unknown parameters (θ), and 

K is the number of estimated parameters in the model.   

 BIC is derived from Bayesian statistics.  For Bayesian analysis, the probability of 

a model being the “top model”, given the data and other candidate models, is referred to 

as the posterior probability.  A prior probability is used to derive the posterior probability 

by “a priori” defining the likelihood of the candidate model being the top model.  A 

central quantity to Bayesian approach of model comparison is the Bayes factor. The 

Bayes factor is the measure of evidence in favour of one model over another (Kuha 

2004).  BIC is an approximation of the Bayes factor (Kuha 2004).  Model specific prior 
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probabilities are not specified in the calculation of BIC because they are assumed to be 

equal for each candidate model (Burnham and Anderson 2002): 

 

BIC = -2loge(l(θ|data)) + K• loge(n)           Equation  2 

 

The main difference between AIC and BIC is that for BIC the true model is assumed to 

be within the list of candidate models.  The goal is to identify the true model, and as 

sample size increases, the probability of determining the true model approaches 1, though 

there is no requirement that the true model must be within the list of candidate models 

(Burnham and Anderson 2002, Reineking and Schroder 2006).  Whereas for AIC, the aim 

is to identify the model that gives the best approximation of truth.  For both approaches, 

the best model, given the data and set of models, has the smallest information criterion 

value.  The trade-off between fitting the data and outcome uncertainty is inherent in 

equations 1 and 2.  The more parameters used, the better the model approximation and 

the lower the value of -2loge(l(θ|data)) and the resultant AIC or BIC.  However, as the 

number of parameters increase, so too does the uncertainty of the model in approximating 

the phenomenon.  To penalize this effect, AIC and BIC values become larger through the 

2K and K• loge(n) terms, respectively.  The BIC formulation more heavily penalises 

models with more parameters at larger sample sizes than AIC (Reineking and Schroder 

2006). 

 AIC and BIC analyses avoid the problems of null hypothesis because they do not 

use P-values, null hypotheses, predefined probability distributions of test statistics, or 

significance values for deriving conclusions.  Confidence in the results increases with 
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increasing sample size.  Furthermore, the results are more informative because AIC and 

BIC values can be used as the strength of evidence in favour of a model being the most 

parsimonious (Burnham and Anderson 2002).  Unlike NHST, which yields the 

probability of a result given the null hypothesis being true from following an assumed 

distribution, AIC and BIC give the probability of a result derived entirely from the data. 

ITSA was applied to the Ontario Rabies Model (ORM) to assess its complexity.  

Parameter richness is a consequence of being an individual-based spatially explicit 

disease-host simulation model.  ORM simulates raccoon (Procyon lotor) population 

dynamics, raccoon rabies viral transmission, and rabies control strategies.  ITSA is used 

to test model behaviour for 17 demographic and 3 disease parameters that characterise 

raccoon rabies dynamics as estimated from field and laboratory studies.  A description of 

the model is reported elsewhere (Tinline et al. 2007).  Parameter impacts are evaluated in 

terms of parsimony and determining what additional fieldwork might be required to 

define parameters most representative of system behaviours.     

Methods 

Ontario Rabies Model 

The ORM operates on a lattice of hexagonal cells, each with a radius of 2 km, the 

approximate activity range of raccoons in Ontario (Rosatte 2000).  The resulting cell area 

is 10.39 km2.  The shape and size of the model landscape is user-definable.  Experiments 

used a 15x20 lattice of cells simulating an area of 3000 km2, approximately equal to the 

area infected by the 1999 raccoon rabies outbreak in eastern Ontario (Rosatte et al. 2001, 

2006).  Model processes operate at one-week intervals and are stochastically determined.  

Parameters for several demographic behaviours and one disease behaviour (incubation 
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period; Tinline et al. 2002) are determined from probability distributions, while the 

remaining behaviours are defined using a single value (Table 4.1).  Each raccoon is in 

one of the following health states: i) healthy and susceptible to rabies, ii) infected and 

incubating rabies, or iii) infectious, i.e. capable of infecting susceptible raccoons.  

Raccoons die after a 1 week infectious period (Winkler and Jenkins 1991).  Each year, 

juvenile (52 – 74 weeks old) and adult females ( 75 weeks old) have a chance of 

producing offspring as determined by a probability distribution.  Mortality rates are 

defined for year class, and can be sex specific if desired.  Model experiments typically 

use an initial raccoon population, which has been grown to a stable population in the 

whole study area starting with a pair of breeding raccoons.  Each cell in the model 

landscape is assigned a target carrying capacity (k), a value measuring the population 

density at a specific time period (currently set by default as week 30 in the ORM).  In the 

ORM, k is used for a given cell as a target population about which the model adjusts 

mortalities dynamically to ensure that the population oscillates around the target 

population.  Mortality adjustments are made weekly for each animal in each cell 

according to equation 1 below: 

 

Probability of dying  = AGM  [(N/k) + A]      Equation 3 

 

where the AGM is the user defined age/gender determined probability of dying on a given 

(weekly) interval, N is the current total population of the cell, k is the user assigned 

carrying capacity and A is a user defined adjustment factor between 0 and 1.  For 

example, if the AGM was 0.006 with N=30, K=70 and A=0.002 then the adjusted 
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probability of dying is calculated as:  0.006[(30/70)+0.002] or 0.00457.  As the 

population builds up, N approaches k.  Thus the adjusted mortality will exceed the pre-

defined AGM effectively damping the increase in population.  The adjustment factor A in 

Equation 3, also known as the mortality adjuster parameter (P8), acts as an intercept of a 

linear equation which ensures that there is an ambient level of mortality insensitive to 

changes in the cell population relative to k.  P8 controls the amount of increase or 

decrease in the mean mortality rates.  Its default value is derived through a model fitting 

process minimising the deviation between observed and modelled raccoon demographics.   

Every raccoon has a defined probability of contact (P20) with other raccoons.  They 

can interact with raccoons within their home cell and up to six neighbouring cells, 

depending on the cellular landscape configuration.  The amount of interaction depends on 

the size of the cells and the home range.  Dispersal occurs once a year.  Raccoons may 

move one or more cells, as determined from a pdf of dispersal distances (P1, P2, P3, P4).  

The annual timing of dispersal is defined by the permissible movement period parameters 

(P14, P15, P16).  Rabies can be introduced into any cell in the landscape, for any given 

week of the simulation, to an assigned percentage of animals within the infected cell(s).  

The reflective disease spread parameter (P22) is optionally used to increase chance of 

infection to adjacent cells when there are fewer than six contiguous neighbouring cells 

(e.g. along the boundary of the landscape) by increasing the contact rate (P20) with 

available adjacent cells.   

Experimental Design and Model Parameterisation 

Seventeen demographic (P1 – P17, P20) and 3 disease parameters (P18, P19, P21) were 

selected for sensitivity analysis (Table 4.1).  It is possible to test additional parameters, 
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such as the effect of different winter severities or various rabies control strategies on 

raccoon rabies dynamics; however, this study focuses on assessing fundamental 

parameters considered to simulate raccoon rabies dynamics.  Three additional parameters 

were included (P22, P23, P25), that were not expected to affect model behaviours, to test 

the ability of the methodology to identify superfluous parameters.  P25 was included to 

set a quantitative reference for the lack of effect of a truly superfluous parameter on 

model outcomes because its values were derived randomly and not used as model input.  

A final parameter, “rabies run” (P24), also provided no input for the model, but existed 

for the sensitivity analysis to define whether a simulation was infected or not with rabies. 

  

Table 4.1 Fundamental parameters in the Ontario Rabies Model assessed by ITSA.  
*Parameters whose values are defined by a probability distribution function; all other 
parameter use single input values.  +Non-ORM input parameters.  
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Male adult/juvenile dispersal distance; P1 * 
Female adult/juvenile dispersal distance; P2 * 
Male young of year dispersal distance; P3 * 
Female young of year dispersal distance; P4 * 
Average litter size; P5 
Male mean percent mortality; P6 * 
Female mean percent mortality; P7 * 
Mortality Adjuster; P8 
Age of independence from mothers; P9 
Chance of juveniles giving birth; P10 
Chance of adults giving birth; P11 
Birth week; P12 
Male juvenile/adult permissible movement period; P14 
Female juvenile/adult permissible movement period; P15 
Young of year permissible movement period; P16 

Demographic 
parameters 

Target cell population density; P17 
Disease transmission rate; P18 
Incubation period; P19 * 
Contact rate; P20 

Disease parameters 

Time of infection; P21 
Reflective disease spread; P22 
Sex specific mortality rates; P23 

Superfluous 
parameters 

Random variable; P25 + 
Flagging parameter Rabies run; P24 + 
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 Biologically appropriate data for defining ORM parameter inputs were queried 

from the Raccoon Ecology Database (REDB; Chapter 2).  The REDB includes estimates 

of population density, survival rates, rabies incubation period, litter size, body weight, 

dispersal distance and home range size, often classified by age or sex class for 100’s of 

peer-reviewed and unpublished data regarding raccoon biology, ecology and raccoon 

rabies.  The data were used to define pdf’s for each parameter using Palisade 

Corporation’s @RISK software, version 4.5.4 (www.palisade.com).  Latin hypercube 

sampling (LHS) from the pdf’s specified parameter inputs for model simulations.  LHS is 

a substantially more efficient means of defining input values that cover the entire 

parameter space for a highly parameterised model than a fully factorial design (McKay et 

al. 1979).  LHS draws parameter values without replacement and with equal probability 

over the entire parameter space.  McKay et al (1979) recommend that the number of 

samples (n) drawn should be >4K/3, where K is the number of parameters.  For analysis, 

K = 24, hence, n is set to 50 to satisfy n >4K/3, and to sufficiently sample parameter 

space.  This resulted in 50 different sets of input parameter specifications, of which each 

are referred to as a model simulation. 

 More specifically, there were two strategies for defining parameter inputs 

depending on whether the parameter was defined by a single value or by a pdf within the 

model.  In the first case, data from reviewed literature are used to create a pdf from which 

a value is drawn during LHS and used as input in the model (e.g. contact rate, P20).  For 

parameters defined within the model using a pdf, reviewed data enable definition of three 

different pdf’s in terms of shape (e.g. uniform, leptokurtic, platykurtic for incubation 

period, P19) or its mean (e.g. low, medium or high mean pdf values for dispersal 
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distances, P1, P2, P3, P4, mortality rates, P6, P7).  LHS sampling from a uniform 

distribution is then used to determine with equal likelihood whether a low, medium or 

high pdf is used as input for each of the 50 simulations.  Similarly, LHS sampling of only 

two values from a uniform distribution is used to determine whether a simulation is 

infected with rabies (P24), uses reflective disease spread (P22), or has sex specific 

mortality rates (P23), where either case of each parameter can occur with equal 

probability.  

Simulation Runs 

A raccoon population was grown from a single pair of raccoons into a stable 

population over 100 years.  Rabies was not introduced into this population.  This 

population is referred to as the seed population, because it is the starting population from 

which sensitivity analysis simulations are run.  The model was run for another 200 years, 

for a total of 300 years, for each of the 50 uniquely parameterised model simulations.  

Thus, all simulations start with the same conditions, but then model dynamics are 

expected to change once the model runs using the unique parameter specification.  

Simulations with rabies were infected at year 200, at a week defined by P21.  Infecting 

“rabid” simulations at year 200 ensured sufficient time had passed for parameter 

specifications to effect model dynamics.  Running the model for a further 100 years 

allowed sufficient time for rabies to have an effect on model dynamics.  Only half of the 

simulations were infected with rabies to enable adequate assessment of model dynamics 

with and without disease.  Rabies was seeded in five cells of the leftmost column of the 

20x15 hexagonal cell lattice.  These cells were evenly spaced along the column.  

Furthermore, each model simulation was run 10 times to capture the outcome variation 
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caused by model stochasticity, to yield a sample size of 10 for each of the 50 unique 

model simulations. 

Response Variables 

Effects of parameter inputs on modelled demographic and disease characteristics 

were quantified temporally and spatially using four demographic and five disease 

response variables (Table 4.2).  Response variables were chosen to examine overall 

characteristics of model output; however, as further discussed, the choice of response 

variables was expected to influence results because parameters likely differ in the scale of 

their spatial and temporal scale effects.  Individual parameter impacts on selected 

response variables are illustrated using scatterplots: density versus TotalPop, and contact 

rate versus InfectY1. 

Correlations among response variables were expected and they could potentially 

confound the results.  Hence, principal components analysis (PCA) of standardised 

response variables was performed for i) all simulations, ii) infected simulations and iii) 

non-infected simulations using STATISTICA 7.0 (www.statsoft.com).  Component scores 

were calculated from eigenvectors for the most explanatory components (Manly 1994) 

and used for subsequent sensitivity analysis.   
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Table 4.2 Response variables used in the sensitivity analysis.   
Demographic Response 
Variables 

Description; (Value for sensitivity analysis) 

Total population (TotalPop) Total number of raccoons in week 30 averaged over the 
final 20 years of a simulation trial; (size of population) 

Temporal variance:mean 
ratio (TempVM) 

The variance of landscape populations over the mean 
landscape population of the final 20 years of simulation 
for week 30; (measure of temporal dynamics of 
population at a coarse spatial scale) 

Centre cell temporal 
variance:mean ratio 
(CentreVM) 

The variance of the centre cell population over the mean 
centre cell population of the final 20 years of simulation 
for week 30; (measure of temporal dynamics of 
population at a fine spatial scale) 

Spatial variance:mean ratio 
(SpatVM) 

The variance of cell populations over the mean cell 
populations of the entire landscape for week 30 of the 
final year; (spatial variability of population dynamics) 

Disease Response 
Variables 

Description; (Value for sensitivity analysis) 

Infected spatial 
variance:mean ratio 
(InfectSpatVM) 

The variance of cell populations of infected animals over 
the mean cell populations of infected animals for the 
entire landscape after the first year of simulation; (spatial 
measure of diseased population dynamics) 

Total number of rabies cases 
(InfectY1) 

Total number of rabies cases one year after the initial 
infection; (measures the severity of the initial outbreak) 

Maximum number of rabies 
cases (MaxInfect) 

The maximum number of rabies cases that occurred 
during any week of the simulation; (an overall indication 
of outbreak severity) 

Disease duration (Duration) Number of weeks that incubating or infectious raccoons 
exist in the simulation; (an overall indication of the 
severity and temporal intensity of the outbreak)  

Rate of disease spread 
(TimeToCross) 

Number of weeks it takes for the first infectious raccoon 
to cross half the length of the study area (column 10 of 20 
columns); (measures the severity of the initial outbreak) 
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PCA of i) all simulations, ii) infected simulations and iii) non-infected simulations 

differed by the type of response variables used and their sample size.  InfectSpatVM and 

TimeToCross response variables were not included for PCA of all simulations.  This was 

to ensure a full sample size of 500, because it was not possible to calculate values for 

InfectSpatVM and TimeToCross from non-infected simulations.  PCA for infected 

simulations used all response variables, but had a reduced sample size of 150.  Again, this 

was because of InfectSpatVM and TimeToCross, which only have 150 of the 250 

possible infected observations owing to cases where the disease burned out before 

InfectSpatVM and TimeToCross were calculated.  Only demographic response variables 

were used for PCA of non-infected simulations, because there were no data for the 

disease response variables, and consequently had a reduced sample size of 250. 

Information Theory Sensitivity Analysis (ITSA) 

Component scores generated from the PCA of the response variables (Table 5.2) 

were used as the response variables for ITSA.  ITSA was performed nine times because 

three principal components were calculated from each of i) all simulations, ii) infected 

simulations and iii) non-infected simulations.  The essential steps for ITSA were to a) run 

linear regression for each parameter to calculate univariate model values of AIC 

corrected (AICc) for small sample sizes and BIC, and then rank the models using these 

values, b) run multiple regression analyses for multivariate models designed a priori to 

calculate their values of AICc and BIC weights (known as posterior probabilities of 

models for BIC; Burham and Anderson 2002), and then rank the models using these 

values.  R2 values were also calculated for steps (a) and (b) to compare with the 

information criteria. 
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Scatterplots were used to assess linearity between continuous parameters and 

PCA derived response variables.  Non-linear parameters were transformed into 

categorical parameters and treated as factors during regression analysis.  Transformed 

parameters were renamed using a prefix of “c” (e.g. P18 to cP18).   

Disease parameters (P18, P19, P21, P22) were not used in the ITSA of iii) non-

infected simulations because they were not parameterised for these simulations. 

AICc and BIC values for the univariate and multivariate models were calculated 

using RSS (Burnham et al. 2000) and R2 values (Raftery et al. 1997) from least squares 

regression, respectively: 

 

AICc = nloge(RSS / n) + 2K + C           Equation 4 

 

BIC = nloge(1-R2) + (K-2)• loge(n)                     Equation 5 

 

where n is the number of simulations run for each sensitivity testing group.  K is the 

number of estimated regression parameters in the model including the model constant 

(the y-intercept) and the residual term accounting for variation in the data not explained 

by the parameters.  C is calculated as 2K (K +1) / (n - K - 1) to correct for small sample 

sizes (Burnham and Anderson 2002).   

AICc and BIC values are unitless, but the values are meaningful on a relative scale 

when considered together.  Small values indicate variation observed in a response 

variable more succinctly than models with larger values.  AICc and BIC weights, wi, were 
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calculated to define the likelihood of a model being the best model given the data and set 

of candidate models: 
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           Equation 6 

 
where iΔ  are the AICc or BIC differences, calculated as the difference between the IC 

value for model i and the lowest IC value: iΔ  = AICc, i – AICc, min, or iΔ  = BICi – BICmin. 

Candidate Multivariate Models 

Several types of multivariate models were created a priori to explore model 

parsimony: I) a global model that included all parameters; II) three semi-global models, 

in that, each one lacked one of the superfluous parameters (P22, P23, or P25), to evaluate 

the effect of the superfluous parameter within a multivariate context; III) a forward 

stepwise regression model, seeded with the parameter that explained the most variation 

from the univariate analysis; and IV) a backward stepwise regression model. 

 Model Stochasticity 

ITSA was repeated using the mean of the stochastic results.  This reduced sample 

size by a factor of 10 (because each unique model simulation was run 10 times to capture 

stochastic variation).  The motivation for averaging results was to decrease noise in 

modelled outcomes, produced by stochasticity, in case this impeded identification of 

critical parameters. 
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Statistical analysis was accomplished using R (R Development Core Team 2005).  

Models of type I - IV were run using the linear models facility.  For the stepwise analysis, 

AIC was used as the criterion for inclusion or exclusion of parameters.   

Results 

Five continuous parameters were non-linearly related to the response variables, 

thus, were transformed into categorical parameters: cP5, cP9, cP17, cP18 and cP20.  

Scatterplots indicate that raccoon populations are larger with higher density values (cP17) 

and the number of infectious cases in the first year of rabies infection is also greater when 

contact rates are higher (cP20; Figure 4.1, 4.2). 

PCA results of the response variables indicated that the majority of variation was 

captured in the top two or three components (Table 4.3).  The eigenvectors of each 

component were used to formulate a verbal description (e.g. component 1 for all 

simulations and infected simulations is most representative of variation caused by 

“disease intensity”; Table 4.3). 
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Figure 4.1 Scatterplot illustrating impact of density (cP17) on raccoon population size 
(response variable: TotalPop).  95% confidence intervals are given. 

y = 51564.4 – 21519.4x 
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Figure 4.2 Scatterplot illustrating impact of contact rate (cP20) on total number of rabies 
cases during the first year of infection (response variable: InfectY1).  95% confidence 
intervals are given.

y = – 34.0 – 119.2x 
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Univariate analyses of parameter effects on the three component scores for i) all 

simulations, ii) infected simulations and iii) non-infected simulations produced identical 

parameter rankings from the R2, AICc and BIC values (Table 4.4, 4.5, 4.6). 

Analytical results were almost identical using data from stochastic simulation runs and 

the mean of stochastic runs.  The exceptions were that the “averaged” results tended to 

have a higher ranking for the random parameter (P25), and that fewer parameters had 

significant R2 values. 

Highly ranked parameters for i) all simulations, ii) infected simulations and iii) 

non-infected simulations were: P4, P7, cP9, P14, cP17, cP18, P24.  The disease 

parameters, cP18, P19 and P21 were ranked most highly for the ii) infected simulations.  

The random (P25) and superfluous variables (P22, P23) had low rankings for i) all 

simulations, ii) infected simulations and iii) non-infected simulations.  Other parameters 

with consistently low rankings were cP5, P8, P10, P11, and P12. 

For multivariate analyses, the backwards then forwards stepwise regression 

models were identified as the top two candidate models using AICc and BIC weights for 

i) all simulations.  There was no clear trend in the ranks of global and semi-global 

models.  For ii) infected and iii) non-infected simulations, global and semi-global models 

could not be built because sample size was too small to estimate all parameter 

coefficients (Table 4.7, 4.8, 4.9). 
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Table 4.4 Univariate analysis of the PCA components a) Z1, b) Z2 and c) Z3 produced 
from “all simulations”.  Univariate models are ranked by AICc.  *R2 values with P-values 
< 0.05.  Disease parameters are in bold, and the superfluous and random variables are 
highlighted in grey.  
a) Z1 
Stochastic Mean Stochastic results 
 AICc BIC R2  AICc BIC R2 
cP18 -1001.5 -218.6 0.36* cP18 170.1 -211.3 0.35* 
cP17 -878.0 -95.1 0.18* cP17 289.2 -92.2 0.18* 
cP9 -861.4 -78.4 0.16* cP9 305.3 -76.0 0.15* 
P7 -828.1 -45.2 0.10 P7 330.5 -50.9 0.11* 
P24 -826.2 -43.2 0.09 P24 339.5 -41.9 0.09* 
P14 -808.8 -25.8 0.06 P14 356.4 -25.0 0.06* 
P2 -808.4 -25.4 0.06 P2 356.8 -24.6 0.06* 
P6 -806.3 -23.4 0.06 P6 358.8 -22.6 0.06* 
P3 -804.1 -21.1 0.05 P3 361.0 -20.4 0.05* 
cP20 -799.6 -16.7 0.04 cP20 365.3 -16.1 0.04* 
P1 -789.2 -6.2 0.02 P1 375.5 -5.9 0.02* 
P16 -787.4 -4.5 0.02 P16 377.2 -4.2 0.02* 
P15 -786.4 -3.4 0.02 P15 378.2 -3.2 0.02* 
P22 -783.5 -0.6 0.01 P22 381.0 -0.4 0.01* 
P11 -783.4 -0.5 0.01 P11 381.1 -0.3 0.01 
P21 -780.6 2.3 0.01 P21 383.8 2.4 0.01 
P10 -779.8 3.1 0.01 P10 384.6 3.2 0.01 
P19 -779.3 3.7 0.01 P19 385.1 3.7 0.00 
P12 -779.0 3.9 0.00 P12 385.4 4.0 0.00 
P4 -778.3 4.7 0.00 P4 386.1 4.7 0.00 
P8 -777.8 5.2 0.00 P8 386.6 5.2 0.00 
P23 -777.3 5.7 0.00 P23 387.1 5.7 0.00 
P25 -777.0 6.0 0.00 cP5 387.5 6.1 0.00 
cP5 -776.8 6.1 0.00 P25 387.6 6.2 0.00 
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Table 4.4.  con’t 
b) Z2 
Stochastic Mean Stochastic results 
 AICc BIC R2  AICc BIC R2 
P7 -1447.2 -78.5 0.16* P7 61.4 -36.6 0.08* 
P24 -1442.2 -73.5 0.15* P24 63.4 -34.6 0.08* 
cP9 -1408.7 -39.9 0.09* cP9 80.2 -17.8 0.05* 
cP17 -1404.7 -35.9 0.08* cP17 82.2 -15.8 0.04* 
cP18 -1401.6 -32.9 0.08 cP18 83.8 -14.2 0.04* 
P4 -1398.8 -30.0 0.07 P4 85.3 -12.7 0.04* 
P6 -1389.9 -21.2 0.05 P6 89.8 -8.2 0.03* 
P15 -1382.6 -13.8 0.04 P15 93.6 -4.3 0.02* 
P2 -1379.8 -11.0 0.03 P2 95.1 -2.9 0.02* 
P16 -1377.1 -8.4 0.03 P16 96.5 -1.5 0.02* 
P1 -1376.6 -7.8 0.03 P1 96.8 -1.2 0.01* 
P19 -1375.9 -7.2 0.03 P19 97.1 -0.9 0.01* 
P3 -1373.0 -4.2 0.02 P3 98.7 0.7 0.01* 
cP20 -1372.7 -3.9 0.02 cP20 98.8 0.9 0.01 
P23 -1370.3 -1.6 0.02 P23 100.1 2.1 0.01 
cP5 -1370.3 -1.5 0.02 P5 100.1 2.1 0.01 
P12 -1365.3 3.5 0.01 P12 102.8 4.8 0.00 
P14 -1364.6 4.1 0.00 P14 103.1 5.1 0.00 
P22 -1364.2 4.6 0.00 P22 103.3 5.4 0.00 
P11 -1363.6 5.1 0.00 P11 103.6 5.6 0.00 
P21 -1363.5 5.2 0.00 P21 103.7 5.7 0.00 
P10 -1362.6 6.1 0.00 P25 104.1 6.1 0.00 
P8 -1362.6 6.1 0.00 P10 104.2 6.2 0.00 
P25 -1362.5 6.2 0.00 P8 104.2 6.2 0.00 
 
 

c) Z3 
Stochastic Mean Stochastic results 
 AICc BIC R2  AICc BIC R2 
P24 -1657.8 -79.5 0.16* P24 -52.2 -30.1 0.07* 
P14 -1627.8 -49.5 0.11 P14 -39.9 -17.8 0.05* 
P16 -1618.8 -40.5 0.09 P16 -36.1 -14.0 0.04* 
P15 -1601.9 -23.6 0.06 P15 -28.9 -6.8 0.03* 
P3 -1593.7 -15.4 0.04 P3 -25.4 -3.3 0.02* 
P22 -1593.0 -14.7 0.04 P22 -25.0 -3.0 0.02* 
cP17 -1591.5 -13.2 0.04 cP17 -24.4 -2.3 0.02* 
P7 -1585.7 -7.5 0.03 P7 -21.8 0.3 0.01* 
P23 -1584.6 -6.4 0.02 P23 -21.4 0.7 0.01* 
P19 -1581.0 -2.7 0.02 P19 -19.8 2.3 0.01 
P6 -1578.9 -0.7 0.01 P6 -18.9 3.2 0.01 
cP18 -1578.6 -0.3 0.01 cP18 -18.7 3.3 0.01 
P2 -1576.8 1.5 0.01 P2 -17.9 4.1 0.00 
P10 -1575.8 2.5 0.01 P10 -17.5 4.5 0.00 
P1 -1575.5 2.7 0.01 P1 -17.4 4.7 0.00 
P4 -1574.2 4.1 0.00 P4 -16.8 5.3 0.00 
P12 -1574.1 4.2 0.00 P12 -16.7 5.3 0.00 
P21 -1573.8 4.5 0.00 P21 -16.6 5.5 0.00 
cP9 -1573.4 4.9 0.00 cP9 -16.5 5.6 0.00 
P8 -1572.8 5.4 0.00 P8 -16.2 5.9 0.00 
P11 -1572.6 5.7 0.00 P11 -16.1 6.0 0.00 
cP20 -1572.4 5.9 0.00 P25 -16.1 6.0 0.00 
cP5 -1572.1 6.2 0.00 cP20 -16.0 6.1 0.00 
P25 -1572.1 6.2 0.00 cP5 -15.9 6.2 0.00 

Table 4.5 Univariate analysis of the PCA components a) Z1, b) Z2 and c) Z3 produced 
from “infected simulations”.  Univariate models are ranked by AICc.  *R2 values with P-
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values < 0.05.  Disease parameters are in bold, and the superfluous and random variables 
are highlighted in grey. 
a) Z1 
Stochastic Mean Stochastic results 
 AICc BIC R2  AICc BIC R2 
cP18 -206.9 -112.9 0.54* cP18 149.5 -107.1 0.53* 
P7 -151.7 -57.8 0.34* P7 201.4 -55.2 0.33* 
cP17 -141.7 -47.8 0.30* cP17 210.9 -45.7 0.29* 
cP9 -140.6 -46.7 0.29* cP9 212.0 -44.6 0.28* 
P14 -138.8 -44.9 0.28 P14 213.7 -42.9 0.27* 
P22 -130.7 -36.8 0.24 P22 221.3 -35.2 0.24* 
P6 -126.2 -32.4 0.22 P6 225.6 -30.9 0.21* 
P1 -119.9 -26.0 0.19 P1 231.7 -24.8 0.18* 
P2 -119.7 -25.7 0.19 P2 232.0 -24.6 0.18* 
cP20 -115.3 -21.4 0.16 cP20 236.1 -20.4 0.16* 
P16 -113.5 -19.6 0.15 P16 237.8 -18.7 0.15* 
P15 -99.0 -5.1 0.07 P15 251.8 -4.7 0.06* 
P3 -98.1 -4.2 0.06 P3 252.7 -3.8 0.06* 
P23 -96.4 -2.5 0.05 P23 254.3 -2.3 0.05* 
P4 -95.7 -1.8 0.04 P4 255.0 -1.6 0.04* 
P19 -94.1 -0.2 0.03 P19 256.5 0.0 0.03 
P8 -93.1 0.8 0.03 P8 257.5 0.9 0.03 
P10 -92.6 1.3 0.02 P10 258.0 1.4 0.02 
P25 -91.0 2.9 0.01 P12 261.0 4.4 0.00 
P12 -89.5 4.4 0.00 P11 261.1 4.5 0.00 
P11 -89.4 4.5 0.00 cP5 261.3 4.7 0.00 
cP5 -89.2 4.7 0.00 P25 261.4 4.9 0.00 
P21 -88.9 5.0 0.00 P21 261.6 5.0 0.00 
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Table 4.5. con’t 
b) Z2 
Stochastic Mean Stochastic results 
 AICc BIC R2  AICc BIC R2 
P1 -386.2 -114.8 0.55* P1 63.2 -66.5 0.38* 
cP18 -354.4 -83.0 0.44* cP18 79.9 -49.8 0.31* 
P16 -311.6 -40.2 0.26 P16 105.0 -24.7 0.18* 
P15 -301.1 -29.6 0.21 P15 111.7 -18.0 0.14* 
P4 -300.9 -29.5 0.21 P4 111.8 -17.9 0.14* 
cP5 -297.0 -25.6 0.18 cP5 114.3 -15.4 0.13* 
P7 -293.0 -21.6 0.16 P7 116.9 -12.8 0.11* 
P2 -280.8 -9.4 0.09 P2 124.9 -4.8 0.06* 
P19 -276.8 -5.3 0.07 P19 127.7 -2.0 0.05* 
cP9 -276.3 -4.8 0.06 cP9 128.0 -1.7 0.04* 
P11 -275.1 -3.6 0.06 P11 128.8 -0.9 0.04* 
P6 -273.6 -2.1 0.05 P6 129.8 0.1 0.03* 
P23 -271.8 -0.4 0.04 P23 131.0 1.3 0.02 
P3 -270.8 0.6 0.03 P3 131.7 2.0 0.02 
P12 -269.9 1.6 0.02 P12 132.4 2.7 0.02 
P14 -269.5 2.0 0.02 P14 132.6 2.9 0.01 
P8 -267.8 3.6 0.01 P8 133.8 4.0 0.01 
P22 -267.7 3.7 0.01 P22 133.8 4.1 0.01 
P21 -267.3 4.2 0.01 P21 134.1 4.4 0.00 
P10 -266.9 4.5 0.00 P10 134.4 4.7 0.00 
P25 -266.9 4.6 0.00 P25 134.5 4.8 0.00 
cP20 -266.6 4.8 0.00 cP20 134.6 4.9 0.00 
cP17 -266.5 4.9 0.00 cP17 134.7 5.0 0.00 

 
c) Z3 
Stochastic Mean Stochastic results 
 AICc BIC R2  AICc BIC R2 
P14 -526.0 -73.2 0.41* P14 171.1 -4.5 0.06* 
P19 -498.2 -45.4 0.29 P19 174.0 -1.6 0.04* 
cP18 -487.5 -34.7 0.23 cP18 175.3 -0.4 0.04* 
P8 -487.4 -34.6 0.23 P8 175.3 -0.4 0.04* 
P6 -487.4 -34.6 0.23 P6 175.3 -0.4 0.04* 
P21 -475.1 -22.3 0.17 P21 176.8 1.2 0.03 
cP5 -473.9 -21.1 0.16 cP5 177.0 1.3 0.02 
P4 -472.0 -19.2 0.15 P4 177.2 1.6 0.02 
P11 -471.1 -18.3 0.14 P11 177.4 1.7 0.02 
P7 -470.7 -17.9 0.14 P7 177.4 1.8 0.02 
P1 -465.0 -12.2 0.11 P1 178.2 2.5 0.02 
P3 -464.2 -11.4 0.10 P3 178.3 2.6 0.02 
cP20 -460.3 -7.5 0.08 cP20 178.8 3.2 0.01 
P23 -458.9 -6.1 0.07 P23 179.0 3.4 0.01 
P16 -457.8 -5.1 0.06 P16 179.2 3.5 0.01 
cP17 -454.9 -2.1 0.05 cP17 179.6 4.0 0.01 
P2 -454.8 -2.0 0.05 P2 179.6 4.0 0.01 
cP9 -454.3 -1.5 0.04 cP9 179.7 4.0 0.01 
P22 -449.6 3.2 0.01 P22 180.4 4.7 0.00 
P15 -448.9 3.9 0.01 P15 180.5 4.8 0.00 
P10 -448.8 4.0 0.01 P10 180.5 4.9 0.00 
P25 -448.4 4.4 0.00 P12 180.7 5.0 0.00 
P12 -447.9 4.9 0.00 P25 180.7 5.0 0.00 
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Table 4.6 Univariate analysis of the PCA components a) Z1, b) Z2 and c) Z3 produced 
from “non-infected simulations”.  Univariate models are ranked by AICc.  *R2 values 
with P-values < 0.05.  Superfluous and random variables are highlighted in grey.   
a) Z1 
Stochastic Mean Stochastic results 
 AICc BIC R2  AICc BIC R2 
P4 -1069.5 -67.9 0.25* P4 -327.1 -34.8 0.15* 
P2 -1059.7 -58.1 0.22 P2 -322.0 -29.8 0.13* 
P16 -1049.2 -47.6 0.19 P16 -316.5 -24.2 0.11* 
P10 -1044.5 -42.9 0.18 P10 -314.0 -21.7 0.10* 
cP17 -1029.1 -27.5 0.12 cP17 -305.5 -13.3 0.07* 
P7 -1028.1 -26.5 0.12 cP9 -305.0 -12.8 0.07* 
cP9 -1026.2 -24.6 0.11 P7 -304.0 -11.7 0.07 
P14 -1026.2 -24.6 0.11 P14 -303.8 -11.5 0.07 
cP20 -1020.5 -18.8 0.09 cP20 -300.7 -8.5 0.05 
P15 -1020.2 -18.6 0.09 P15 -300.6 -8.3 0.05 
P6 -1018.8 -17.2 0.09 P6 -299.8 -7.6 0.05 
P1 -1014.0 -12.4 0.07 P1 -297.1 -4.8 0.04 
P11 -1014.0 -12.4 0.07 P11 -297.1 -4.8 0.04 
P3 -1013.1 -11.5 0.07 P3 -296.6 -4.3 0.04 
P25 -1012.9 -11.3 0.07 P12 -296.5 -4.2 0.04 
P12 -1009.4 -7.7 0.05 P22 -294.4 -2.2 0.03 
P22 -1008.6 -7.0 0.05 cP5 -290.6 1.7 0.02 
cP5 -1002.7 -1.1 0.03 P23 -289.9 2.4 0.01 
P23 -1001.4 0.2 0.02 P8 -289.4 2.9 0.01 
P8 -1000.6 1.0 0.02 P25 -288.9 3.4 0.01 

 
b) Z2 
Stochastic Mean Stochastic results 
 AICc BIC R2  AICc BIC R2 
cP17 -819.8 -174.6 0.51* cP17 -174.8 -141.4 0.44* 
P16 -690.3 -45.1 0.18 P16 -71.1 -37.7 0.16* 
P10 -689.1 -43.9 0.18 P10 -70.1 -36.6 0.16* 
cP20 -688.4 -43.1 0.18 cP20 -69.5 -36.0 0.15* 
cP9 -686.7 -41.5 0.17 cP9 -68.1 -34.6 0.15* 
P25 -677.9 -32.6 0.14 P2 -60.6 -27.1 0.12* 
P2 -675.9 -30.7 0.13 P3 -59.0 -25.5 0.12* 
P3 -675.8 -30.6 0.13 P8 -50.7 -17.2 0.09* 
P8 -666.2 -21.0 0.10 P7 -48.8 -15.4 0.08* 
P7 -664.0 -18.8 0.09 P15 -47.4 -13.9 0.07* 
P15 -662.3 -17.1 0.09 P22 -45.7 -12.2 0.07* 
P22 -660.3 -15.1 0.08 P14 -43.3 -9.9 0.06* 
P14 -657.9 -12.7 0.07 P6 -37.4 -4.0 0.04 
P6 -650.7 -5.5 0.04 P1 -35.6 -2.1 0.03 
P1 -648.6 -3.4 0.03 P25 -35.2 -1.8 0.03 
P23 -648.1 -2.9 0.03 P23 -33.4 0.1 0.02 
P12 -646.0 -0.8 0.02 P12 -31.6 1.9 0.01 
P4 -643.9 1.3 0.02 P4 -30.6 2.9 0.01 
P11 -642.5 2.7 0.01 P11 -30.3 3.1 0.01 
cP5 -641.8 3.4 0.01 cP5 -29.8 3.7 0.01 
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Table 4.6.  con’t 
c) Z3 
Stochastic Mean Stochastic results 
 AICc BIC R2  AICc BIC R2 
P10 -973.8 -56.3 0.22* P10 -201.3 -24.5 0.11* 
P4 -965.8 -48.3 0.19 P4 -197.7 -20.9 0.10* 
P16 -960.5 -43.0 0.18 P16 -195.2 -18.4 0.09* 
P2 -959.8 -42.3 0.17 P2 -194.9 -18.1 0.09* 
cP9 -955.7 -38.2 0.16 cP9 -192.9 -16.1 0.08* 
cP17 -954.0 -36.5 0.15 cP17 -192.1 -15.3 0.08* 
P7 -949.9 -32.4 0.14 P7 -189.9 -13.1 0.07* 
cP20 -945.6 -28.1 0.13 cP20 -188.1 -11.3 0.06* 
P14 -938.1 -20.6 0.10 P14 -184.5 -7.6 0.05* 
P15 -938.1 -20.6 0.10 P15 -184.4 -7.6 0.05* 
P25 -936.6 -19.1 0.09 P11 -183.7 -6.9 0.05* 
P11 -930.7 -13.2 0.07 P3 -180.8 -4.0 0.04* 
P3 -927.1 -9.6 0.06 P6 -178.9 -2.1 0.03 
P6 -926.9 -9.5 0.06 P1 -178.2 -1.4 0.03 
P1 -925.5 -8.0 0.05 P8 -177.3 -0.5 0.02 
P8 -923.8 -6.3 0.05 P23 -175.4 1.4 0.02 
P23 -920.0 -2.5 0.03 cP5 -174.7 2.1 0.01 
cP5 -918.7 -1.2 0.03 P12 -173.1 3.7 0.01 
P12 -915.4 2.0 0.01 P25 -172.2 4.6 0.00 
P22 -913.8 3.7 0.01 P22 -172.1 4.7 0.00 
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Table 4.8 Parameters included in the models from the multivariate analysis of ii) infected 
simulations.  AICc, BIC and R2 values are also given.  Models: B = backward stepwise 
selection, F = forward stepwise selection, G = global, G – P22 = all parameters except 
P22, G – P23 = all parameters except P23, G – P25 = all parameters except P25; Z1, Z2 
and Z3 are the response variables derived from the PCA analysis.  

Z1 Z2 Z3  
F B F B F B 

P1 x x x x   
P2  x  x  x 
P3  x  x  x 
P4  x  x  x 
cP5  x    x 
P6  x x x   
P7 x   x   
P8 x x  x  x 
cP9 x x  x  x 
P10       
P11     x  
P12   x    
P14     x  
P15 x      
P16 x  x    
cP17       
cP18 x  x    
P19     x  
cP20   x    
P21       
P22       
P23       
P24       
P25       
AICc wi 0.71 0.29 0.69 0.31 0.88 0.12 
BIC wi 0.91 0.01 0.97 0.03 1.00 0.00 
R2 0.97 0.97 0.68 0.69 0.13 0.14 
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Table 4.9 Parameters included in the models from the multivariate analysis of iii) non- 
infected simulations.  AICc, BIC and R2 values are also given.  Models: B = backward 
stepwise selection, F = forward stepwise selection, G = global, G – P22 = all parameters 
except P22, G – P23 = all parameters except P23, G – P25 = all parameters except P25; 
Z1, Z2 and Z3 are the response variables derived from the PCA analysis.  

Z1 Z2 Z3  
F B B F F B 

P1 x  x x   
P2 x x x x x x 
P3 x x x x  x 
P4 x x x  x x 
cP5  x x x  x 
P6 x x x x x x 
P7 x x  x x x 
P8 x x x x x x 
cP9 x x x x  x 
P10  x x x x x 
P11  x x x  x 
P12  x x x  x 
P14 x x x x  x 
P15 x x x x x x 
P16 x x x x x x 
cP17 x x x x x x 
cP18 n/a n/a n/a n/a n/a n/a 
P19 n/a n/a n/a n/a n/a n/a 
cP20       
P21 n/a n/a n/a n/a n/a n/a 
P22 n/a n/a n/a n/a n/a n/a 
P23 x   x x  
P24       
P25       
AICc wi 0.74 0.26 0.83 0.17 1.00 0.00 
BIC wi 1.00 0.00 0.95 0.05 1.00 0.00 
R2 0.58 0.58 0.87 0.87 0.48 0.51 
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Overall, as sample size decreased from i) all simulations (n = 500) to iii) non-

infected simulations (n = 250) then ii) infected simulations (n = 150), the number of 

parameters included in the backwards and forwards stepwise selection models also 

decreased.  Backwards stepwise selection appears to perform poorly with the smaller 

sample sizes because the parameters included in the models are the first few parameters 

from the order in which they were entered into the analysis.   

Models could not be ranked using R2 because the values were often identical 

among the candidate models.  In contrast, the values from the AICc and BIC weights 

were sufficiently variable to rank the models.  Both information criteria indicated the 

same top candidate models, with BIC more heavily weighting top models. 

Discussion 

This study incorporated Information Theory into sensitivity analysis.  The aim 

was to overcome disadvantages of the null hypothesis testing approach and to evaluate 

the benefit of including parameters to increase model explanatory power against 

increased outcome uncertainty through parameter estimation error.  The first stage of 

ITSA used univariate analysis to rank individual parameters effects on model outcomes.  

This was informative for quantifying the main effects of parameters.  It also provided an 

objective means of selecting the most explanatory parameter to seed forward stepwise 

regression analysis, since this can influence the final resulting model (Whittingham et al. 

2006)).  This problem is exacerbated when multicollinearity exists among the parameters; 

however, this was not present, which is not surprising since the input parameter values 

were drawn randomly using LHS. 
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The second stage of ITSA used multivariate analysis and information criteria to 

assess model parsimony.  Global models (all parameters) were built to compare with 

semi-global models (all parameters except for a superfluous parameter) to evaluate the 

contribution of each superfluous parameter independent of other model parameters.  

However, constructing additional models in an objective manner, a priori, to assess 

parsimony was problematic.  Ideally a fully factorial design of every parameter 

combination would create models for comparison, yet for the ORM, this would result in 

10,000’s of models to evaluate.  Parameters for building models could not objectively be 

identified using univariate analysis since parameter rankings differed among the principal 

component response variables (Z1, Z2, Z3) produced from i) all simulations, ii) infected 

simulations and iii) non-infected simulations.  Therefore, forward and backward stepwise 

selection were used to objectively create models.  Unfortunately, stepwise selection 

models did not meaningfully represent the system because random (P25) and superfluous 

parameters (P22, P23) were included.  Furthermore, backwards stepwise selection models 

were biased towards including parameters in the order from which they were entered into 

the analysis, a known problem for stepwise multiple regression (Whittingham et al. 

2006).   

It is likely sample size was too small for the number of parameters to discern their 

effects.  The greater the number of parameters, the lower the impact of each individual 

parameter on model outcomes, decreasing the ability to differentiate between important 

and unimportant parameters; hence the inclusion of random and superfluous parameters 

in the multivariate models.  As a general rule for multivariate analysis, there is a 10:1 

ratio of sample size to parameter (Burnham and Anderson 2002).  Given 50 unique model 
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specifications, a sample size of 500 was required.  This was achieved for i) all 

simulations (assuming all observations were completely independent of each other), but 

not for the ii) infected simulations (n = 150) and iii) non-infected simulations (n = 250).   

Model stochasticity may have increased observed variation, obscuring parameter 

effects.  To check for this, mean values were calculated from stochastic runs produced by 

each unique simulation, and ITSA was repeated using the mean values.  Yet, results were 

identical to the analysis of the complete data.  The only difference was that the averaged 

results had fewer significant univariate models, but this is a consequence of having a 

reduced sample size, which had the further detriment of being insufficient in sample size 

for multivariate analysis. 

Overall, univariate analysis of ITSA yielded more benefits of sensitivity testing 

than multivariate analysis.  Parameter rankings occurred as expected, demonstrating 

proper model functionality and supporting ecological theory underlying the disease-host 

model.  This was shown with the original response variables, in that higher density input 

values create larger raccoon populations (Figure 4.1) and greater contact rates lead to 

higher incidence (Figure 4.2), and was also shown using the PCA response variables.  For 

example: target cell density (cP17) was a dominant parameter influencing disease 

intensity (Z1 from Tables 4.4, 4.5) for i) all simulations, ii) infected simulations.  

Furthermore, disease transmission rate (cP18) was a dominant parameter affecting ii) 

infected simulations.  Both of these parameters were expected to have large effects given 

their importance in other modelled disease-host systems (Anderson and May 1991).  

Furthermore, non-ORM parameters were appropriately ranked: P24 (parameter flagging 

rabid simulations) was a highly explanatory variable for i) all simulations (P24 was not 
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included for ii) infected simulations and iii) non-infected simulations since its value did 

not vary), and P25 (random parameter) was consistently ranked as an insignificant 

parameter.  The benefit of these results is to increase confidence that ORM parameters 

were ranked appropriately.  Thus, it is reasonable to use the results to understand the 

disease-host system.  As such, highly ranked parameters (e.g. P7, P9, cP17, cP18) are 

assumed to have a greater impact on raccoon rabies than lowly ranked parameters (e.g. 

cP5, P8, P11, P12).   

In this regard, sensitivity analysis provides ecological insight about the raccoon-

rabies disease host system.  For instance, mortality rates (P6, P7) are identified as a 

critical component of raccoons rabies, as is found with mortality rates in demographic 

models of other species (Turchin 2003).  More specifically, female mortality rate (P7) has 

a larger impact on the raccoon-rabies system than male mortality rate (P6), since it was 

most often ranked more highly (Tables 4.4, 4.5, 4.6).  This corresponds to expectations of 

model design because the simulated death of mothers also results in the death of 

dependent young.  A further benefit of this analysis is that field studies can be directed to 

focus efforts towards collecting data for the critical parameters. 

The multivariate aspect of ITSA was designed to be the primary means of 

assessing model parsimony.  To be more effective for the ORM a larger sample size is 

required, for example, a parameter to sample size ratio of at least 1:20.  Another strategy 

would be to perturb parameter inputs by more extreme values.  However, perturbing 

parameter inputs beyond known variation would be less ecologically informative about 

the system since any parameter (important or unimportant) is expected to impact model 

outcomes given a large enough input perturbation. 
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Fortunately, an assessment of parsimony was possible through univariate analysis.  

For example, the superfluous nature of P22 and P23 was indicated by their low rankings, 

which commonly had less explanatory power than the random variable (P25).  This 

approach was subjective because the random variable (P25) cannot be used as an exact 

exclusion threshold since there is likely variation around its “explanatory” power of 

model outcomes.  Hence, a precise explanatory level by which a parameter should be 

included or excluded from the model is unknown.  Ecological insights gained from 

sensitivity testing also contribute to achieving model parsimony.  For example, 

distinguishing between juvenile and adult birth rates (P10, P11) was identified as an 

insignificant system component since both parameters have low univariate explanatory 

powers.  This information can be used to increase model parsimony by redesigning the 

model to use one overall parameter for birth rates, or by setting equal input values for 

P10 and P11.   However, some insignificant parameters, such as P5, are required for 

model functionality, so cannot be eliminated.  In these cases, their input values can be 

fixed and blocked from user input. 

Future investigations are needed to evaluate using Information Theory as a new 

means of achieving model parsimony through sensitivity analysis.  Aside from obtaining 

a sufficient sample size for ITSA, there are many types of information criteria that can be 

used in ITSA, because of differences in their underlying theory and analytical 

capabilities.  For instance, BIC tends to favour parameter-poor models (Raftery et al. 

1997), while AIC favours parameter-rich models (Stanley and Burnham 1998), as was 

evident in this study.  Using more than one information criterion reduces the risk of 

having a biased assessment of results generated from one criterion (Kuha 2004). 
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Overall, ITSA still yields the traditional benefits of sensitivity analysis.  Analysing 

response variables with regression enables determination of which parameters are 

responsible for the majority of observed variation.  In this regard, the sensitivity analysis 

guides parameter estimation efforts because it identifies parameters that have the greatest 

effect on outcomes, and thus require more precise estimates.  Other parameters are 

needed for model functionality, but should more appropriately have their input values 

restricted from user-modification (e.g. litter size, cP5).  Understanding of model 

processes is increased, and model functionality can be evaluated by checking that 

parameters produce expected effects on response variables.  An important caveat of ITSA 

is to create response variables that capture a range of spatial-temporal impacts parameters 

may have on model output so that parameters that differ in their scales of spatial and 

temporal effects can still be assessed. 

It is arguable that the ORM was already a parsimonious model through careful 

development that only included parameters known to affect the raccoon-rabies disease-

host system.  However, ecological systems are usually so complex and poorly understood 

that often developing plausible models a priori is not possible (Johnson 1999).  

Modellers are commonly faced with choosing between a set of models.  Sensitivity 

analysis is a crucial step in model development for assessing whether a model’s dynamics 

realistically represent the system (Saltelli 2000).  ITSA provides an objective method for 

doing this quantifiably and in the absence of having empirical data to validate model 

outcomes.   

The ORM requires appropriate testing before it is used to explore the raccoon 

rabies disease-host system and to guide rabies control practices.  Information Theory 
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sensitivity analysis contributes substantially to assessing model functionality, parameter 

estimation, and model parsimony for ORM development.  The value of this exercise is 

being critical of the benefits of modelling, the purpose of modelling, and the purpose of 

data collection.  Benefits of modelling to understand system dynamics are as much about 

model development as model outcomes. 
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Chapter 5  

Measuring the effect of the Niagara River as a barrier to gene flow in raccoons 

(Procyon lotor) and its implications to the spread of raccoon rabies 

Abstract 

Landscape barriers have implications for infectious wildlife disease control.  

Genetic data is used to predict the barrier effect in an area where rabies has yet to occur: 

from New York State (NY) into Ontario by crossing the Niagara River.   To do this, the 

expansion of a genetically marked raccoon population is simulated to cross the river from 

NY to Ontario under various barrier scenarios.  Since the model records genetics of 

individual raccoons, neutral mitochondrial DNA haplotype markers are tracked in the 

expanding population and characterized (at 25 year intervals) the genetic population 

structure using φST, Mantel tests and a gene diversity measure.  Barrier effects are 

assessed by comparing the genetic measures to those calculated from haplotypes of 166 

raccoons recently sampled from the same landscape.  “Best fits” between modelled 

scenarios and empirical data indicated that the Niagara River reduces movement by 50 

percent.  Founder effects dominated the colonizing genetic population structure, and, as 

the river barrier effect increased, genetic diversity decreased.  Using gene flow as an 

analogue to disease spread, it is concluded that the river will cause a similar reduction in 

movement on the spread of rabies.  Including individual genetic markers in simulation 

modelling benefits investigations of species range expansion and disease spread. 
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Introduction 

 Infectious disease modelling has made important contributions to epidemiology 

and ecology by quantifying infectious disease systems to enable explorations of their 

fundamental characteristics.  Model structure ranges from simulating average populations 

for determining general trends, to those that simulate variation in disease-host behaviours 

in heterogeneous environments for addressing more specific questions.  In this study, an 

individual-based spatial simulation model is used to investigate the effect of a major river 

on the spatial-temporal genetic structuring of raccoons for inferring the rate of raccoon 

rabies disease spread. 

Raccoon rabies is a variant rabies virus specifically adapted to infect raccoons 

(Winkler and Jenkins 1991).  It was first detected in Florida in the 1940’s, and a second 

major epizootic emerged in the late 1970’s along the West Virginia/Virginia border 

(Winkler and Jenkins 1991), spreading northwards at a rate of 30 - 47 km/year (Childs et 

al. 2000)).  It reached Canada near Brockville, Ontario, in 1999 (Wandeler and Salsberg 

1999) by crossing the St. Lawrence River from northern New York State (NY) and has 

the potential to further infiltrate south-central Ontario by crossing the Niagara River from 

western NY (Rosatte et al. 1997).  

The spread of raccoon rabies has occurred as an irregular wave.  The spatial-

temporal variations are largely attributed to physiography and habitat quality of the 

landscape, which in turn affect movement patterns and distribution of animals at risk 

(Childs et al. 2001)).  Quantifying the effect of various landscape barriers has, therefore, 

practical implications for rabies control planning in North America (Slate et al. 2005).  
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Rabies incidence records have been used to measure landscape barrier effects to 

disease flow (Smith et al 2002); however there are several difficulties with this approach: 

(a) assessing landscape effects in areas with no prior record of rabies; and (b) the highly 

variable quality of rabies incidence data that, in turn, can obscure measures of spread in 

both space and time.   There are a number of potential sources of bias in rabies data in 

North America.  i) Rabies surveillance is passive and typically monitors incidence when 

humans are at risk.  Consequently, the number of reported cases may be influenced by the 

density of the human population, meaning that many animals die undetected because they 

are not observed {Childs, Curns, et al. 2001 132 /id}); ii) under reporting is typical once 

rabies is established in an area because people become complacent about disease 

presence and the surveillance system is overloaded {Wilson, Bretsky, et al. 1997 12 /id}; 

iii) A variety of jurisdictions are responsible for rabies surveillance (e.g. province, 

counties, townships), and these differ in their budgets, mandates and reporting procedures 

{Childs, Curns, et al. 2001 132 /id}); and iv) most data have been collected on the basis 

of administrative units such as towns and counties which do not always correlate in size 

or location with environmental, ecological or biological factors affecting disease 

incidence {Lawson 2001 150 /id}).  There are strategies for controlling the first three 

reporting biases {Childs, Curns, et al. 2000 130 /id}).  In general, however, quality of 

disease incidence data is problematic when assessing relationships of rabies spread to 

environmental, ecological or biological factors, and reporting units.  Therefore, incidence 

data tend to be more valuable as an early warning system rather than for a detailed 

epidemiological assessment.   



 

 122  

Genetic data are explored for assessing barrier effects independent of incidence 

data.  The quality of genetic data depends on a sampling design that adequately covers 

genetic variation observed over space and time.  Neutral genetic markers are useful for 

population genetic analyses because they are not subject to selective pressures.  New 

variations that arise do not affect reproductive or survival rates of animals (fitness), thus 

variations will be maintained in the population, and will be distributed as reflected by 

mating and dispersal processes.   Therefore, neutral markers can be used as a “tag” to 

identify spatial-temporal patterns resulting from these processes.  This is in contrast to 

selected markers, where genotypes that increase fitness occur at higher frequencies, 

because these animals will have more success at spreading their genes.  Portions of 

mitochondrial DNA (mtDNA) contain neutral markers that have considerable variation in 

frequency of unique genetic sequences (haplotypes) within and among populations, 

making them suitable for assessing genetic population structure {Harrison 1989 95 /id}). 

Is it reasonable to apply neutral markers to track movement patterns for exploring 

mechanisms influencing spatial-temporal disease patterns?  This question arises because: 

a) rabies propagates and spreads more quickly than raccoon genetics (e.g. raccoon rabies 

disease spread of 30-47 km/year (Childs et al. 2000)) versus raccoon annual dispersal 

distances commonly being less than 5 km; Rosatte 2000); and b) rabies affects the 

population dynamics (Rosatte et al. 2006, 2007a, 2007b).  Rabies infection and gene flow 

are different processes.  Any immune susceptible animal can become infected, at any 

time of year, through successful transmission of the virus caused by direct contact (e.g. 

bite, scratch), which may even come from another species (e.g. skunk).  Spreading of 

genes requires animals to have reached reproductive maturity, dispersed and successfully 
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mated in a non-natal location.  With regards to population dynamics, gene flow of neutral 

markers does not affect genetic and demographic processes influencing the distribution of 

genes (e.g. genetic drift, dispersal, reproduction, mortality); however, the virus has this 

capability.  For instance, there may be a genetic predisposition for surviving the disease.  

This would influence the genetic population structure if linkage disequilibrium existed 

between the more “fit” functional genes and the neutral markers.  Furthermore, the 

genetic structure of a population reduced in size by disease could be altered by the 

mechanisms of genetic drift and founder effects of individuals settling unpopulated areas. 

An additional consideration is that the analysis of mtDNA gives a maternal 

perspective, since it is maternally inherited.  This is not an issue when males and females 

have similar dispersal patterns and mating systems.  However, in Ontario male raccoons 

disperse over greater distances, have larger home ranges and tend to mate with more 

partners than females {Rosatte 2000 6 /id}).  Consequently, model and genetic analysis 

might underestimate the degree of gene flow and the amount and distance of average 

raccoon movement.   

Despite spatial-temporal differences between disease spread and population 

dynamics and their respective effects on the genetic population structure, similarities in 

their fundamental mechanisms still supports the use of gene flow as being informative 

about disease spread.  Both of these systems are highly influenced by raccoon density.  

Densities must be sufficient to increase the likelihood of interactions leading to 

copulation or infection.  Raccoon movement is also a critical mechanism.  Interactive 

movement behaviours that result in conception can also enable the transmission of the 

disease.  Furthermore, infected young-of-year raccoons dispersing in the fall to new 
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locations and then mating in the spring, could also become infectious in the spring and 

transmit the disease to these new locations, in cases where viral incubation periods last 

several months {Jackson 2002 189 /id}). 

In this study genetic data are used to assess a potential barrier through which 

spread has yet to occur and, therefore, there is no disease incidence data to explore this 

issue.  The Ontario Rabies Model (ORM; Tinline et al. 2007) simulated mtDNA gene 

flow across the Niagara River (43°N 79°W) at varying levels of permeability.  Temporal 

“snapshots” of the simulated genetic population structure were compared with the one 

derived from field data.  The ORM is a stochastic spatial simulation model currently 

configured to simulate raccoon population dynamics, to track maternal and bi-parental 

genetic inheritance, to simulate rabies viral transmission and to model rabies control 

strategies (vaccination, culling and fertility control; Tinline et al. 2007).  The objectives 

of this study were to i) quantify the effect of the Niagara River as a landscape barrier to 

maternal gene flow, and ii) infer how the Niagara River will influence the rate of raccoon 

rabies disease spread from NY into south-central Ontario from the Niagara region, and, in 

doing so, assess the usefulness of gene flow in measuring barrier effects.  

Methods 

(a) Study area 

The Niagara Region of Ontario and New York State consists of flat rural 

agricultural lands.  Cutting east to west through the region is the Niagara Escarpment, 

which has a cliff face of approximately 25 metres in height.  The Niagara River flows 

over the escarpment, providing an outflow of water from Lake Erie into Lake Ontario.  
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The river has an average width of 0.5 km, dropping 99 metres over its course of 58 

kilometres.  The river is a major source of hydroelectricity for Canada and the United 

States (www.energy.gov.on.ca).  Being a fast moving river with only 5 bridges, it is 

assumed to be the major landscape barrier to raccoon movement in this region. 

 (b) Ontario Rabies Model 

The ORM operates on a lattice of hexagonal cells, each with a radius of 2 km 

(from cell centre to each vertex of the hexagon), the approximate activity range of 

raccoons in Ontario (Rosatte 2000).  The resulting cell area is 10.39 km2.  The shape and 

size of this lattice of cells is user-definable.  Experiments used a lattice of 2255 cells 

covering an area of approximately 23 500 km2 on either side of the Niagara River.  

Model processes operate at one-week intervals and are stochastically determined.  For 

example, each year in week 18, juvenile (52 – 74 weeks old) and adult females ( 75 

weeks old) have a chance of producing a number of offspring as determined by a 

probability distribution.   

Probability distributions in the ORM defining demographic behaviours (e.g. 

mortality rates, dispersal distances, density, litter size) were derived from field and 

laboratory studies undertaken in Ontario by the Ontario Ministry of Natural Resources 

{Totton, Rosatte, et al. 2004 #886}).  Reported values used within the model fall within 

variation observed in eastern North America (Chapter 2).   

Model experiments typically use an initial raccoon population, which has been 

grown to a stable population in the whole study area from a pair of raccoons.  Every cell 

has a defined carrying capacity, k.  This carrying capacity serves as a target population 

for a cell and is used to simulate a biological carrying capacity through density dependent 
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feedback influencing mortality rates.  If the cell population is greater than k, mean 

mortality rates are increased.  If the cell population is less than k, mean mortality rates are 

decreased.  The amount of increase or decrease in mean mortality rates is adjusted by a 

density dependent mortality control parameter, which derives its value through a model 

fitting process minimising the deviation between observed and modelled raccoon 

demographics.  k can be used to simulate the effect of different habitat types on raccoon 

densities.  However, investigations of raccoon densities and land cover types, based on 

trapping records, indicate no significant relationship between these two factors in the 

Niagara region at the scale of the model cells.  Therefore, a single k value was applied 

uniformly throughout the study area to represent homogeneous habitat conditions of 5 

raccoons / km2 {Rosatte 2000 6 /id}). 

(c) Experimental design and model specifications 

A population was grown for 250 years to stability on the model landscape, after 

which all raccoons were removed from the Ontario cells (Figure 5.1).  Maternal 

inheritance of mtDNA was modelled by genetically “tagging” the members of the 

simulated initial raccoon population with known frequencies of the known haplotypes 

from the empirical data.  Offspring inherited their maternal haplotype.   

 Mechanisms of novel genetic variation are not simulated for this study because 

mutation is assumed to be non-existent over the time span of which the model operates 

(450 years) and recombination is rare or non-existent in mtDNA {Harrison 1989 95 /id}).   

Assigning all the landscape cells to one of four regional groupings simulated the Niagara 

River: A) Ontario, B) Navy Island, ON, C) Grand Island, NY, and D) NY (Figure 5.1).  
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Figure 5.1 Study site in the Niagara Region of Ontario and New York State.  Four 
regional groupings used to create the Niagara River barrier effect are: A) Ontario, B) 
Navy Island, ON, C) Grand Island, NY, and D) NY.  Also shown are the point locations 
of raccoons sampled from the landscape and the ORM hexagonal cells defining the seven 
sample groups.   
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While, raccoon movement within these regions is unimpeded, the animals must overcome 

a user-defined resistance to move among the regions.   

Raccoon presence in south-central Ontario is assumed to be largely from a range 

expansion across the Niagara River following the last glacial event (Cullingham et al. 

2007).  The ORM was used to reconstruct this event and simulated results were compared 

with empirical data.  Specifying the river to block 0, 25, 50 and 75 percent of raccoon 

movement tested the barrier effect of the Niagara River on the genetic population 

structure.  A critical issue for measuring the barrier effect is to decide at which points in 

time the simulated genetic population structure should be compared with empirical data, 

since time since colonisation affects the genetic population structure {Hutchinson & 

Templeton 1999 219 /id}).  For this reason, the genetic population structure was 

measured every 25 years over the course of a 200 year colonisation process that started 

after the initial population had grown for 250 years (0 to 249); thus, measured at 

simulation years: 274, 299, 324, 349, 374, 399, 424 and 449.  Each unique model input 

specification was run 10 times to sufficiently capture inherent variation from the 

stochastic model. Thus, there were 320 model outputs from 4 barrier effects x 10 trials x 

8 time intervals (Figure 5.2).   

(d) Genetic field samples and laboratory procedures 

 One hundred sixty-six raccoons sampled in 2003 were obtained from Ontario 

Ministry of Natural Resources, and fur harvesters and consisted of pelt and hair samples.  

The raccoon locations were georeferenced to point locations (usually < ± 500m).  The 

samples were stored dry until DNA extraction.
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Figure 5.2 Experimental design for modelling the range expansion of raccoons from NY 
into Ontario, for varying permeabilitites of the Niagara River set to block 0, 25, 50 and 
75% raccoon movement.
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Samples were digested using 1X lysis buffer (Applied Biosystems) and 600U/mL 

proteinase K.  Extraction was carried out using an automated magnetic bead procedure 

(Promega) and samples were diluted to 0.5ng/uL using TE0.1.  Polymerase chain reactions 

(PCR) were performed using primers L15997 {Ward, Frazier, et al. 1991 299 /id}) and 

PLO-CRL1 (CGCTTAAACTTATGTCCTGTAACC).  The reaction conditions are as 

follows: standard buffer conditions, 2mM MgCl2, 160uM of each dNTP, 0.3 uM of each 

primer, and 1 unit of Taq DNA polymerase (Invitrogen). The cycling protocol used is 30 

cycles following steps: 94ºC for 30 s, 58ºC for 30 s, and 72ºC for 30 s, preceded by 5 min 

of initial denaturing, and followed by 2 min of final extension.  PCR products were 

purified using ExoSAP-IT (USB) following the manufacturers’ instructions.  Sequencing 

using the reverse primer was carried out using the DYEnamicTM ET terminator cycle 

sequencing kit, and the resulting fragments were analyzed on a MegaBASE 1000 

(Amersham-Pharmecia).  Fragments were visually inspected, corrected and aligned 

manually in BioEdit (Hall 1999).  Any unique sequences were confirmed with forward 

sequencing (Cullingham et al. 2007). 

(e) Haplotype diversity 

Saturation curves were calculated using EstimateS (Corwell 2005) to estimate the 

proportion of total haplotype diversity achieved from the sampled raccoons.  The 166 

field samples were drawn eight times (n1 to n6 = 21, n7 to n8 = 20) without replacement, 

and a bootstrap estimator was used to calculate diversity {Hellmann & Fowler 1999 282 

/id}). 
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(f) Genetic analysis 

Seven sample regions were defined within the landscape to spatially correspond 

with the locations of at least 20 raccoons sampled for genetic analysis and to be 

adequately spaced to test for Isolation by Distance (IBD; to determine if raccoons 

become more genetically differentiated from each other with an increase in geographic 

distance) (Figure 5.1).  Arlequin 3 (Excoffier et al. 2005) was used to calculate genetic 

measures for each sample group (sg) every 25 years.  φST defined genetic distance 

between pairwise comparisons of samples groups, using haplotype frequencies {Nei 1977 

279 /id}), to indicate the difference in haplotype diversity between two populations.  To 

test for IBD, simple Mantel testing assessed whether there was a significant correlation 

between φST and geographic distance, and partial Mantel testing assessed this correlation 

while controlling for the barrier effect.  Mantel tests were also used to explore the 

correlation between φST and barriers, with the partial test controlling for a geographic 

distance effect.  A “gene diversity” measure for each sg defined the probability of 

randomly selecting two different haplotypes from the same sg, as an indication of the 

number of unique haplotyes in the sg {Nei 1987 302 /id}). 

Expectations of model behaviour were: 1) The occurrence of an IBD raccoon 

population genetic structure that would decrease over time as raccoons further dispersed 

and reproduced; 2) Characteristics of a founder effect would be evident in the newly 

colonised ON sg’s (lower gene diversity measures than the NY sg’s), and the force of the 

founder effect would increase with greater barrier effects; and 3) Smaller sg’s would have 

lower gene diversity than larger sg’s; as assessed by regressing the gene diversity 

measure against the sg area. 
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To measure the Niagara River barrier effect, genetic measures were calculated for 

the raccoon field samples and then compared with the model results.  Correlation 

analyses were performed between the simulated and empirical genetic measures, 

whereby, stochastic variation was addressed by averaging genetic measures for each 

unique model input specification before comparing with field data.  The rationale was 

that the model barrier effect most closely matching field results would define the 

magnitude of the Niagara River as a barrier to gene flow.   Results were visualised from 

3-D surfaces interpolated using Gamma Design Software GS+ version 5.3.2 

(www.gammadesigns.com) relative to simulation year, barrier effect and genetic measure.  

Empirical data was tested for IBD using a Mantel’s test.   

Results 

 Genetic laboratory analysis found 19 unique haplotypes from the 166 sampled 

raccoons.  An estimated ≥90% of the total haplotypic diversity was captured (19 of 21), 

as indicated by the asymptotic nature of the haplotype diversity richness curve (Figure 

5.3).   

In the ORM, the colonizing population required 25 to 50 years to occupy all sg’s 

in the Ontario landscape.  Consequently, genetic measures are presented for ≥50 years 

since the start of the colonisation (model year 299 and onwards).
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Figure 5.3 Haplotype diversity of the raccoons sampled from the field, as estimated using 
a bootstrap estimator.   
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(a) Model behaviour 

There was no indication of an IBD genetic population structure, as simple and 

partial Mantel testing (controlling for barriers) revealed no significant relationship 

between the correlation of φST and geographic distance for simulated or empirical data.  

There was, however, a significant correlation between φST and barriers for the simulated 

and empirical data, which was strengthened when using a partial Mantel test to control 

for the effect of geographic distance (Table 5.1).  

 A founder effect was evident in that gene diversity measures were lower for ON 

sg’s, and decreased with an increasing barrier effect (Table 5.2).  Furthermore, smaller 

sg’s had lower gene diversities than larger sg’s (gene diversity = 0.43area + 0.49; 

adjusted R2 = 0.19, F-ratio = 452.43, P-value <0.01; Table 5.2). 

(b) Measuring the Niagara River barrier effect 

 Strongest correlations comparing the empirical and simulated genetic measures 

data was found for a barrier effect of 50% at simulation year 349 (gene diversity: r = 

0.91; P=0.005; φST: r = 0.83; P<0.001; Table 5.3). 

 Three dimensional interpolated surfaces illustrate an increasing barrier effect 

associated with decreasing gene diversity for sg2 and sg3, an effect which is relatively 

constant over time (Figures 5.4, 5.5).  Conversely, the barrier had a negligible effect on 

sg1, the furthest ON sg from the Niagara River, and no effect of the NY sg’s (Figures 5.4, 

5.5).   
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Table 5.1 Simple and partial Mantel correlation and P-values for Niagara River barrier 
effects of 0%, 25%, 50% and 75%, that test for the correlation between ST and 
geographic distance (g), ST and Niagara River barrier (b), ST and geographic distance, 
controlling for Niagara River barrier (g.b), and ST Niagara River, controlling for 
geographic distance (b.g).  P-values are in parentheses; significant correlations ( 0.05) 
are in bold. 

Model simulation year  
299 324 349 374 399 424 449 

g 0.33 
(0.21) 

0.37 
(0.21) 

0.36 
(0.20) 

0.42 
(0.16) 

0.38 
(0.17) 

0.44 
(0.10) 

0.39 
(0.16) 

b 0.53 
(0.05) 

0.53 
(0.08) 

0.50 
(0.06) 

0.52 
(0.06) 

0.58 
(0.04) 

0.54 
(0.03) 

0.62 
(0.02) 

g.b 0.22 
(0.34) 

0.27 
(0.32) 

0.26 
(0.30) 

0.34 
(0.24) 

0.28 
(0.28) 

0.37 
(0.20) 

0.32 
(0.25) 

0% 

b.g 0.50 
(0.11) 

0.49 
(0.12) 

0.45 
(0.11) 

0.48 
(0.09) 

0.55 
(0.07) 

0.50 
(0.09) 

0.62 
(0.05) 

g 0.31 
(0.20) 

0.34 
(0.18) 

0.27 
(0.22) 

0.28 
(0.21) 

0.39 
(0.14) 

0.30 
(0.22) 

0.38 
(0.16) 

b 0.56 
(0.02) 

0.50 
(0.03) 

0.49 
(0.03) 

0.58 
(0.03) 

0.51 
(0.05) 

0.43 
(0.05) 

0.50 
(0.03) 

g.b 0.20 
(0.32) 

0.23 
(0.32) 

0.17 
(0.34) 

0.17 
(0.35) 

0.32 
(0.22) 

0.22 
(0.33) 

0.30 
(0.24) 

25% 

b.g 0.53 
(0.06) 

0.46 
(0.11) 

0.46 
(0.08) 

0.55 
(0.06) 

0.47 
(0.10) 

0.39 
(0.12) 

0.46 
(0.09) 

g 0.06 
(0.44) 

0.07 
(0.42) 

0.11 
(0.33) 

0.26 
(0.27) 

0.16 
(0.35) 

0.17 
(0.33) 

0.25 
(0.27) 

b 0.54 
(0.03) 

0.58 
(0.03) 

0.58 
(0.02) 

0.58 
(0.04) 

0.61 
(0.01) 

0.55 
(0.04) 

0.54 
(0.06) 

g.b -0.11 
(0.61) 

-0.13 
(0.62) 

-0.06 
(0.51) 

0.11 
(0.43) 

-0.01 
(0.52) 

0.02 
(0.50) 

0.12 
(0.40) 

50% 

b.g 0.56 
(0.05) 

0.60 
(0.05) 

0.59 
(0.04) 

0.57 
(0.06) 

0.64 
(0.02) 

0.55 
(0.07) 

0.52 
(0.08) 

g -0.05 
(0.50) 

0.05 
(0.40) 

0.12 
(0.34) 

0.11 
(0.34) 

0.07 
(0.39) 

0.14 
(0.31) 

0.13 
(0.34) 

b 0.71 
(0.02) 

0.73 
(0.01) 

0.70 
(0.01) 

0.74 
(0.01) 

0.71 
(0.01) 

0.72 
(0.01) 

0.73 
(0.01) 

g.b -0.27 
(0.71) 

-0.16 
(0.64) 

-0.10 
(0.57) 

-0.13 
(0.60) 

-0.17 
(0.65) 

-0.08 
(0.58) 

-0.08 
(0.53) 

75% 

b.g 0.75 
(0.01) 

0.75 
(0.01) 

0.71 
(0.01) 

0.76 
(0.01) 

0.73 
(0.01) 

0.73 
(0.01) 

0.75 
(0.01) 
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Table 5.2 Gene diversity measures: mean from the 10 runs of each unique input 
specification and its standard deviation, in parentheses, and the overall mean (OM) for 
the entire 200 years of the simulated colonisation event, as calculated for each sample 
group (sg) and barrier effect.   

Simulation year Barrier 
effect 

sg 
299 324 349 374 399 424 449 OM 

1 0.40 
(0.12) 

0.44 
(0.13) 

0.43 
(0.15) 

0.44 
(0.17) 

0.43 
(0.20) 

0.41 
(0.19) 

0.42 
(0.17) 

0.43 
(0.16) 

2 0.64 
(0.12) 

0.62 
(0.14) 

0.62 
(0.12) 

0.61 
(0.12) 

0.59 
(0.14) 

0.59 
(0.15) 

0.60 
(0.14) 

0.61 
(0.13) 

3 0.40 
(0.22) 

0.55 
(0.19) 

0.53 
(0.18) 

0.52 
(0.18) 

0.61 
(0.17) 

0.50 
(0.16) 

0.60 
(0.16) 

0.53 
(0.18) 

4 0.70 
(0.04) 

0.69 
(0.06) 

0.70 
(0.05) 

0.69 
(0.05) 

0.69 
(0.06) 

0.70 
(0.05) 

0.69 
(0.07) 

0.69 
(0.05) 

5 0.72 
(0.05) 

0.73 
(0.03) 

0.75 
(0.05) 

0.72 
(0.04) 

0.70 
(0.06) 

0.71 
(0.05) 

0.69 
(0.09) 

0.72 
(0.06) 

6 0.72 
(0.04) 

0.72 
(0.04) 

0.72 
(0.05) 

0.72 
(0.05) 

0.71 
(0.06) 

0.70 
(0.07) 

0.70 
(0.08) 

0.71 
(0.06) 

0% 

7 0.74 
(0.03) 

0.73 
(0.03) 

0.74 
(0.03) 

0.72 
(0.03) 

0.72 
(0.04) 

0.73 
(0.04) 

0.74 
(0.04) 

0.73 
(0.03) 

1 0.29 
(0.23) 

0.25 
(0.24) 

0.24 
(0.22) 

0.19 
(0.22) 

0.16 
(0.19) 

0.16 
(0.18) 

0.20 
(0.19) 

0.27 
(0.23) 

2 0.53 
(0.21) 

0.56 
(0.22) 

0.54 
(0.22) 

0.52 
(0.22) 

0.51 
(0.23) 

0.51 
(0.20) 

0.49 
(0.23) 

0.54 
(0.20) 

3 0.57 
(0.21) 

0.59 
(0.13) 

0.43 
(0.18) 

0.42 
(0.20) 

0.63 
(0.31) 

0.63 
(0.13) 

0.43 
(0.25) 

0.56 
(0.20) 

4 0.72 
(0.04) 

0.71 
(0.06) 

0.70 
(0.06) 

0.69 
(0.06) 

0.68 
(0.07) 

0.68 
(0.09) 

0.67 
(0.11) 

0.70 
(0.07) 

5 0.69 
(0.10) 

0.71 
(0.09) 

0.72 
(0.05) 

0.70 
(0.06) 

0.71 
(0.06) 

0.71 
(0.07) 

0.71 
(0.08) 

0.71 
(0.07) 

6 0.74 
(0.05) 

0.73 
(0.05) 

0.72 
(0.06) 

0.70 
(0.07) 

0.70 
(0.09) 

0.70 
(0.08) 

0.71 
(0.08) 

0.72 
(0.07) 

25% 

7 0.74 
(0.04) 

0.74 
(0.04) 

0.74 
(0.04) 

0.74 
(0.03) 

0.73 
(0.03) 

0.73 
(0.04) 

0.72 
(0.04) 

0.74 
(0.04) 
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Table 5.2.  con’t 
1 0.42 

(0.20) 
0.47 

(0.20) 
0.47 

(0.20) 
0.44 

(0.21) 
0.44 

(0.21) 
0.40 

(0.24) 
0.39 

(0.24) 
0.43 

(0.21) 
2 0.50 

(0.21) 
0.52 

(0.20) 
0.49 

(0.22) 
0.52 

(0.19) 
0.48 

(0.22) 
0.49 

(0.20) 
0.51 

(0.19) 
0.50 

(0.20) 
3 0.55 

(0.19) 
0.43 

(0.20) 
0.35 

(0.25) 
0.54 

(0.15) 
0.43 

(0.16) 
0.59 

(0.11) 
0.53 

(0.21) 
0.49 

(0.19) 
4 0.71 

(0.05) 
0.71 

(0.06) 
0.70 

(0.05) 
0.68 

(0.07) 
0.68 

(0.06) 
0.66 

(0.09) 
0.68 

(0.08) 
0.69 

(0.07) 
5 0.73 

(0.05) 
0.72 

(0.04) 
0.69 

(0.07) 
0.69 

(0.08) 
0.67 

(0.09) 
0.69 

(0.10) 
0.66 

(0.08) 
0.69 

(0.08) 
6 0.73 

(0.03) 
0.72 

(0.03) 
0.73 

(0.04) 
0.73 

(0.04) 
0.71 

(0.05) 
0.71 

(0.08) 
0.71 

(0.06) 
0.72 

(0.05) 

50% 

7 0.75 
(0.02) 

0.74 
(0.03) 

0.73 
(0.04) 

0.72 
(0.05) 

0.72 
(0.06) 

0.71 
(0.08) 

0.70 
(0.07) 

0.73 
(0.05) 

1 0.11 
(0.19) 

0.16 
(0.24) 

0.22 
(0.26) 

0.21 
(0.25) 

0.21 
(0.26) 

0.21 
(0.25) 

0.22 
(0.26) 

0.19 
(0.24) 

2 0.30 
(0.24) 

0.28 
(0.24) 

0.28 
(0.23) 

0.27 
(0.24) 

0.25 
(0.26) 

0.24 
(0.27) 

0.21 
(0.26) 

0.26 
(0.24) 

3 0.17 
(0.21) 

0.10 
(0.14) 

0.28 
(0.28) 

0.18 
(0.20) 

0.20 
(0.18) 

0.19 
(0.20) 

0.09 
(0.12) 

0.17 
(0.20) 

4 0.72 
(0.03) 

0.69 
(0.05) 

0.69 
(0.05) 

0.70 
(0.06) 

0.68 
(0.08) 

0.68 
(0.07) 

0.70 
(0.07) 

0.69 
(0.06) 

5 0.72 
(0.03) 

0.69 
(0.05) 

0.71 
(0.06) 

0.72 
(0.05) 

0.72 
(0.04) 

0.71 
(0.04) 

0.70 
(0.06) 

0.71 
(0.05) 

6 0.72 
(0.04) 

0.70 
(0.04) 

0.70 
(0.04) 

0.71 
(0.04) 

0.68 
(0.06) 

0.68 
(0.06) 

0.69 
(0.04) 

0.70 
(0.05) 

75% 

7 0.75 
(0.02) 

0.75 
(0.02) 

0.75 
(0.03) 

0.74 
(0.03) 

0.75 
(0.03) 

0.75 
(0.03) 

0.75 
(0.03) 

0.75 
(0.03) 

 



 

 138  

Table 5.3 Correlation (and P-values) from comparing empirical to model data for each 
simulation year and barrier effect.  Significant correlations (P-value  0.05) are in bold.  

barrier effect  year gene diversity φST 
299 0.81 (0.027) 0.48 (0.027) 
324 0.63 (0.131) 0.43 (0.051) 
349 0.66 (0.105) 0.47 (0.032) 
374 0.69 (0.087) 0.49 (0.024) 
399 0.42 (0.342) 0.53 (0.013) 
424 0.70 (0.083) 0.44 (0.047) 

0% 

449 0.45 (0.310) 0.64 (0.002) 
299 0.44 (0.321) 0.49 (0.026) 
324 0.38 (0.405) 0.38 (0.089) 
349 0.64 (0.125) 0.42 (0.056) 
374 0.61 (0.149) 0.58 (0.006) 
399 0.23 (0.149) 0.51 (0.019) 
424 0.23 (0.614) 0.35 (0.117) 

25% 

449 0.59 (0.165) 0.57 (0.007) 
299 0.60 (0.155) 0.55 (0.009) 
324 0.86 (0.014) 0.67 (0.001) 
349 0.91 (0.005) 0.83 (<0.001) 
374 0.62 (0.140) 0.51 (0.018) 
399 0.80 (0.029) 0.71 (<0.001) 
424 0.42 (0.344) 0.48 (0.026) 

50% 

449 0.57 (0.182) 0.56 (0.009) 
299 0.77 (0.043) 0.54 (0.012) 
324 0.84 (0.018) 0.57 (0.007) 
349 0.74 (0.056) 0.52 (0.016) 
374 0.81 (0.028) 0.62 (0.003) 
399 0.79 (0.035) 0.55 (0.010) 
424 0.79 (0.035) 0.50 (0.022) 

75% 

449 0.85 (0.16) 0.58 (0.006) 
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Figure 5.4  Surfaces interpolated over time (simulation years 299 – 449), barrier effect (0, 
25, 50, 75%) and gene diversity: a) sg1, and b) sg2.
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Figure 5.5 Surfaces interpolated over time (simulation years 299 – 449), barrier effect (0, 
25, 50, 75%) and gene diversity: a) sg3 and b) sg6, a typical surface from a NY sg. 
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Three dimensional interpolated surfaces also illustrate an increasing barrier effect 

associated with increasing genetic differentiation, as quantified by φST, for pairwise 

comparisons of any sg with sg2 or sg3; whereas, all other pairwise comparisons 

excluding sg2 or sg3 do not show a barrier effect.  And with all cases, the barrier effect or 

non-effect is constant over time (Figures 5.6, 5.7, 5.8). 

Discussion 

Genetic data enabled an independent means of validating ORM raccoon 

demographic behaviours because these data were not used in its construction and 

calibration.  Model behaviours occurred as expected, except for the absence of an IBD 

genetic population structure.  Yet, IBD was also not present in the empirical data.  This 

type of genetic population structure was expected because mating and dispersal occurs 

over a limited range (e.g. usually <10 km{Rosatte 2000 6 /id}, 2006),  relative to the 

species range continuously spread over 1000’s of kilometres {Zeveloff 2002 #889}).  

Though it appears that at the scale of this study, simulated and actual gene flow are 

sufficient to counter genetic drift and homogenise the population; while IBD is present at 

a larger spatial extent of several 1000’s of kilometres (Cullingham et al. 2007).  IBD may 

only be evident in a particular cardinal direction; however, Lake Ontario and Lake Erie 

confine the study area to an east-west orientation.  Sub-sampling of data could enable a 

north-south IBD analysis; however, raccoon sample size is too small to have a sufficient 

number of sample groups and samples per group for assessing IBD.  
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Figure 5.6 Surfaces interpolated over time (simulation years 299 – 449), barrier effect (0, 
25, 50, 75%) and ST.  a) A surface typical for pairwise comparisons on the NY side of 
the barrier; b) A slight barrier effect exhibited by the pairwise comparison of sg1 and sg2. 
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Figure 5.7 Surfaces interpolated over time (simulation years 299 – 449), barrier effect (0, 
25, 50, 75%) and ST.  Surfaces typical for pairwise comparisons of sg’s separated by the 
barrier and showing a barrier effect for a) ON vs. NY and b) sg3 vs. NY.  
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Figure 5.8 Surfaces interpolated over time (simulation years 299 – 449), barrier effect (0, 
25, 50, 75%) and ST.  A surface typical to pairwise comparisons of sg1 and sg’s on the 
NY side of the river, showing no barrier effect.   
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Correlations between simulated and empirical genetic measures indicate a 50% 

barrier effect of the Niagara River to raccoon movement.  A potential difficulty with this 

method is distinguishing between different barrier effects at multiple points in time when 

there is more than one genetic measure exhibiting a “best fit” with the empirical data. The 

degree of fit between modelled and simulated data depends, in part, on how well the 

model represents system behaviours.  Model developmental techniques (e.g. sensitivity 

analysis) can be used to minimise uncertainty by ensuring the model has a parsimonious 

structure and is appropriately parameterised.  Quality of the genetic data is another factor 

affecting the degree of fit between simulation and reality.  It is important to sufficiently 

sample animals on either side of the landscape feature to capture the total genetic 

diversity and to be within the spatial scale for which a barrier affects gene flow.  

Furthermore, “best fit” can be determined from a consensus of a variety of genetic 

measures which characterise different aspects of gene flow.  Also, an accurate estimate of 

time since colonisation (e.g. through historic records, fossil evidence) can help by 

determining the simulation “year” and then by default indicating the barrier effect.           

Physiography is known to affect the spatio-temporal rate of infectious wildlife 

disease spread {Lucey, Russell, et al. 2002 148 /id}, {Smith, Lucey, et al. 2002 110 /id} 

{Russell, Smith, et al. 2004 280 /id}.   Mountains may act as an effective barrier because 

animal populations are absent or too low in density for disease persistence.  Rivers and 

valleys may either impede or facilitate disease flow depending on whether their 

orientation obstructs or falls in line with animal movements and interactions.  The value 

of the proposed method is to give a relative indication of barrier strength to disease 



 

 146  

spread, before the region becomes infected, as a form of risk assessment.  By quantifying 

the effect of the Niagara River as a barrier to gene flow, its influence can be utilised to 

increase effectiveness and efficiency of rabies control programs. 

 Forewarning of factors affecting disease spread has obvious applications for 

designing effective control strategies.  Landscape features can be used in conjunction 

with control measures to increase a barrier effect.  For example, in this study the Niagara 

River blocks about 50% of raccoons crossing from NY into ON.  This effect extends at 

least 30 km, but less than 60 km from the river into ON, as sg2 shows a barrier effect but 

sg1 does not.  Thus, one strategy would be to apply control within 30 km along the length 

of the river to increase the barrier effect to sufficiently prevent disease from spreading 

into ON from NY.  It then becomes necessary to determine the intensity and type of 

control, the width of its application, and the most effective side of the river to apply 

control (or both sides).  These questions can be explored by modelling disease and 

various control strategies using the ORM.        

A genetic perspective on the spread of infectious wildlife diseases is a valuable 

and complementary strategy to current techniques, especially because high quality 

genetic data have some advantages over disease incidence data.    Population genetics has 

been thoroughly embraced as a strategy for understanding the effect of landscape barriers 

on animal and plant movements (Soltis et al. 2006), though its application to 

understanding infectious wildlife disease spread is still developing.  The current study 

demonstrates the utility of the ORM as a genetic simulation model for exploring raccoon 

rabies, and its utility for exploring other disease-host systems, species invasions and 

colonisation events. 
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Chapter 6  

Discussion 
The motivation for my PhD research was to further develop the Ontario Rabies 

Model (ORM) to become a “genetic” individual based model (IBM) so that simulated 

and empirical genetic population structures could be compared as a novel means for 

understanding the spread of raccoon rabies.  To achieve this goal I believed it was 

necessary to continue evaluating the ORM, because there were no published studies 

documenting its use.  Even though model results may match closely with reality, this 

does not necessarily mean the model properly represents system behaviours; the correct 

result may have occurred by chance (Oreskes et al. 1994, Rykiel 1996).  Validation 

would increase the confidence of users, beyond the ORM builders, that the ORM is a 

valuable tool for exploring disease-host systems.  As such, my research involved using 

multiple modelling approaches to further assess the ORM but also had the benefit of 

contributing to understanding of raccoon ecology and raccoon rabies. 

 Model validation was also an important step in model development because the 

ORM is an IBM.  IBM’s arose in the 1970’s through the advancements of computing 

power and programming languages (Breckling et al. 2006).  The primary motivation for 

the ORM being an IBM was the ability to incorporate a spatial dimension and model the 

genetics of individuals, which was necessary for the purpose of the modelling exercise: to 

understand factors in the environment affecting the raccoon-rabies system.  Yet, classical 

state variable models (SVMs) using differential equations are firmly entrenched as a 

valuable tool for developing ecological theory.  Hence, there is an active debate as to the 

benefits and concerns of using IBMs (Uchmanski and Grimm 1996), (Fahse et al. 1998), 
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(Grimm 1999), (Lomnicki 1999, Oreskes 2003), thus, I believe using an IBM 

necessitated addressing their issues. 

Firstly, IBMs are criticised for their high complexity (Grimm 1999).  Parameter-

rich models result from the “bottom-up” approach.  It is important to determine whether 

parameters contribute more to improving the accuracy of system representations rather 

than increasing outcome uncertainty.  The high degree of realism in IBMs makes this a 

challenging exercise because the impact of parameters on modelled outcomes depends on 

the response variables being assessed.  For example, autumn dispersal is not expected to 

affect the spread of rabies if evaluated during the winter season when raccoons are 

sedentary in their dens, though autumn dispersal would be a major factor when 

considering rabies spread over multiple years.  Therefore, when assessing ORM 

complexity through sensitivity analysis (SA; Chapter 4), parameter effects were 

quantified using a variety of response variables to consider various characteristics of the 

raccoon-rabies system.  The most important result of SA was demonstrating that the 

ORM functioned as expected.  This meant model complexity was “appropriate” for 

simulating raccoon demographics over the spatial-temporal scale required for measuring 

the effect of the Niagara River on gene flow (Chapter 5) - “appropriate” meaning that the 

model was able to explore the issue for which it was designed. 

 A second major criticism of IBMs is their failure to contribute to ecological 

theory (Grimm 1999).  This is because the motivation for creating most IBMs is for 

pragmatic applications (e.g. comparing the rate of disease spread in two different 

locations); however, IBMs can contribute to ecological theory.  For instance, by 

accepting that the ORM is an appropriate representation of the raccoon-rabies system, SA 
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results can be used to identify important components in the system (e.g. target cell 

density affecting the rate of disease spread; Grimm 1999).  Additional theoretical insight 

is found by characterising system-level behaviours (Grimm 1999, (Breckling et al. 2006).  

This is demonstrated by measuring the degree of isolation by distance (IBD) in the 

mitochondrial genetic population structure (Chapter 5).  The simulated and observed 

population genetic structures do not show IBD over the same spatial-temporal scale; 

hence, the modelled mating and dispersal systems are more likely to be realistic 

representations of raccoon demographics.  Hypotheses testing what is disrupting the 

development of IBD is discussed below. 

Thus, when justifying the use of ORM to explore the raccoon-rabies system it is 

important to be clear that IBMs and SVMs are used for different purposes, and that IBMs 

can still contribute to ecological theory while also being predictive tools at finer spatial-

temporal scales.  Furthermore, the higher degree of realism in the ORM lends it to more 

easily communicate model structure and results to wildlife managers.  The ORM is 

largely mechanistic because parameters represent known processes of the system (e.g. 

chance of mating, chance of giving birth, litter size), as opposed to a more 

phenomenological approach of aggregating many processes into one parameter (e.g. 

growth rate).  Many biologists and ecologists appreciate this design approach because 

they can mimic their detailed understanding of the system by creating parameters that 

explicitly represent system processes (Grimm 1999).  Also, ORM realism makes it easier 

to validate model outcomes through pattern-oriented modelling.  That is, by modelling 

known scenarios and comparing simulated results with observed results. 
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My research generates many important benefits, ORM and non-ORM specific.  

For instance, REDB was used to check that the ORM default values fell within known 

variation.  Confirming the appropriateness of parameter values and documenting their 

sources is an important part of model evaluation (Bart 1995), (Conroy et al. 1995).  

Furthermore, the REDB provides parameter input data for parameterising the ORM in 

geographic regions beyond southern Ontario.  The REDB contains useful data being used 

to explore other ecological studies (Laura Bigler, pers. comm.), and as was demonstrated 

by the meta-analysis in Chapter 2.  Additionally, the REDB is spurring the development 

of other species ecological databases in the Ontario Ministry of Natural Resources 

(OMNR; Bruce Pond, pers. comm).  The REDB data model provides a design example 

for constructing, populating, managing and querying these other databases.  Model 

development in these projects will benefit by having a populated ecological database.  

For instance, consider the benefits if the ORM builders had used the REDB; The REDB 

acts as a poll among researchers as to critical aspects inferred about a system, hence, 

components to include during model development.  Furthermore, the REDB would be an 

efficient tool for acquiring information to guide parameter input values and give sources 

for documenting their values. 

As mentioned earlier, SA was most valuable at further confirming that the ORM 

was functioning as expected.  There is also value from integrating information from the 

REDB and with the SA results.  For example, meta-analysis of litter size and degrees 

latitude indicates that a significantly lower number of kits are produced at lower latitudes 

(Chapter 2).  In this regard, it would seem appropriate to lower the litter size default value 

when parameterising the ORM to run scenarios at lower latitudes of the raccoon species 
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range.   However, from the SA, litter size does not affect model outcomes (Chapter 4); 

thus, it is not necessary to alter the default value, or spend additional resources in the 

field to acquire more accurate litter size estimates. 

More accurately parameterising the ORM to different geographic regions or 

landscapes also led me to improving raccoon density estimates, because this parameter is 

used to simulate habitat heterogeneity, but also because density is a critical factor in 

infectious disease models (Anderson and May 1991).  Densities were calculated for the 

St. Lawrence region, but I applied the model to the Niagara region.  This happened for 

several reasons.  OMNR capture-mark-recapture data were more geographically 

extensive in the St. Lawrence, and this region has more variation in habitat than the 

Niagara region.  Consequently, there were more landcover types available for testing for 

their effects on capture probability, estimated population size and density.  However, 

there was a finer spatial resolution of raccoon samples processed for genetic analysis in 

the Niagara region.  So by default, the Niagara region became the landscape to apply the 

ORM as a tool for measuring the effect of a landscape barrier to gene flow.   

Density estimates used in the ORM for the Niagara / New York modelling 

exercise may have been low.  Target cell density was set to 5 raccoons / km2, as found for 

the St. Lawrence region (Chapter 3), but the Niagara region may support even higher 

densities (Rick Rosatte, pers. comm).  Thus, an interesting future modelling experiment 

would be a sensitivity analysis of raccoon densities on barrier effects to gene flow.  It is 

likely higher densities would necessitate a stronger barrier effect for achieving the highest 

correlation between simulated and empirical genetic population structures.  This is 

because, at higher densities, a stronger barrier effect would be needed to match the 
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number of raccoons crossing the river and generating a genetic population structure with 

a diversity matching the empirical data, as occurred for a lower density and weaker 

barrier effect.    

Another consideration is whether the density estimation technique would be 

applicable to other species.  For this study capture-mark-recapture data were extensive, in 

that thousands raccoons where caught multiple times; however, large mammals often 

have lower population densities (e.g. 0.011 – 0.0283 bears/km2 (Stoen et al. 2006) versus 

5 – 6 raccoons/ km2; Chapter 3), hence, have lower encounter probabilities.  The ORM 

could be used as a tool to determine the threshold number of individuals being captured 

multiple times that is required for estimating density, given that the explicit movement 

tracking system in the ORM would enable exact calculations of density. 

There are advantages and disadvantages of field and simulation modelling studies 

(Table 6.1).  Models are useful tools for running many different kinds of experiments that 

would be too costly in resources or infeasible to recreate in the field.  ORM simulations 

last several minutes to several hours, depending on the size of the landscape, length of the 

simulation, density of the population, number of model outputs, and number of runs 

specified to capture stochastic variation.  A noteworthy caveat is that the ORM produces 

a huge volume of output files.  Individual location and demographics are tracked on a 

weekly basis through their lifetime for all individuals in the population.  Disease 

dynamics are also recorded, including location and time an individual becomes infected 

and symptomatic, and from whom the infection was acquired.  Consequently, computer 

programs that automate the creation of response variables beyond the basic population 

and disease characteristics are essential.  Furthermore, computer programs are often  
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Table 6.1 Advantages and disadvantages of field and simulation modelling studies.   
Type of Study Advantages Disadvantages 
 

realistic test conditions one sample 
 uncontrolled 
 not repeatable 
 problems with field measurements 
 expensive 
 Slow 

Field 

 limited testing scenarios 
 

multiple samples appropriate definition of system 
Controlled computer processing constraints 
Repeatable validation of results 
complete data of results  
Inexpensive  
Fast  
variety of testing scenarios   

Simulation 
Modelling 

Predictive  
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necessary to analyse model outcomes when a large number are created from running 

multiple input specifications. 

Model stochasticity is an important benefit of the ORM even though it adds to the 

duration of model runs and number of outputs to analyse.  In the “real world” events 

occur with a sample size of one because time is continually progressing.  In the “model” 

world experiments can be repeated using identical starting conditions and stochastically 

defined behaviours can produce a distribution of possible outcomes.  This is 

advantageous given uncertainty in values of parameter inputs.  Hence, a likely 

distribution of parameter values can be defined, and input values can be randomly 

selected to feed model processes.  It is then possible to infer “real world” variation from 

variation produced by multiple stochastic runs.  And, if the model operates correctly, the 

empirical results lie within the simulated variation.  Furthermore, the distribution in 

outcome variation produced by stochasticity enables quantifying the probability of certain 

scenarios (e.g. chance of spread into a new region), and for infectious-disease modelling, 

this is beneficial for risk assessment. 

The culmination of my PhD research opens up many possible ORM studies for 

using neutral genetic markers to explore factors affecting genetic population structure.  

This approach depends on using the model to create the empirical genetic population 

structure.  If this is achieved, then model specifications (e.g. duration of simulation) and 

parameterisations (e.g. barrier effects) can be used to test factors affecting the known 

genetic structure; for instance, testing and developing theories pertaining to the effects of 

gene flow and genetic drift on genetic population structure.  For example, isolation by 

distance (IBD) is commonly used as a null hypothesis to investigate factors affecting 
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gene flow among populations (Crispo and Hendry 2005).  Populations exhibiting IBD are 

assumed to be in equilibrium for the loss of unique alleles through genetic drift and the 

acquisition of new alleles entering the population through gene flow (Hutchinson and 

Templeton 1999).  Field samples indicated that raccoons in the Niagara Region do not 

have an IBD genetic population structure (Chapter 5).  The ORM can be used to test 

hypotheses that may be responsible for this result: barrier effects of physiographic 

features (e.g. Niagara River; Slatkin 1994), insufficient time since colonisation (Crispo 

and Hendry 2005), panmixia (Hutchinson and Templeton 1999) or translocation of 

animals or raccoon dispersal and mating sufficient to homogenise the genetic population 

structure (Slatkin 1994, Hutchinson and Templeton 1999). 

My research has increased value of the ORM as an additional tool, to field and 

laboratory studies, for increasing understanding of the raccoon-rabies system and 

advising policy decisions.  It is true that I did not run rabies in an application of the 

ORM, except for SA.  However, there are multiple factors influencing the spread of 

raccoon rabies in North America as evidenced by variable spatial-temporal patterns of the 

disease front.  Implicated variables include disease-host biology and ecology, land cover 

variation and landscape barriers, and anthropogenic factors such as translocated animals 

and rabies control tactics.  It is through the understanding of many factors, for which the 

ORM is one available tool, that knowledge is increased about the raccoon-rabies system.  

Thus, my PhD research contributes one part to this greater endeavour.  

There are many perspectives for defining and analysing a scientific question.  The 

assumptions of each perspective generate uncertainty in understanding.  The title of my 

thesis “Approaches to Modelling Raccoon Rabies” represents my philosophy to be 
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perceptive to all outcome possibilities by investigating questions from a variety of angles.  

IBMs are a complementary tool to SVMs for understanding mechanisms generating 

system level processes.  Stochastic models account for input uncertainty by defining their 

values as a distribution, and account for outcome uncertainty by producing a variation in 

results.  Furthermore, it is important to use measures and analytical methods that 

appropriately characterise and assess system behaviours, given the purpose of the 

investigation (e.g. multiple Information Criteria in sensitivity testing; Chapter 4), because 

a single method may not be analytically sufficient.  Therefore, a collaboration of 

techniques strengthen understanding through consensus. 
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Appendix 

The Ontario Rabies Model (ORM) is an individual-based spatially explicit model 

that simulates raccoon demographics, maternal and bi-parental inheritance of genetic 

markers, raccoon rabies disease transmission, and infectious disease control methods (e.g. 

depopulation, vaccination, fertility control).  The ORM is written in Visual Basic 

following an object-oriented structure that enables it to simulate other disease-host 

systems.  Values for model processes are stochastically determined and operate over a 

user-defined size and configuration of hexagonal cells arranged in a lattice.  Users 

interface with the ORM using ESRI ArcMap (www.esri.com) or Microsoft Excel.  Model 

output is written as text, XML (extensible markup language) or Microsoft Access 

database files.  Refer to Tinline et al. (2007) for a detailed description of the ORM. 

The ORM operates following a rule-based framework where all processes operate 

at the individual level.  Values defining model behaviours are pre-determined from a 

probability or randomly drawn from probability distribution functions (pdf’s) 

characterising behaviour (Table A.1).  Parameter values were derived from Ontario field 

data (e.g. Rosatte 2000).   

Model processes occur over the course of a 52-week year using a temporal 

resolution of one week.  For example, every week a raccoon has a probability of dying as 

defined by its sex and age class (P6, P7).  Default ORM P6 and P7 input values are equal.  

Dispersal is discriminated by sex and age classes.  It is permitted once per year for 

specific time periods and distances (P14 – P16, and P1 – P4, respectively).  Mating 

occurs at week 9, such that mates are randomly selected within a cell.  Mate selection is 

required for defining genetics of bi-parentally inherited markers.   
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Table A.1.  A description of ORM parameters and their default values. *Parameter values 
defined by a probability distribution function. 
Parameter Description ORM default  

P1 
Juvenile/adult male dispersal 
distance* 1.36 km 

P2 
Juvenile/adult female dispersal 
distance* 0.68 km 

P3 
Young-of-year male dispersal 
distance* 2.12 km 

P4 
Young-of-year female dispersal 
distance* 1.02 km 

P5 Average litter size 4 
P6 (P7) Year 0 male (female) mortality rate 0.6 
P6 (P7) Year 1 male (female) mortality rate 0.4 
P6 (P7) Year 2 male (female) mortality rate 0.3 
P6 (P7) Year 3 male (female) mortality rate 0.3 
P6 (P7) Year 4 male (female) mortality rate 0.3 
P6 (P7) Year 5 male (female) mortality rate 0.6 
P6 (P7) Year 6 male (female) mortality rate 0.6 
P6 (P7) Year 7 male (female) mortality rate 0.6 
P8 Density dependent mortality control 0.2 
P9 Age of independence 20 weeks 
P10 Juvenile birth rate 60% 
P11 Adult birth rate 95% 
P12 Birth week calendar week 18 (end of April) 
P13 Litter size variance 1 

P14 Male juvenile/adult movement weeks 
calendar weeks: 8-43 (spring, 
summer, autumn) 

P15 
Female juvenile/adult movement 
weeks 

calendar weeks: 12-17, 38-43 
(spring, autumn) 

P16 
Male young-of-year movement 
weeks calendar weeks: 38-43 (autumn) 

P16 
Female young-of-year movement 
weeks calendar weeks: 38-43 (autumn) 

P17 Target cell population density  5 raccoons / km2 
P19 Incubation period* 6.47 weeks 
P20 Contact rate (contact within cell)  77.80% 
P21 Time of infection user-defined week and year 
P22 Reflective disease spread user-defined activation: yes/no 
P23 Infectious period* 1.00 week 
P24 Adult age 75 weeks 
P25 Sex ratio at birth 50:50 male:female 
P26 Chance of spread 1.50% 
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Birth week occurs during week 18.  Juvenile (52 to 74 weeks) and adult females (>75 

weeks) give birth with a probability defined by P10 and P11, respectively.  Population 

size is regulated by density dependent control affecting mortality risk (P8).  P8 defines 

the magnitude of an adjustment to mortality risk; hence P6 and P7 are increased with cell 

populations above the target cell carrying capacity (P17) and decreased with cell 

populations below P17. 

Rabid simulations require users to define the year, week, cell(s) and percentage of 

infected animals.  Rabies can be re-introduced into the model as often as desired.  

Duration of incubation periods is defined by P19.  The ORM uses a default value of one-

week for the infectious period (P23).  Currently, all rabid animals die with 100% 

certainty.  Rabies control strategies are also defined by year and week for duration and 

frequency and location by cell(s).  Vaccination lasts for a user-defined time period with a 

user-defined efficacy. 

Individual genetic markers are defined using a source population database before 

the start of a simulation.  Genetic markers do not influence model behaviours or mutate to 

new forms.  During bi-parental inheritance, offspring are equally likely to inherit one of 

two markers from each parent. 

A lattice of hexagonal cells forms the ORM landscape.  For every week of 

simulation, locations of each raccoon are known at the level of a cell.  Each cell is 

internally homogeneous.  Habitat heterogeneity and landscape features are defined at the 

level of the cell; for instance, by using P17 (e.g. agricultural areas have 5 raccoons/km2 

and water bodies have 0 raccoons/km2) and by restricting movement among cells (e.g. 

50% of raccoons are blocked from crossing large rivers). 
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