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ABSTRACT

Despite increasing evidence for the impact of feral cats Felis catus on native fauna in

Australia, little is known of the ecology of cats, particularly factors that limit cat

abundance.  The ecology of the feral cat in Australia is represented by just 15

published studies on diet, only one of which has examined diet in relation to prey

availability, and one study of home range behaviour.  The red fox Vulpes vulpes is a

significant pest to agriculture and native fauna in Australia and widespread fox

removals have been proposed by the Vertebrate Biocontrol Cooperative Research

Centre (VBCRC).  However, there is concern that feral cats may increase

compensatorily when fox populations are reduced, as has occurred in Western

Australia, and therefore that predation pressure may not be alleviated on native

fauna following fox control programs.

This thesis is divided into two parts.  First, the diet and home range size of cats is

examined in relation to prey availability, and home range overlap and habitat use are

determined.  In the second part, several niche parameters (diet, home range and

habitat use) that were potentially important resources for foxes and cats were

quantified to assess the potential for competition.  Avoidance and aggression

between cats and foxes was examined using simultaneous radiotracking techniques

and video observations.  The hypothesis that foxes limit cats through interspecific

competition (exploitation and interference) was then tested using a fox removal

experiment.  Finally, three further hypotheses were tested using a fox removal

experiment to determine which factors limit feral cats at Burrendong.  The four

hypotheses tested were thus: i) Cats are limited independently of foxes through other

factors such as food availability; ii) Foxes limit cats through interspecific competition

(exploitation and/or interference); iii) Foxes limit cats through intraguild predation;

iv) Cats benefit from the presence of foxes through facilitation.



The diets and spatial use of feral cats were examined on agricultural land on the

eastern shore of Lake Burrendong, New South Wales (32o o

July 1994 and June 1997.  The major land use for the area is water catchment under

the agistment of sheep Ovis aries and cattle Bos taurus.  The study area encompasses

about 90 km2 of hilly terrain with undulating slopes that extend down to a flat

foreshore area that has been extensively cleared of trees for grazing.  The slopes are

generally well timbered and dominated by white box Eucalyptus albens woodlands

with some yellow box E.  melliodora associations.  Stands of cyprus pines Callitris spp.

are also common.  Feral cats and red foxes are established throughout the study area,

and the European rabbit Oryctolagus cuniculus was abundant until the arrival of

Rabbit Calicivirus Disease (RCD) in June 1996.

The diet of feral cats was determined from the analysis of 499 scats.  Rabbits were the

staple prey of cats, with occurrence (O) in 81.6% of scats and comprising 68.4% by

volume (V).  Carrion (mostly eastern grey kangaroo Macropus giganteus and sheep)

(O 21.5%, V 11.5%) was an important secondary food, particularly in winter and

spring.  Other mammalian prey included brushtail possums Trichosurus vulpecula (O

4.6%, V 2.4%), house mice Mus domesticus (O 6.2%, V 3.2%), black rats Rattus rattus (O

2.6%, V 1.4%) and a dunnart Sminthopsis sp. (probably S. murina) (O 0.2%, V 0.006%).

Invertebrates (mostly Orthopterans) (O 41.5%, V 7.5%), vegetation (O 26.3%, V 3.6%),

birds (O 4.2%, V 0.8%) and reptiles (O 3.4%, V 0.3%) were generally of minor

importance in the diet.  Few significant seasonal differences were found, although

invertebrates contributed significantly less, and possums more, to the mean scat

volume in winter and summer respectively.

A significant dietary response was found for changes in rabbit abundance, but not

for the other prey groups.  Cats continued to prey heavily on rabbits after the arrival

of Rabbit Calicivirus Disease, despite the relatively low numbers of rabbits.  Ten

months post-RCD, house mice increased in importance in the diet.  However, it was

not known whether this represented prey switching sensu stricto or opportunistic

predation on an increased mouse population, as mouse abundance was not

measured during this period.



Seventy-seven cats (48 recaptures) were caught in 6762 trap nights between

November 1994 and August 1996 using both cage traps and leg-hold traps.  A further

18 individual cats were trapped as non-target animals by the VBCRC Fox Sterility

Project and used in this study.  Trapped adult cats were fitted with radio collars and

their home range size, overlap and habitat use examined.  Home ranges and core

areas were quantified using 95% and 50% kernel utilisation distributions (KE 95 and

KE 50) and minimum convex polygons (MCP 100, MCP 95, MCP 50).  Four habitat

types (grassland, open woodland, open forest, and mudflats) were delineated on

aerial photographs and a habitat map produced using ARC/INFO.  Compositional

analysis was used to examine habitat preference in cats.

Home range sizes of cats (n = 15, 598 fixes) in winter 1995, prior to fox removal, were

similar to those reported in the only published study of cat spatial use in Australia,

but larger than those recorded elsewhere.  This may have reflected more dispersed

food resources in Australia, although home range size was not correlated

significantly with rabbit abundance.  Male ranges (MCP 95 x  = 284 ha, n = 11)

tended to be larger than females ( x  = 151ha, n = 4), but no differences were detected

between young (1-3 years, x  = 271ha, n = 7) and old (>3 years, x  = 221ha, n = 8)

cats.  Cats were active both by day and night with no temporal differences being

detected in range size.  Both adult male and female cats tended to be solitary,

although home ranges overlapped extensively.  Kin groups were indicated (but not

confirmed) as most inter-sexual overlap occurred between young and old cats.

Habitat composition of home ranges generally reflected the availability of habitats at

the study site, although cats significantly avoided mudflats.  Home ranges comprised

mostly open woodland and open forest habitats with smaller areas of grassland and

mudflats.  However, within individual home ranges, cats used grassland and open

woodland habitats most often where rabbits were more abundant.  Inter-individual

(sex, age) or temporal (day/night) differences in habitat use were not detected.

Comparison of resource use between cats and foxes indicated a large overlap in diet,

home ranges and habitat use.  Dietary breadths and overlaps between cats and foxes

increased when rabbit availability declined in autumn and post-RCD.  Dietary

overlap was high overall (75%), although some resource partitioning was detected.



Rabbits were more important in the diet of cats than foxes, particularly in summer,

when foxes ate more grasshoppers.  Carrion, invertebrates and vegetation were more

important for foxes than for cats overall.  Home ranges of both cats and foxes

comprised mostly open woodland habitats followed by grassland, open forest and

mudflats, which largely reflected their relative availabilities.  However, within

individual home ranges, cats showed a preference for grassland habitats.  In

addition, cats tended to deposit scats more often than foxes at rabbit warrens and at

hollow log entrances, while foxes deposited scats more often than cats on sand plots,

tracks and at dams.  The large overlap in resource use between cats and foxes

indicated a high potential for exploitation competition.

Foxes may attempt to lessen competition by killing cats (interference competition).

Three radiocollared cats were killed by foxes and aggression was observed toward

cats.  Home ranges overlapped extensively, but avoidance was indicated from the

simultaneous radiotracking of both predators, as greater separations and lower

overlaps in home ranges and core areas were recorded between species than within

species.  In addition, video observations suggested avoidance of carcasses by cats in

the presence of foxes.

The hypothesis that foxes limit feral cats through interspecific competition was then

tested using a fox removal experiment.  Foxes were reduced at two of the four sites

Predator-Prey project.  Resource use and abundance of cats were compared before

and after fox removal and between treated and untreated sites.  Although no increase

in cat abundance followed the removal of foxes, significant behavioural changes by

cats strongly suggested interspecific competition operating via exploitation and

interference.  Exploitation competition was supported by the increased consumption

of carrion by cats at the treated sites after fox removal, while support for interference

competition came from the increased use of grassland habitats at night after fox

removal.  The direction of the resource shifts to more prey-rich habitats indicated

asymmetry in the relationship between the two predator species.  Although the null

hypothesis of no limitation of cats by foxes could not be rejected, as no increase in cat

abundance was recorded after fox removal, interspecific competition was considered

to be the most likely mechanism limiting feral cats at Burrendong.  Intraguild



predation was not indicated as no cat remains were found in any of the 343 fox scats

or 255 fox stomachs that were examined.  In addition, minimal evidence was found

for facilitation between cats and foxes, or for food limitation.

The potential for foxes to limit cats, as shown in this study, indicates that cats need to

be considered in future fox control operations.  Integrated pest management, where

foxes, cats and rabbits are controlled together, is strongly proposed if the objective is

to safeguard native fauna in Australia.  Further research is required to improve the

effectiveness of current techniques for censusing cat populations, particularly in

forested areas.  This is essential for monitoring the effectiveness of control campaigns

and quantifying factors that limit cat populations, and ultimately for effective

protection of susceptible native fauna.
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CHAPTER 1

GENERAL INTRODUCTION

This thesis examines the ecology of the feral cat Felis catus in open forest in New

South Wales and experimentally tests factors that may limit cat abundance.  Feral

cats have been implicated in the decline and extinction of numerous native mammal

species in Australia (review in Dickman 1996).  However, little is known about the

ecology of feral cats, particularly factors that affect their abundance.  Potential

limiting factors for feral cat populations that will be investigated include the

availability of food, and interactions (competition and intraguild predation) with red

foxes Vulpes vulpes.  Foxes are considered a significant pest to native fauna and to

agriculture in Australia (Saunders et al. 1995) and populations have been targeted for

broad-scale reduction using fertility control, which is being developed by the

Vertebrate Biocontrol Cooperative Research Centre (VBCRC) (Tyndale-Biscoe 1994).

However, there is concern that feral cat populations may increase compensatorily

when foxes are removed.  Possible mesopredator release (sensu et al. 1988) of

cats following widespread fox removals may not alleviate predation pressure on

native prey populations, and is an issue that needs to be addressed.

This first chapter reviews the history and biology of introduced species, particularly

mammals, and examines factors that contribute to their success.  Evidence is then

presented for the impact of introduced mammalian carnivores on native species, and

is followed by an examination of factors that can affect population dynamics.

Evidence for interactions between mammalian predators is then examined, and in

the final section I present the aims and scope of the thesis.

1.1.  BIOLOGY OF INTRODUCED SPECIES

1.1.1.  History of introductions

Organisms have been introduced to areas outside their native range by human

agency for millennia (Pimm 1987).  The most widespread accidental introduction has

involved rodents, Mus domesticus, Rattus rattus and R. norvegicus, which are now
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established on all non-polar continents throughout the world (Jarman and Johnson

1977).  In Australia, more than 60 vertebrate species were released after European

settlement in just 20 years between 1860 and 1880 (Myers 1986).  Many introductions

were made privately in an attempt to turn Australia into another England (Myers

Acclimatization Societies actively introduced plants for agriculture, forestry, hedges,

soil erosion control and as ornamentals (Myers 1986).  Many species were also

(Michael 1972).

Although it is a commonly held belief that Australia has been particularly susceptible

to species introductions (Amor and Piggin 1977), we have fewer exotic species than

many other continents (Kitching 1986).  For example, 8% of terrestrial mammal

species are exotic compared to 92% in New Zealand and 22% in Great Britain.

in New Zealand and 14% in Great Britain (Kitching 1986).   However, the magnitude

of the problems associated with introduced species in Australia has received wide

attention (e.g. Dickman 1996).

Do introduced species have an impact?  Although introduced animals are implicated in

40% of historic extinctions of native taxa (Caughley and Gunn 1996), evidence for

their impact is controversial (Elton 1958, Simberloff 1981, Herbold and Moyle 1986).

Simberloff (1981) argued that introductions rarely have an impact, but many authors

(e.g. Elton 1958, Herbold and Moyle 1986) refute this.  While impacts of introduced

animals have been often observed, they have been quantified rarely.  Removal

experiments, where the alien species is removed or excluded and the putatively

impacted species then recovers, provide the most conclusive evidence for the impact

of introduced species.  However, such experiments have been carried out rarely (e.g.

Kinnear et al. 1988) and the findings often contested (cf. Hone 1994, Kinnear et al.

1998).

Are introductions usually successful?  Not all introductions are successful, and most
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introduced plant and animal species become established, and of those, 10% become

pests (Williamson and Brown 1986, Williamson 1996).  However, while most exotic

species fail to establish, the cumulative effect of the few successful invaders on native

flora and fauna may be large (Williamson 1996).

What determines the success of an introduction?  The reasons why some species

successfully establish and others do not, are not well understood (Newsome and

Noble 1986).  Some species with certain attributes become invaders, while others

with the same attributes do not. Although invasive species as a group show certain

attributes in common, no one species possesses all attributes and different species

tend to have different combinations of attributes, which make them potentially

invasive.  Nevertheless, some generalisations can be made about the attributes

common to most successful introduced species.

Three main phases must be completed successfully before an introduced species is

established: introduction of the species, establishment of the population through

reproduction, and dispersal (Arthington and Mitchell 1986).  At each phase, three

sets of factors interact to determine whether the invasion will be successful.  These

(competitors, predators, parasites and pathogens).

Biological attributes common in invading species include flexible requirements for

habitat and diet, high reproduction and survival rates, and high mobility.  For

example, successful invasions usually involve generalist species rather than

specialists (e.g. Maran and Henttonen 1995).  In Australia, introduced generalist

species such as feral cats and foxes, have successfully established in a wide range of

habitats, while the more specialised tropical mongoose and ferrets have died out

(Myers 1986).  Similarly, introduced mice and rats are widespread on the continent,

while other rodents (e.g. two squirrel species) failed to establish because they were

food specialists (Myers 1986).  High reproductive rates also increase the chance of

successful establishment (Williamson 1996).  Where only a few individuals are

introduced, the potential for reproduction, for finding a suitable habitat, or for

resisting climatic extremes, is reduced (Swincer 1986, Di Castri 1990, Williamson

1996).



Chapter 1 21

The ability to disperse is the final stage in the successful establishment of an

introduced species, affecting the genetic structure of the population (Krebs 1994).

sample of a population, such that the new population may be genetically a subset of

the source population.  Founder effects may also limit the gene pool of the invading

species such that they are not able to resist new parasites (Freeland 1983).  But just as

there are no set biological or eco-physiological attributes that characterise successful

invaders (Newsome and Noble 1986, Roy 1990), there are also no genetic

characteristics that are common to all invaders (Barrett and Richardson 1986).

Which communities are most vulnerable?  Empirical observations show that some

regions and ecosystems are more vulnerable to invasions than others (Di Castri

1990).  For example, at a very large scale, ecosystems in the Northern Hemisphere are

more resistant than those in the Southern Hemisphere (Di Castri 1990).  Invasions are

relatively unusual in the tropics compared to temperate areas, while oceanic islands

are particularly vulnerable to invasions (Vitousek et al. 1997).  Simberloff (1981)

addressed some theoretical considerations of community response to invasions,

particularly community models of island biogeography and limiting similarity, but

found little support for either model in the literature.  Other reviews show that

invading species are often more successful in disturbed environments, through the

Anderson 1977, Kitching and Jones 1981, Fox and Fox 1986).

The disturbance hypothesis has been supported by a number of studies (Moore 1959,

Fox and Fox 1986).  Moore (1959) demonstrated that in the absence of grazing in

Australia there were no introduced pasture species, but where grazing was present,

three native grasses, previously dominant in the pasture, were lost and introduced

species dominated.  Similarly, prickly pear Opuntia stricta invades woodlands

subjected to altered fire regimes, introduced grazing and clearing (Fox and Fox 1986).

However, there is also evidence that animals are able to invade undisturbed

communities (Fox and Fox 1986).  These species are usually r-strategists or c-

strategists, often with the additional advantage of freedom from pests and diseases

(Arthington and Mitchell 1986).  For example, the cane toad Bufo marinus is currently
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spreading through undisturbed and extensive areas of wetlands in northern

Australia (Fox and Fox 1986).  This conflicting evidence for the disturbance

hypothesis may arise if seemingly undisturbed habitats are in fact disturbed, and the

effects of the disturbance are subtle or difficult to detect (Fox and Fox 1986).

The species richness hypothesis (Fox and Fox 1986) predicts that rich communities

are less susceptible to invasion because the high interconnectedness between many

interacting species means that existing resources will be fully utilised.  However,

there is little experimental evidence to support this hypothesis, and numerous

contradictory observations (e.g. Macdonald et al. 1986, Williamson 1996).  Many

species have invaded rich ecosystems, for example Hakea species from Australia and

Pinus species from the Northern Hemisphere have readily invaded speciose plant

communities in South Africa (Macdonald et al. 1986).  Further, impoverished

marshes or mountaintops, and this confounds the species richness hypothesis also

(Williamson 1996).  Similarly, the seemingly greater vulnerability to invasion of

islands (Newsome and Noble 1986) that have generally simple community structures

may be a statistical artifact (Williamson 1986).  Fewer indigenous species are usually

present and islands have been subject to greater proportional change to the

landscape and a greater enthusiasm for deliberate introductions in the past.

Nevertheless, impacts of introduced species have often been more pronounced on

islands as the indigenous fauna often lack antipredator behaviour or the genetic

diversity to resist introduced parasites and diseases (e.g. Diamond and Veitch 1981,

Savidge 1984).

1.1.2.  Impact of introduced mammalian predators

Throughout the world, introduced mammalian predators have caused, or still are

causing, declines and extinctions of endemic fauna, particularly on Pacific Islands,

New Zealand and in Australia (King 1980, Diamond and Veitch 1981, Karl and Best

1982, King 1984, Griffin et al. 1988).  Most impacts have tended to be wrought by

predation, which causes rapid population declines, rather than competition, parasite

or disease transfer.  Predation by introduced mammalian predators accounts for half

of all known island bird extinctions (Diamond 1984).  On the island of Guam,

introduced mammals (feral dogs, cats and rats), reptiles (brown tree snake Boiga
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irregularis) and disease are implicated in the decline of entire forest avifauna toward

extinction (Savidge 1984).  On islands in the tropical Pacific, mongoose Herpestes spp.

have been implicated in the collapse of native vertebrate faunas (Fagerstone et al.

1995).  On the Galapagos archipelago, the dark-rumped petrel Pterodroma phaeopygia

is threatened by introduced rats, cats, dogs Canis familiaris and pigs Sus scrofa which

prey on eggs, nestlings and adults (Cruz and Cruz 1987).  On Lord Howe Island, the

endemic woodhen Tricholimnas sylvestris declined to very low numbers as a result of

predation on chicks and eggs by the feral pig (Fullagar 1985).

In New Zealand, introduced mammalian predators were partly responsible for

massive losses in the endemic avifauna (King 1984).  In Australia, feral cats have

been implicated in the decline and extinction of numerous native fauna species

(Dickman 1993, 1996); evidence for these impacts is discussed in Chapter 2.  Red

foxes have been shown experimentally to affect the survival of remnant populations

of black-footed rock wallabies Petrogale lateralis (Kinnear et al. 1988, 1998), malleefowl

Leipoa ocellata (Priddel 1991), numbats Myrmecobius fasciatus (Friend 1990) and

chuditch Dasyurus geoffroii (Morris 1992).

Elsewhere, red foxes have also had negative impacts (Ralls and White 1995).  In

California, the red fox is indigenous only to the Sierra Nevada and has greatly

expanded its range since the 1890s (Lewis et al. 1993).  Populations of some prey

species are now thought to be threatened, including the California least tern Sterna

antillarum browni, the salt marsh harvest mouse Reithrodontomys raviventris and the

San Joaquin kit fox Vulpes macrotis mutica (Ralls and White 1995, Reynolds and

Tapper 1996).  In the British Isles, range expansion by red foxes has also threatened

bird populations (Musgrave 1993).  In boreal and arctic regions, arctic foxes Alopex

lagopus were introduced to many of the Aleutian Islands in the north Pacific by

Russian fur-traders during the early nineteenth century, resulting in the decimation

of seabird populations (Bailey 1993).  Recent attempts to eradicate the arctic fox have

involved introducing sterile red foxes as biological control agents (Bailey 1992).

Conventional wisdom argues that exotic predators have stronger effects than their

birds, in particular, are thought to be more vulnerable to predation by exotic
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predators, compared to native predators, because they have evolved in the absence

of significant predation (MacArthur 1972) and therefore lack effective antipredator

adaptations.  Although this hypothesis has found wide support in New Zealand and

Hawaii (Atkinson 1977, 1985, King 1985), recent studies have shown no differences

between endemic and introduced birds in New Zealand in vulnerability to predation

by introduced mammalian predators (mustelids, rodents and feral cats) (Moors

1983).  Similarly, on western Mauna Kea in Hawaii, no evidence was found that

introduced mammals (feral cats, mongooses and house mice) preyed on endemic

birds (Amarasekare 1994).

1.2.  FACTORS LIMITING MAMMAL POPULATIONS

It has long been recognised that populations do not go on increasing without limit,

but it was not until the twentieth century that attempts were made to formally

analyse the factors that regulate populations (Krebs 1994).  In the 1950s and 1960s

controversy about regulation, and the mechanisms that bring it about, erupted (e.g.

Andrewartha and Birch 1954, Lack 1954, Chitty 1955).  Today debate still surrounds

this topic and few examples of regulatory processes have been demonstrated

unambiguously.

there is confusion and disagreement over their precise definitions (Sinclair 1989,

1991, Sinclair and Pech 1996).  In this thesis, limiting factors are taken to be those that

have a negative impact on population growth, while regulatory factors involve the

negative impact increasing with population density.  A population is therefore

regulated when it undergoes density-dependent mortality (or reductions in natality)

which tend to return it to an equilibrium value (Sinclair 1989, 1991).  The

constant.  While the operation of limitation and regulation in populations has

received much theoretical support, most field studies have demonstrated only

limitation, and evidence for regulation in nature is rare.

Two paradigms of population regulation.  Two paradigms of population regulation were
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(1911) and developed further by Nicholson (1933, 1954, and 1958) and Lack (1954).

This paradigm assumes density-dependence, such that birth, death and movement

not assume density-dependence.  It searches for relationships between birth, death

and movement rates, and the mechanisms controlling populations, such as disease,

predation, food shortage and territoriality (Krebs 1995).  This paradigm arose from

the work of Bodenheimer and Uvarov in the 1920s (Krebs 1995) and was developed

further by Andrewartha and Birch (1954) and Chitty (1955).

The density-dependent paradigm for population regulation is widely supported

today, particularly by such proponents as Hassell (1986) and Sinclair (1989).  Density-

dependence occurs when the per capita growth rate of a population (including

mortality and reproduction) depends on its own density (Sinclair and Pech 1996).

Causes of density-dependence include intra- and interspecific competition, and

mortality, which then theoretically returns it to an equilibrium value (Sinclair 1989,

1991).  In contrast, the mechanistic paradigm relates birth and death rates directly to

the complexity of factors that interact to set birth and death rates in natural

populations (Krebs 1995).

Although examples exist in mammalian studies where rates of birth or death are

clearly related to density, which supports the density-dependence paradigm (see

reviews in Sinclair 1989, Wolda 1989), there are also many instances where no such

relationship exists (Krebs 1994).  In these situations, other factors such as

measurement error or delayed-density-dependence are often proposed (Trostel et al.

1987).  Krebs (1995) argued that the very act of explaining everything within a

dichotomous paradigm is hindering progress in the science of population regulation.

A density-independent relationship can explain any scatter of points and therefore

results can always be explained within the density-independence paradigm.  While

Krebs (1994) did not question the validity of density-dependence, he believed that

the mechanisms of population regulation, i.e. the mechanistic paradigm, would be a

more fruitful approach.
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Population densities can be influenced by a number of factors that can be broadly

described as weather, resources (food and shelter), and enemies (predators, parasites,

disease, and competitors), which can often interact (Krebs 1994, 1995, Holmes 1995).

The relative importance of these factors is still the subject of much debate (e.g.

Tamarin 1983, Power 1992, Strong 1992).  Understanding the mechanisms that

regulate or limit populations is of paramount importance, particularly when species

are to be conserved or introduced pests controlled.

1.2.1.  Resource availability

All animal populations are limited to some extent by the availability of resources.

Resources are needed for survival and reproduction, and can include food, shelter,

water, nesting sites and space to set up territories.  Resource availability can be

defined as the direct accessibility of resources to consumers, and is usually a subset

of resource abundance (Wiens 1984).  Resource availability is difficult to measure and

the relationship with true resource abundance is usually unknown (Wiens 1984).

Resource limitation may arise when the availability of a resource is less than, or

equal to, the demand of the consumer population (Wiens 1984).  This can result in

intraspecific competition where individuals of the same species utilise common

resources that are in short supply (Birch 1957).

Food is the resource that is predicted usually to influence the abundance of predators

(Hairston et al. 1960), although regulation of population size by food scarcity has

been difficult to demonstrate (Moran 1995).  If intraspecific competition for food

occurs, its intensity must be density-dependent and hence regulatory rather than

limiting.  Lack (1954) reviewed studies of North American ungulates and concluded

that food shortages play a role in both population cycles and irruptions through

density-dependence.  However, much of his evidence was confounded with other

factors.  For example, although population declines were recorded after food

shortages, predation pressure had also altered.  Andrewartha and Birch (1954) also

proposed that food was a major limiting factor for populations, but rejected the

distinction between density-dependent and density-independent factors.  They

argued that all factors were related to population density to some degree, even

weather.  Evidence for food as a regulatory factor has come from studies that have
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shown numerical responses of predators to fluctuating prey populations (Pech et al.

1992, White and Garrott 1997).

Evidence for food limitation, however, has been obtained in food removal and

addition experiments (e.g. Brown and Davidson 1977, Brown et al. 1979, Taitt and

Krebs 1981, Galindo 1986, Krebs et al. 1986).  For example, densities of snowshoe

hares and voles increased after the provision of extra food (Taitt and Krebs 1981,

Krebs et al. 1986), and elk densities were maintained at a higher level as the result of

supplementary feeding (Boyce 1989).

1.2.2.  Competition

Definitions.  Competition occurs when a number of animals (or other organisms)

utilise a resource that is in short supply (Birch 1957).  It can also occur, however,

when resources are not in short supply and the individuals seeking the resource

harm each other in the process.  It can occur within species (intraspecific) or between

species (interspecific), however, only the latter will be examined in this section.

Interspecific competition occurs when individuals of different species suffer a

reduction in fecundity, survivorship or growth as a result of mutual resource

exploitation or interference (Birch 1957, Begon et al. 1996).  Although it implies harm

to both species involved in the interaction, effects are often asymmetrical with one

species being the weaker competitor (Lawton and Hassell 1981, Connell 1983,

Schoener 1983, Dickman 1986a, Brown et al. 1986).

Is interspecific competition important?  The importance of interspecific competition in

influencing community structure has been the subject of many debates (e.g. Keddy

1989, Cooper 1993).  Some authors regard competition as of utmost importance (e.g.

Hutchinson 1959, Diamond 1978, Bengtsson 1989), while others suggest that it has

little effect on population size or community structure (e.g. Andrewartha and Birch

1954, Wiens 1977).  One of the main reasons for this controversy is the difficulty in

proving that competition has occurred in field situations.  Unlike in laboratory

experiments, it is often difficult in nature to isolate the mechanism responsible for the

regulation of populations, as it is usually a combination of different factors, such as

intraspecific competition, predation, disease and environmental variability.  Even
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where the importance of interspecific competition has been demonstrated in nature,

conclusions have often been questioned on the grounds that the results were

statistically indistinguishable from chance events (Schoener 1982, 1983).  Field

studies have also been criticised for describing aspects of the competitive process

only and not indicating the causes of stable coexistence or showing conclusively that

competition was responsible for the disappearance of a species (Arthur 1987).

The Competitive Exclusion Principle.  The importance of competition in shaping

communities was first described by theorists such as Lotka (1932), Volterra (1926)

and Gause (1934).  This early work led to the development of the Competitive

Exclusion Principle, which states that two competing species can coexist only if there

is some degree of resource separation, otherwise one species will exclude the other

(Gause 1934).  In this way, two different species cannot occur in identical niches.

Niche is defined here as a species role in the community and includes its relationship

to food and enemies (Elton 1927, Hutchinson 1958).

Numerous laboratory experiments have provided support for the principle under

stable conditions with species such as Paramecium spp. (Gause 1934, 1935) and

Drosophila spp. (Jones and Probert 1980, Barker 1983, Arthur and Middlecote 1984).

However, relatively little conclusive evidence for competitive exclusion has been

found in nature (Schoener 1983, Connell 1983).  Connell (1961) demonstrated that one

species of barnacle actively excluded another species in the intertidal zone in

Scotland.  Inouye (1978) demonstrated competitive exclusion among two species of

bumble bees in Colorado.  Diamond (1975) described competitive exclusion among

three species of ground doves that occupied different habitats on the mainland of

New Guinea compared to offshore islands where not all species were present.  But

the relative lack of evidence for competitive exclusion in nature (Schoener 1983,

Connell 1983), coupled with the frequent observations of closely related species

coexisting in seemingly identical niches (e.g. Fryer 1959, Schroder and Rosenzweig

1975), has led to the principle being heavily criticised, particularly by field ecologists

(Vadas 1990, Sinclair 1991, Caughley and Sinclair 1994).

To explain this ecological paradox of frequent extinctions in closely related species in

laboratory experiments but the coexistence of many similar species in nature, two



Chapter 1 29

main views have developed (Krebs 1994).  Competition is rare in nature, thereby

accounting for the lack of evidence for competitive exclusion.  Alternatively,

competition has occurred frequently throughout the evolutionary history of

communities; the lack of current evidence for competition is then due to adaptations

Reviews of the literature by Connell (1983) and Schoener (1983), although obtaining

different results, show that interspecific competition is not rare in nature.  Schoener

reviewed 164 studies and found that 76% of species were in competition, while

Connell found that 55% of species in 72 studies competed.  The reviews also

indicated that interspecific competition was less common in terrestrial than marine

or freshwater systems, perhaps due to the heterogeneity of food resources in

terrestrial environments (Krebs 1994).  Similarly, interspecific competition was

considered less common in invertebrates, which may be more vulnerable to climatic

changes or predation losses (Schoener 1974), compared to plants or vertebrates.

These reviews were biased at the outset because competition is usually studied only

when it is expected to occur, and if an experiment fails to find competition the

researchers may not bother to write it up, or it may not be accepted for publication

(Keddy 1989).  However, both reviews reached the same conclusion that competition

is not rare in nature.

The Competitive Exclusion Principle has also been criticised because it cannot be

disproved: both coexistence and exclusion are consistent with the principle, and it

therefore cannot be tested (Sinclair 1991).  To test the principle, two niches need to be

shown to be identical, which is not possible as it can always be said that some other

factor that makes the niches different has been overlooked.  Nevertheless, the

Competitive Exclusion Principle provides a theoretical explanation for at least part of

the phenomenon of ecological replacement, and underlies studies of resource

partitioning among groups of coexisting species (MacArthur 1970, Schoener 1974).

Resource partitioning.  The Competitive Exclusion Principle predicts that coexisting

species must differ in their ecological requirements by some degree (Rosenzweig

1966).  Coexisting granivorous ants partition seed resources on the basis of size,
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density and micro-distribution of the seeds (Davidson 1977).  Similarly, three

sympatric species of hermit crabs preferred different-sized gastropod shells for

habitation and different habitat types (Vance 1978).  MacArthur (1958) described the

habitat partitioning of five species of warblers within conifer trees; they were able to

coexist because their feeding positions varied in both heights in the tree and in use of

inner and outer branches.  However, to use the occurrence of resource partitioning as

evidence for competitive exclusion is illogical.  By definition two species must be

genetically different and consequently differ physiologically, structurally or

ecologically.  More important to consider is the degree to which niches can overlap

and still allow coexistence.  Niche overlap is the joint use of a resource, or resources,

by two or more species (Colwell and Futuyma 1971).

Niche overlap.  The idea that there must be an upper limit to the degree of niche

May 1973, 1974).  MacArthur and Levins (1967) predicted values of limiting

similarity based on theoretical arguments about the distance between the midpoints

of species distributions, but this approach has proved to be unrealistic (May and

MacArthur 1972, May 1973, 1978, Turelli 1981, Chesson 1986).  May and MacArthur

(1972) theorised that the maximal permissible overlap should be relatively insensitive

to both the number of species and environmental variability.  Pianka et al. (1979)

examined how much niches would overlap among desert lizards if resources were

allocated randomly among species, and concluded that a higher frequency of species

with small niche overlaps was found than would be predicted by chance.  Similarly,

some empirical studies have showed that assemblages of ecologically similar,

coexisting species differ from each other more than would be expected by chance

(Schoener 1970, 1984, Brown 1973, Brown and Bowers 1985, but see Simberloff 1984)

which implies that interspecific competition can cause niche segregation.

The niche-complementarity hypothesis predicts that for coexistence to occur, high

overlap in one dimension will be compensated by low overlap in another.  Fuentes

and Jaksic (1979) found support for this phenomenon among two fox species in
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South America, Pseudalopex culpaeus and P. griseus.  Where these two species had low

habitat overlap, dietary overlap was high, but where habitat overlap was high,

dietary overlap was low.  More detailed studies of the two fox species provided

further support for the niche-complementarity hypothesis, but on a finer scale

(Jimenez et al. 1996).  The larger P. culpaeus was shown to exclude the smaller P.

griseus from high quality habitat patches through interference.  It was found that

where they are sympatric they have complete overlap in activity time, intermediate

overlap in diet, but little overlap in habitat use.

Niche overlap values have often been proposed as measures of current competition

and as indicators of past competition (Levins 1968, Schoener 1974).  However, the

existence of niche overlap between two species is not sufficient to demonstrate

competition.  Niche overlap may indicate a lack of competition if the considered

resource is in oversupply or irrelevant to one or both species (Colwell and Futuyma

1971, Vandermeer 1972, Rathcke 1976).  Alternatively, a lack of niche overlap may

indicate avoidance of competition or different but independently evolved resource

preferences.

The idea that niche overlap can be positively or negatively correlated with

competition led Pianka (1974) to develop the niche overlap hypothesis.  This hypothesis

predicts that maximal tolerable niche overlap should be lower in intensely

competitive situations, and is supported by both experiments and field studies

(Schoener 1974, Diamond 1978, Sinclair et al. 1982, Caughley and Sinclair 1994).  This

hypothesis is also supported by one theory of habitat selection (Rosenzweig 1981),

which predicts that species should contract their habitat niches when resources are

limiting due to competition.  For example, Pimm and Pimm (1982) showed that

Hawaiian honeycreepers conformed to these predictions with habitat niche width

contracting in response to declining resources.  However, several other studies have

shown that niche dynamics may be more complicated than originally thought

(Schoener 1982, 1989, Hansson 1995), and traditional niche theory has been

challenged increasingly in recent years (Freeland 1983, Arthur 1987, Vadas 1990,

Hansson 1995).
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Some studies have shown that niche overlap can also increase when resources are

limiting (Schoener 1982, Litvaitis and Harrison 1989).  Such observations support

optimal foraging theory, which predicts that when resources are not limiting, species

should concentrate their feeding on the best types of food or habitat and ignore

poorer resources regardless of abundance (Stephens and Krebs 1986).  Then when

resources become limiting co-occurring species should expand their niches to use a

wider range of resources and increase their overlap.  In support of this, Leslie et al.

(1984) showed that dietary overlap increased between elk and deer in winter when

resources were less abundant.  However, using simulation models Hansson (1995)

showed that decreases and increases in overlap were equally common and varied

with competition intensity.  Freeland (1983) also challenged traditional niche theory,

and argued that the maintenance of low levels of shared parasites is the most

important factor in allowing the coexistence of similar species.

Niche overlap, therefore, is clearly not sufficient to demonstrate competition.  A

change in resource use after the removal of one of the potential competitors must

also be shown and the mechanism underlying the individual interaction understood.

Mechanisms of interspecific competition.  Traditionally, two mechanisms have been

described in competition theory, exploitation and interference (Begon et al. 1996).  To

avoid exploitation competition, where competing organisms utilise the same limited

resource, a species will often show a change in diet (MacArthur 1972, Arthur 1987,

Krebs 1989).  It is mediated indirectly because the species interact through a resource

or third species, and not directly.  In contrast, interference competition occurs when

two species cause direct physical harm to each other, for example, through toxins or

aggressive encounters, and is often avoided through differential habitat use (Krebs

1978, Rosenzweig 1981, Arthur 1987, Pimm et al. 1995).

(1983) review, some authors argue that interference is the most widespread form of

competition in nature (Case and Gilpin 1974).  However, many studies are unable to

distinguish between direct interference and indirect exploitation, as the mechanism

of competition is often not investigated (Tilman 1987).  For example, space can be

used to deprive another species through exploitation but may also involve
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interference behaviour.  Similarly, shifts in diet may be a secondary consequence of

habitat change.

Other types of competition include diffuse, indirect and apparent competition.

Diffuse competition describes the combined effects of many species upon a given

species (MacArthur 1972).  These effects are often difficult to measure, as any single

pair of species may have very weak interactions.  Diffuse competition, however, was

demonstrated experimentally among harvester ants over a five year period in the

Chihuahuan Desert (Davidson 1985).  Despite dietary overlap between a large

species and a small species of ant, the large species facilitated the small species

indirectly, by suppressing populations of an intermediate-sized species.

Competition can also have indirect effects (Abrams 1987), even when resources are

not limiting; these are often considered to be artifacts and can be overlooked.  For

example, the niches of two species may not overlap and they may not compete, but

affect each other through interactions with other competing species i.e. indirect

competition (Caughley and Sinclair 1994).  Further, the two species could be alternate

prey for a food-limited predator i.e. apparent competition (Holt 1977, 1984).  Shared

predation, where a generalist predator attacks two or more prey species, can easily

imitate the effects of exploitation competition, such as indirect exclusion of one prey

species by another.  For example, rabbits have been implicated in the decline of

native herbivores in Australia through either direct competition for food or by

apparent competition in supporting fox populations (King et al. 1981).

Demonstrating interspecific competition.  Of the numerous studies that have examined

similar coexisting species, few have actually demonstrated that the species do

compete.  Much of the evidence that has been advanced merely shows large overlaps

in resource use.  Some studies have observed changes in the abundance of one

species after the perturbation of a potentially competing species, however, this is also

not enough to demonstrate the mechanism of competition.  The removal of one

species may allow the other species to increase if direct predation is involved

(Hairston 1985).  Additional information on resource use is necessary.
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The strongest evidence for the existence of competition has come from field

experiments that have manipulated the densities of one or more competing species

and observed changes in population size, fecundity, growth or resource use of the

remaining competitor.  Experiments of this nature have been conducted on desert

plants (Fonteyn and Mahall 1981), intertidal gastropods (Underwood 1978)

salamanders (Jaeger 1971, Hairston 1986), rodents (Heske et al. 1994, Valone and

Brown 1995), dasyurids (Dickman 1986a) and between rodents and ants (Brown et al.

1979).  Knowledge of the mechanisms underlying a competitive interaction is

important in predicting individual behaviour and resource use, and in

understanding community processes (Tilman 1987).

1.2.3.  Predation

Definition.  Predation can be defined as the eating of all, or parts of, other live

individuals and does not include the scavenging of dead material (Caughley and

Sinclair 1994).  It usually, but not always, involves killing the prey (Krebs 1994).  In

contrast to competition, predation usually involves interactions between individuals

in different trophic levels, with the negative effects experienced by only one species,

the prey (Caughley and Sinclair 1994).  Of the four main types of predation

(herbivory, parasitism, carnivory and cannibalism) (Caughley and Sinclair 1994),

only carnivory, will be addressed here.

Is predation important?  Mammalian predators were once thought to merely remove

already-doomed individuals, such as those that were sick or weak, with little impact

on prey distribution or abundance (Errington 1946, 1951).  Research since that time

has shown that predators can have complex effects on prey populations (see reviews

in Sih et al. 1985, Lima and Dill 1990), and considerable field evidence has

demonstrated that predation can depress rates of increase in natural populations (e.g.

Bergerud 1971, Potts 1980, Sievert and Keith 1985).  However, the importance of

predation, relative to competition, in influencing prey populations and communities

is controversial (Sih et al. 1985).  Some studies have shown it to be of utmost

importance (Paine 1971, Caswell 1978, Zaret 1980), while others indicate that it is less

important than competition (Cody 1974, May 1974, Schoener 1974).  Sih et al. (1985)

reviewed the literature on predation experiments in a similar way to Connell (1983)

and Schoener (1983), and concluded that both predation and interspecific
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competition are about equally important.  Literature reviews, however, are not the

best way to determine the relative importance of different factors in influencing

population dynamics or community structure.

The ideal way to test the hypothesis that predators can regulate or limit prey

populations is to remove predators from a system and measure the prey response.

Such experiments have shown conflicting results, with limitation indicated in some

situations (Caughley et al. 1980) but not in others (Bertram 1978, Boutin 1992).  In

provided evidence that dingoes Canis lupus dingo suppressed both kangaroo and

emu numbers (Caughley et al. 1980).  Other studies have also shown that dingoes and

foxes can suppress the growth of prey populations (e.g. rodents, rabbits, kangaroos,

wallabies and pigs) (Newsome and Corbett 1975, Newsome et al. 1983a, Corbett and

Newsome 1987, Newsome et al. 1989, Pech et al. 1992, Banks et al. 1998).  In California,

regulation by carnivores was implicated in the population cycling of meadow mice

Microtus californicus (Pearson 1966, 1971).

In contrast, field studies have also shown that predation is not the most important

factor influencing prey population dynamics (Bertram 1978, Boutin 1992).  Wolves

were removed in parts of North America to release predation pressure on moose in

five studies, but significant increases in moose numbers were detected only in one

study (Boutin 1992).  Similarly, in the Serengeti Plains of eastern Africa, larger

ungulates appear to be regulated by intraspecific competition for food rather than

predation (see review in Sinclair 1995).  These studies supported the doomed surplus

hypothesis, with most prey taken being old, injured or sick.  Kruuk (1972) showed

that the taking of sick or injured prey was related to the ease in catching them.

Hyenas in Africa take wildebeest that are in poor condition because they are

otherwise difficult to catch, but take gazelles at random because they are easy to

catch in good condition or poor (Kruuk 1972).

It is clear then that predation is important in influencing population dynamics in

some instances but not in others.  Understanding the characteristics that increase

predator effectiveness is important in wildlife management and agricultural pest

control.  Description of the functional and numerical responses, and consequently the
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total response, in predator-prey interactions is essential in this process (but see

Sinclair 1989).

Functional response.  This describes the relationship between the prey population size

and the number of prey killed per unit time by an individual predator (Abrams

1982).  Three types of functional response were identified originally by Holling

(1959), where the relationship between prey consumption (Y-axis) and prey density

(X-axis) is described.  A type I functional response shows a linear relationship, with

the number of prey consumed increasing directly with prey density; this response is

often indicative of filter feeders.  A type II functional response shows an initial linear

relationship that then levels off and has been described primarily for invertebrate

predators.  A type III response has a sigmoidal shaped curve as, at low prey

densities, predators switch to alternative prey; this is more typical for vertebrate

generalist predators.

The asymptotic curves of type II and III responses at high prey densities occur

primarily because predators become satiated or cannot get access to further prey due

to interference behaviour or territoriality.  A type II functional response predicts that

at low prey densities predators have an inversely density-dependent effect at all prey

densities, but the effects are more complex when a Type III response is involved.  In

this situation, there is a density-dependent response by predators, while at higher

prey densities the response is inversely density-dependent.

Although Holling (1959) suggested that these different functional response curves

were characteristic of different types of organisms, recent studies have shown that

vertebrate predators can have type II functional responses (Messier 1995), and

invertebrate predators can exhibit a type III response (Hassell 1978).   In addition,

Abrams (1982) showed that the traditional three types of functional response were

not sufficient to describe the wide range of responses exhibited by animals in the

wild.  Boutin (1995) also argued that few studies of predation have actually

demonstrated a functional response.  In most cases, the data are open to alternative

explanations, and data at low and high prey densities are often lacking.  Functional

response curves, although useful in describing predator-prey relationships, may also

not be realistic when multiple species are involved.
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Numerical response.  Predators can regulate prey at an individual level (i.e. functional

response) and at a population level through a numerical increase as a response to an

predator density may or may not be density-dependent.  At high prey densities, the

numerical response predicts that more predators will survive and reproduce or

immigrate, and consequently eat more prey.  Because the density of predators will

eventually level off, due to interference behaviour, the numerical response can have

a destabilising effect at high prey densities by either causing extinctions or eruptions

in prey populations (Caughley and Sinclair 1994).

Total response.  To determine whether a predator can regulate a prey population, the

(Pech et al. 1992).  The total response is the product of the functional and numerical

responses, and describes the predation rate of a predator (Solomon 1949).  Although

each predator has a characteristic functional and numerical response, a direct

relationship between the functional and numerical response need not exist (Krebs

1989).  For example, where predator numbers are limited by prey abundance, the

numerical response of predators will be tied closely to the functional response.

Conversely, where predator abundance is determined by other factors, a functional

response may arise without a numerical response.

Total response curves predict that where there is density-dependence, two stable

states will occur.  Firstly, predators can regulate prey over the entire range of prey

densities.  Alternatively, predators may not regulate prey but have a depensatory

effect on prey populations that are regulated by intraspecific competition for food

(Caughley and Sinclair 1994).  Recent studies have shown that both stable states may

operate in the same area, producing multiple stable states (Pech et al. 1992).  Total

responses of feral cats and foxes to changing rabbit densities were demonstrated

experimentally in semi-arid New South Wales (Newsome et al. 1989, Pech et al. 1992).

Foxes and cats were removed through persistent shooting from two areas and, as

predicted from total response curves, the density of rabbits increased in both areas

and remained low where predators were left untreated (Newsome et al. 1989).

Rabbits were prevented from increasing naturally by predation and were held in a
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back into the treated areas, rabbit numbers failed to decline.  Predators thus exerted a

regulatory effect over only a limited range of prey densities.  At low densities, foxes

and cats switched to alternative prey, while at high densities, predation was

inconsequential.  Knowledge of the range of prey densities over which a predator

can exert a regulatory role is important, particularly when prey populations are to be

safeguarded.

Antipredator behaviour.  In addition to directly killing prey (Sinclair and Pech 1996),

predators can also have sublethal, indirect effects, by affecting prey behaviour,

Gresser 1996).  Antipredator behaviour and animal decision-making under the risk of

predation have recently been studied extensively and may play a role in population

regulation (Lima and Dill 1990).  For example, odours of mammalian predators can

elicit behavioural changes in prey species that alter local distribution, diurnal

activity, mobility and intraspecific aggressiveness, and even suppress reproduction

Few studies, however, have dealt with environments with multiple predators,

preferring to describe antipredator behaviour toward a single predator (Lima 1992).

The combination of different predators may, however, have a synergistic effect on

decision-making in prey (Lima 1992).  Prey often are unable to avoid two predators

that appear simultaneously, as behavioural adaptations to avoid one predator may

not be effective in avoiding a second predator; this is predator facilitation (Charnov et

al. 1976, Kotler et al. 1992).  For example, in captivity two species of gerbil avoided

open microhabitats when exposed to owls and closed microhabitats when exposed to

snakes, but when exposed to both predators, gerbils foraged in the open (Kotler et al.

1992).  The gerbils received conflicting signals and were not able to simultaneously

forage effectively and remain safe.

Although the effects of increased predation risk on habitat use and foraging

behaviour have been demonstrated in small mammals, with resulting shifts in

habitat and diet, the sublethal effects of predators have rarely been shown to have

population level consequences (Hik 1995).  Recently, however, the hypothesis that a
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trade-off occurs between the avoidance of predators and gaining sufficient food

(which may lead to a decline in condition and fecundity), was tested in a controlled

field experiment in the Yukon in Canada (Hik 1995).  In this experiment, predator

numbers (lynx and coyote) and the food supply of their prey (snowshoe hares) were

manipulated (Hik 1995).  Predation was shown to be important in limiting the

densities of snowshoe hares, but other sublethal behavioural and physiological

effects associated with increased predation risk may have also played a role (Krebs et

al. 1995).  Hik (1995) argued that hares are able to assess predation risks in different

habitats and, during population declines, they restrict their activity to dense cover in

order to minimise their probability of getting killed; i.e

(PSF).  This results in a trade-off between reproduction (which requires good quality

food that is unavailable in dense cover) and survival.  The PSF hypothesis therefore

predicts that animals take greater risks to obtain more food when food is limiting,

and consequently increase their chance of getting killed.  This has gained further

support from studies of wildebeest in the Serengeti (Sinclair and Arcese 1995).

Intraguild predation.  Intraguild predation (IGP) is the killing and eating of

individuals of other species in the same guild that are potential competitors (Polis

and McCormick 1987).  A guild includes all taxa in a community that use similar

resources (food or space) and thus may compete, regardless of differences in tactics

of resource acquisition (Polis et al. 1989).  IGP may involve both species eating each

other or just one species preying on the other (Rosenheim et al. 1995).  IGP is

therefore a combination, potentially of both competition and predation, but differs

from classical predation as IGP occurs among species that are potential competitors.

It also differs from classical competition as species A receives an immediate energetic

gain from the consumption of species B, and need suffer minimal or zero detrimental

effect.  Although IGP and some types of interference competition appear to produce

similar patterns (Oksanen et al. 1979), interference mechanisms usually result in a

pattern of contiguous distribution with little spatial overlap.

IGP is proving increasingly to be important in shaping predator communities, but

until recently has received little attention (Frafjord et al.

Norrdahl 1989, review in Polis et al. 1989, Doncaster 1992, Mattson et al. 1992,

Rosenheim et al. 1995).  It is particularly prevalent among generalist predators and
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may also be important in regulating the abundance of certain species (Polis et al.

1989).  However, although numerous studies have demonstrated intraguild

predation (e.g. Storch et al. 1990), its relative importance in influencing population

dynamics is speculative (Litvaitis 1992, Lindstrom et al. 1995) and little experimental

confirmation of its effects has been found (Doncaster 1992).

1.2.4.  Disease and parasites

The importance of parasites and disease in influencing the distribution and

abundance of species at the population level (compared to the individual level) has

only relatively recently been identified (reviews in Anderson and May 1978, 1979).

Parasites, for example, can accentuate the decline of endangered species (Warner

1968).  Recent experimental and theoretical studies have also shown that parasites

play an important role in apparent competition (review in Hudson and Greenman

1998).  One competing species may remain superior simply by harbouring and

transmitting a pathogen to a more vulnerable species.  For example, grey squirrels

Sciurus carolinensis introduced to Britain carried a parapox virus that may have

reduced the competitive ability of endemic red quirrels S. vulgaris (Hudson and

Greenman 1998).  Similarly, the effects of rabies, imported by domestic dogs, have

reduced the competitive ability of some endangered canids, such as Ethiopian

wolves Canis simensis and wild dogs Lycaon pictus (Macdonald 1993, Pain 1997).

Apparent competition has also been demonstrated when an invading pathogen

reverses the outcome of exploitation competition.  When mixed cultures of two flour

beetle species were bred in the absence of a sporozoan parasite, one species

dominated (Park 1948, Anderson and May 1986).  However, when the parasite was

present, the reverse occurred.  This parasite reduced the competitive ability of the

dominant species, which allowed the inferior competitor to persist.  Similarly,

meningeal worms Parelaphostrongylus tenuis mediated competition between moose

Alces alces and white-tailed deer Odocoileus virginianus by influencing fluctuations in

moose populations (Price et al. 1988).  However, until recently, few studies of shared

pathogens have distinguished between apparent competition and exploitation

competition (Bonsall and Hassell 1997).
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Freeland (1983) argued that parasitism can allow the coexistence of similar species

and that it may be more important than competition in driving niche separation.

Sympatric species that have similar body sizes and morphologies may be able to

coexist because they have different parasite susceptibilities resulting from differences

in diet and phylogeny.  For example, differentiation of parasitic faunas has been

recorded in sympatric rodents in England (Sharpe 1964) and sympatric wolves and

coyotes in Alberta, Canada (Holmes and Podesta 1968).

Although the ability of macro-parasites to regulate population densities has been

demonstrated experimentally for some mammal species under laboratory conditions

(Keymer 1985, Singleton and Spratt 1986, Scott 1987), there is little evidence of similar

effects from field manipulations of parasite loads (Singleton et al. 1995).  For example,

in one of the first replicated field experiments to examine parasite-host interactions,

the parasitic nematode Capillaria hepatica failed to limit populations of house mice in

southeastern Queensland (Singleton et al. 1995).

1.2.5.  Facilitation

Facilitative interactions, where at least one species benefits from an association

without harming the other species, occur frequently in nature between terrestrial

vertebrates but are often overlooked (Dickman 1992a).  Facilitation may be

commensal (+, 0) where only one species benefits, or mutualistic (+, +) where both

species benefit.  In addition, the relationship may be facultative, where the species

benefiting is not dependent on the other species for survival, or obligatory e.g. fungi

and algae that comprise lichen, where one or both of the benefiting species are

dependent (Caughley and Sinclair 1994).  Obligatory associations, for example,

between fungi and algae, are more common in plants and invertebrates, while

associations between terrestrial vertebrates are generally not permanent and may last

only a few minutes.  Resource overlap is generally low compared to single species

associations, which presumably reduces competition (Dickman 1992a).

Benefits of mixed-species associations are diverse compared to conspecific

associations and include reduced parasite loads, reduced predation risk, and

increased access to food and other resources (review in Dickman 1992a).  For

example, food availability is enhanced through the flushing of prey by some groups
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of insectivorous birds (Perrins and Birkenhead 1983) and some bird species use other

species to locate food (Knight and Knight 1983).  Further, smaller bird species have

been shown to rely on larger species to open up tough integuments of carcasses

(Hewson 1981, Wallace and Temple 1987, Skagen et al. 1991).

Mixed species associations may result also in the creation of new habitat for smaller

species.  In Tanzania, elephants trample the high vegetation around lakes which

provides habitat for smaller herbivores, such as buffalo, which thereby increases the

number of species that can live in that habitat (Vesey-Fitzgerald 1960).  Similarly, on

the Isle of Rhum in Scotland, deer preferentially graze areas that have been used by

cattle (Gordon 1988).  The greater biomass of green grass in cattle-grazed areas

increases the reproductive rate of deer.

Shelters and nest sites constructed by one species are also used frequently by other

species.  Rats R. rattus and R. norvegicus and house mice have benefited by human

structures and occur at highest densities in urban and agricultural areas throughout

the world.  Similarly, foxes frequently use rabbit burrows as dens (Saunders et al.

1995).  Species that produce resources or structures that are used subsequently by

et al. 1994, 1997).

Facilitation has often been found to be the major mechanism in communities that

were previously thought to be dominated by interspecific competition (Dickman

1992a).  Although coyotes have been shown to avoid wolves in some areas in North

America (Fuller and Keith 1981, Carbyn 1982), they appeared to have a facilitative

relationship in Manitoba in Canada (Paquet 1991).  On 36 occasions, coyotes were

observed following wolves directly to wolf-killed ungulates.  All wolf kills examined

(n = 198) were scavenged by coyotes within 24 hours of abandonment by wolves.

Although evidence for facilitation has largely been descriptive, its existence is

certain.  However, experiments are required to determine the importance of

facilitation in shaping both population sizes of interacting species, and community

structure.
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1.3.  INTERACTIONS BETWEEN MAMMALIAN PREDATORS

1.3.1.  Mesopredator release

The observation that, in the absence of a dominant predator, smaller predators

undergo population explosions and thereby intensify predation on prey (i.e.

sensu et al. 1988) has long been recognised (Latham

1952, Emmons 1984).  Mesopredator release has been recorded in a range of systems

et al. 1988), grasslands (Vickery et al. 1992) and prairie

wetlands (Ball et al. 1995, Sovada et al. 1995), and in a variety of mammalian

et al. 1988, Estes 1996).  In North America, populations of

smaller predators (e.g. foxes Vulpes spp., skunks Mephitis spp., and domestic cats

Felis domesticus) increased after local or near extinctions of coyotes Canis latrans.

Their increase then led to the reduction or local extinction of some prey species such

et al. 1988, Estes 1996).  Similarly, Palomares et al. (1995)

suggested that increased predation on rabbits in southwestern Spain was due to an

increase in mongoose Herpestes ichneumon numbers following the removal of Iberian

lynx Felis pardina.

Further support for the hypothesis of mesopredator release comes from studies

reporting negative associations between sympatric carnivore species, although the

subsequent impact on prey populations was not measured.  In North America,

coyote numbers increased after declines in wolf Canis lupus populations (Dekker

1986).  Similarly, the abundance of bobcats Felis rufus (Litvaitis and Harrison 1989),

red foxes and swift foxes Vulpes velox increased following coyote control (Robinson

1961, Linhart and Robinson 1972, Sargeant et al. 1993).  In Scandinavia, densities of

pine martens Martes martes increased rapidly following a decline in red foxes (Storch

et al. 1990, Lindstrom et al. 1995).  In Australia, lower densities of red foxes have been

observed where dingoes are not controlled north of the Dingo Barrier Fence

(Newsome 1990), and foxes are often scarce or absent in areas with high densities of

dingoes (Jarman 1986, Catling and Burt 1995).  These negative associations indicate

that some carnivores may suppress populations of other species through interspecific

competition and/or intraguild predation.

1.3.2.  Interspecific competition
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Circumstantial evidence consistent with exploitation competition can be drawn from

studies that have demonstrated resource partitioning among ecologically similar

species.  For example, despite sharing the same staple prey, red foxes are able to

coexist with coyotes by exploiting different alternative prey and habitat types (Major

and Sherburne 1987, Theberge and Wedeles 1989).  Dietary partitioning has also been

recorded between sympatric bobcats and coyotes (Litvaitis 1981).  The Island fox

Urocyon littoralis and the island spotted skunk Spilogale gracilis amphiala are able to

coexist on Santa Cruz Island, despite overlapping home ranges, because they differ

in habitat use, diet and circadian activity (Crooks and van Vuren 1995).  In sympatry,

the South American gray fox Dusicyon griseus and culpeo fox D. culpaeus eat similar

foods but in different proportions (Johnson and Franklin 1994).  Five predator species

in the Serengeti occupy similar ecological niches but coexist by consuming different

sections of the same potential prey populations (Sinclair and Norton-Griffiths 1979).

In India, Asiatic wild dogs Cuon alpinus, leopards Panthera pardus and tigers Panthera

tigris coexist despite large overlaps in diet because of differences in sex and age of

prey species, and in spatio-temporal use of the habitat (Venkataraman 1995).

However, although resource partitioning has been documented widely, it is often

unclear whether the observed differences in resource use are a result of

independently evolved species-specific preferences, or the exclusion of the

subordinate species from optimal habitats by the dominant competitor via

interference (Dekker 1989, Johnson and Franklin 1994).

Interference competition has been inferred often from studies that have shown

spatial segregation between carnivores.  For example, in areas where coyotes and red

foxes are sympatric, foxes tend to occupy territories on the periphery or outside of

coyote territories (Voigt and Earle 1983, Major and Sherburne 1987, Sargeant et al.

1987, Harrison et al. 1989).  Interference competition has been supported by

observations of coyotes killing red foxes (Sargeant and Allen 1989, Gese et al. 1996).

Interference has also been inferred between coyotes and other fox species including

swift foxes V. velox (Scott-Brown et al. 1987) and gray foxes (Cypher 1993), and coyote

predation has been shown to be an important source of mortality for San Joaquin kit

foxes V. macrotis mutica (Cypher and Scrivner 1992, Ralls and White 1995, Cypher

and Spencer 1998).  Similarly, wolves kill coyotes and exclude them from preferred

habitat (Fuller and Keith 1981, Carbyn 1982).  In addition, stronger evidence for
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interference competition has come from studies where two carnivore species share

the same staple prey but the dominant carnivore exclusively occupies habitats where

the staple prey are more abundant (Theberge and Wedeles 1989).

Frequently, both types of competition have been inferred between ecologically

similar carnivore species.  Exploitation competition was suggested between coyotes

and San Joaquin kit foxes as they consume many of the same food items (Cypher et

al. 1994, White et al. 1995, Cypher and Spencer 1998), but this may be lessened by

coyotes killing kit foxes (Cypher and Scrivner 1992, Ralls and White 1995, Cypher

and Spencer 1998) via interference.  Cypher and Spencer (1998) suggested that kit

foxes can coexist with coyotes by using different behavioural strategies, such as year-

round use of dens to avoid agonistic encounters, and also resource partitioning and

expanded dietary breadth.  Similarly, mountain lions Felis concolor, bobcats Lynx

rufus and coyotes are sympatric throughout most of western North America

(Chapman and Feldhamer 1982).  Resource partitioning occurs in summer with

differences in the use of elevation, forest types and the density of terrain overstory

(Koehler and Hornocker 1991).  However, resource use in winter overlaps

significantly between the three predators when snow confines prey and predators to

lower elevations.  During this time, mountain lions were observed killing bobcats

and coyotes, while defending or usurping food caches.

1.3.3.  Intraguild predation

Direct predation between carnivore species may reduce interspecific competition for

resources and allow greater niche overlap (Polis et al. 1989).  In New Zealand, cats

kill and eat stoats, which may reduce exploitation competition given the large

overlap in diet of the two species (Fitzgerald and Karl 1979).  Similarly, in

Scandinavia, intraguild predation by red foxes, rather than exploitation competition,

was the most likely mechanism resulting in an increase in pine martens when foxes

declined (Storch et al. 1990, Lindstrom et al. 1995).  In North America, Canada lynx

Felis lynx have been observed killing and eating red foxes, particularly when

populations of their staple prey (snowshoe hare) crash (Stephenson et al. 1991,

Donoghue et al. 1995).  Similarly, coyotes, wolves and even lynxes Lynx canadensis,

kill lynxes during food shortages (Donoghue et al. 1995).
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1.3.4.  Other factors involved in carnivore interactions

Most studies investigating negative associations between carnivores have shown that

larger species usually displace smaller species (Linhart and Robinson 1972, Litvaitis

and Harrison 1989, Storch et al. 1990, Sargeant et al. 1993, Lindstrom et al. 1995).

However, the reverse can also occur when other factors are involved, such as human

interference and drought (Rau et al. 1985).  For example, the smaller and more

opportunistic coyote has replaced the larger and more specialised wolf in most of

North America as a consequence of increased habitat disturbance and wolf

eradication programs, rather than by interspecific competition (Rau et al. 1985).

Similarly, in Donana National Park in Spain, the smaller and more opportunistic red

fox has displaced the larger lynx Lynx pardina (Rau et al. 1985).  These latter authors

suggest that, until recently, the lynx controlled fox numbers by interference

competition and were themselves controlled by the availability of rabbits (Rau et al.

1985).  However, a persisting low density of rabbits may have caused a decrease in

lynx abundance and allowed a build up of fox numbers.  When rabbits increased

subsequently, recolonisation was difficult for the lynx, despite its larger size, because

of competition for space with the increased density of foxes.

Litvaitis and Villafuerte (1996) argued that landscape differences, rather than

intraguild predation or mesopredator release, were a more parsimonious explanation

for the increase in mongoose recorded by Palomares et al. (1995) when the larger lynx

declined in south-western Spain.  As human-altered landscapes increase, top

predators will become increasingly scarce and consequently, smaller predators will

increase because of the elevated foraging opportunities and efficiencies in a

heterogenous landscape, and not because larger predators are limiting them.

However, although some smaller predators will increase as a result of habitat

alteration (particularly food and habitat generalists), Palomares et al. (1996) argued

that the overall abundance of other smaller predators that are subject to intraguild

predation would also increase.  In addition, mongoose did not use patches used by

lynx that were in human-altered areas (Palomares et al. 1995, 1996).

1.4.  STUDY AIMS AND SCOPE OF THESIS
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The overall objective of this thesis is to describe the ecology of the feral cat in open

forest in New South Wales, and to elucidate factors that limit cat abundance.  Specific

aims are to:

1) describe the feeding ecology of cats in relation to prey abundance;

2) describe home range size, overlap and habitat use of cats;

3) examine dietary and spatial overlap between cats and foxes;

4) examine evidence for avoidance and aggression between cats and foxes;

5) test the hypothesis that foxes limit cat populations through interspecific

competition using a fox removal experiment.

In the preceding section I pointed out the damage that introduced species can cause,

and highlighted the need for experimental evidence for understanding factors that

contribute to the success of introduced species.  I then presented a number of

different mechanisms (competition, predation, disease/parasites, facilitation) that

can influence mammal populations and argued that there is a paucity of evidence for

population regulation in nature.  In Chapter 2, I describe the biology, introduction,

distribution and impacts of the feral cat in Australia.  I highlight the deficiencies in

current knowledge and the need for experimental studies for identifying factors that

limit cat abundance.  Following a description of the study area and general methods

in Chapter 3, I present information on the feeding ecology of feral cats in relation to

prey availability in Chapter 4.  In Chapter 5, I examine the home range size, overlap

and habitat use of cats.  I then examine the degree of overlap between cats and foxes

in diet and spatial use and examine any evidence for aggression or avoidance

behaviours in Chapter 6.  After identifying the fox as a potential limiting factor for

cats in Chapter 6, I experimentally test the hypothesis that foxes limit cats through

interspecific competition, using a fox removal experiment in Chapter 7.  In the

General Discussion (Chapter 8), I synthesize the results from all chapters and discuss

the most important findings for the ecology of cats and for factors that limit their

abundance at the study area.  Finally, I suggest the most likely interaction between

cats and foxes, and consider the management implications for feral cats.
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CHAPTER 2

THE FERAL CAT IN AUSTRALIA

2.1.  INTRODUCTION OF THE FERAL CAT TO AUSTRALIA

It is not known when cats first established in Australia, but it is generally accepted that they

arrived on the east coast in 1788 with the first European settlers (Rolls 1969, Baldwin 1980).

On the northwest coast, however, cats may have arrived much earlier, dispersing from Dutch

shipwrecks in the seventeenth century (Burbidge et al.1988), or even earlier, aboard

Indonesian trading vessels in the fifteenth century (Baldwin 1980).  An early arrival is

supported by surveys of Aboriginal people in central Australia which found that cats (a

favoured food item) were regarded as having always been present, or that they arrived very

early from the west (Burbidge et al.1988).  In addition, Aboriginal people from the Kimberley

region on the northwest coast regard the cat as a native species (Rolls 1969).  Evidence for the

early arrival of cats is currently being investigated using genetic techniques (McKay 1994).

Preliminary findings suggest that feral cats in Australia are more closely related to those in

Asia, than to those in Europe.

Despite the early arrival of cats in Australia their presence is not noted in reports and diaries

of explorers and overlanders until the 1890s (review in Dickman 1996).  This was probably

because they were in low numbers or patchily distributed prior to this time (Dickman 1996).

Alternatively, they may have been as difficult to detect then as they are now, at least in areas

without rabbits (e.g. Mahon et al. 1998).  Detailed fauna surveys in recent years have still

failed to detect feral cats (Burbidge and McKenzie 1978, Friend et al. 1991), despite their

presence being known from previous surveys (e.g. Miles and Burbidge 1975).

Regardless of the precise arrival date, feral cats were established successfully throughout the

continent in the 1850s (Rolls 1969).  In the 1880s, feral cat numbers increased in NSW as

they were intentionally released to hunt rabbits in response to the Rabbit Nuisance Bill 1883

(Mahood 1980).  For example, 400 cats were transported in cages by rail to Bourke for release

in 1886.  Prior to release, these cats were acclimatised in pens with food gradually being

diminished (Rolls 1969).  During this time, quolls Dasyurus spp. and wedge-tailed eagles

Aquila audax (also rabbit predators) were actively destroyed (Rolls 1969).
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2.2.  DISTRIBUTION AND DENSITY OF FERAL CATS

The domestic cat is the most widespread of all carnivore species, ranging from 550N to 550S

(Apps 1983, Konecny 1987).  In Australia, feral cats have successfully adapted to all habitat

types including alpine and urban areas, deserts and the tropics (Wilson et al. 1992) (Fig. 2.1).

In contrast to the situation in much of the Northern Hemisphere, feral cats are not forced to be

commensal during winter as temperatures are not as extreme and prey are available year

round (Newsome 1991).  Further, they can survive without water as long as they get sufficient

moisture from their prey (Lundie- Jenkins 1992) and have a high reproductive potential

(Jones and Coman 1982).

Feral cats also occur on at least 40 islands off the coast of Australia (Dickman 1992b), seven

off the coast of New Zealand (Veitch 1985) and around 40 elsewhere in the Pacific (King

1973, 1984).  Once introduced, populations expand quickly.  For example, five domestic cats

were introduced to Marion Island as pets in 1949 and by 1975 an estimated 2139 feral cats

were killing 450,000 burrowing petrels (Procellariidae) each year (van Aarde 1979, 1984).

Although the total population of feral cats in Australia is not known, it is estimated to be

between 3.8 and 18.4 million (Cross 1990, Potter 1991).  Few reliable population estimates

are available, as the cryptic and nocturnal habits of cats make them difficult to detect (e.g.

Mahon et al. 1998) and they are of little economic importance.  In addition, comparisons of

estimates between studies are often hampered because of differences in methodology, season

when estimates were made, and state borders (see Fig. 2.1).  Seasonal variation in cat

abundance has been recorded in a number of studies (e.g. van Aarde 1978) with higher

numbers usually recorded in summer after the recruitment of young (Jones and Coman 1982).
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Nevertheless, crude estimates indicate that densities of feral cats are lower in the tropics,

alpine and sub-alpine areas (Newsome and Catling 1979, Gordon 1991, Bubela 1995, review

in Dickman 1996, Banks 1997), which may be related to zero or low densities of rabbits.  In

arid environments, numbers tend to be highly variable, presumably reflecting the influence of

unpredictable environmental conditions on prey species (Dickman 1996).  Cats are more often

sighted around urban settlements and some temperate and semi-arid regions in eastern

Australia (Wilson et al. 1992) (Fig. 2.1).  However, observer bias in open habitats and around

heavily populated areas may influence the frequency of sightings.

Density estimates range from 0.14 to 6 cats km2 in temperate and semi-arid habitats but are

generally around 1-2 km2 or less on the mainland (review in Dickman 1996).  On offshore

islands where food is abundant, densities can reach 20-30 cats km2 such as on Althorpe Island

in South Australia, or up to 100 cats km2 on North West Island in Queensland (Domm and

Messersmith 1990).  In general, cats are more abundant in open habitats in inland

environments compared to closed forest and wet heath habitats in temperate or tropical areas

(review in Dickman 1996).

No reliable technique is currently available for the estimation of cat densities as individuals

are secretive and distributions are often clumped around food sources (e.g. rubbish dumps) in

urban and semi-urban areas.  Conversions from observed or actual numbers to estimates of

real numbers are then difficult as the degree of clumping is site-specific.  Methods for

determining the abundance of cats remain elementary (Mahon et al. 1998, Molsher et al.

1999), and yet are critical when evaluating impacts on native fauna.

2.3.  IMPACTS OF FERAL CATS

The predatory impact of feral cats on native fauna has long been recognised (Gould 1863) and

more recently, their role in disease transmission (Obendorf and Munday 1990, Dickman

1993) and potential competitive effects (Cross 1990) have also been identified.

2.3.1. Predatory impacts

Cats have been implicated in the decline and extinction of numerous native mammal species

in Australia on both a local and regional scale (review in Dickman 1996).  On Australian

offshore islands alone, cats have contributed to the local extinction of 25 mammal species and

were considered the only known potential threat for 15 of these species (review in Dickman

1996).  In western New South Wales, cat predation has been implicated in regional declines

of both mammals and birds and in regional extinctions of up to 10 species of native mammals
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prior to 1857 (Dickman et al.

Xenicus

lyalli (n = about 22) in 1894 (Atkinson and Bell 1973, King 1984).

Declines and extinctions such as these have led to feral cat predation being listed as a key

threatening process for native fauna in Australia under the Endangered Species Protection Act

1992.  However, experimental evidence for the impact of cats on native fauna is lacking.  This

is largely because declines in prey species have been often observed but not quantified, and

interactions with other factors (e.g. habitat change and other introduced animals) are often

involved.  Further, cats are not regarded as an agricultural pest (Coman 1978) and

consequently have ranked low on the order of priorities for research funding.  Nevertheless,

strong inferences can be made from historical evidence, anecdotal observations, island case

histories and studies of reintroduction programs.

Historical information indicates that extinctions of native fauna occurred shortly after

European settlement (Dickman 1996).  The feral cat was the only obvious threat to native

fauna during the first half of the nineteenth century, as the pastoral industry was not yet

established, and foxes and rabbits had not been introduced (Dickman 1996, Rolls 1969).

Although it is not known whether cats occurred in all localities and periods that experienced

declines (Dickman 1996), all mammals extinct prior to 1900 weighed ≤ 200 g, which is the

preferred prey size for feral cats (review in Dickman 1996).  In addition, most were ground-

dwelling species that occupied open habitats (Dickman et al. 1993) making them more

vulnerable to cat predation (Dickman 1992c).

Although cats generally kill prey only up to their own body weight (Leyhausen 1979),

populations of much larger prey species are also vulnerable to cat predation when juveniles

are preyed upon, e.g. the common brushtail possum (4 kg) Trichosurus vulpecula (Fitzgerald

and Karl 1979), bridled nailtail wallaby (4.5 kg) Onychogalea fraenata (Horsup and Evans

1993), and the allied rock wallaby (4 kg) Petrogale assimilis (Spencer 1991).  Where

antipredator behaviours are lacking, as on some islands, larger species may also become rare

or extinct e.g. various species of petrel (Fitzgerald and Veitch 1985), frigate birds Fregata

spp., flightless cormorants Phalacrocorax spp., pelicans Pelecanus spp. (Konecny 1987) and

Kakapo parrots Strigops habroptilus (Cresswell 1996).  However, most population impacts

have been on small and medium-sized mammals and birds, with impacts on reptiles,

amphibians and fish being rarely recorded.
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Evidence from dietary studies shows that feral cats prey on vulnerable and endangered

mammals, such as the rufous hare-wallaby Lagorchestes hirsutus (Johnson 1991), numbat

Myrmecobius fasciatus (Kinnear 1991) and the eastern barred bandicoot Perameles gunnii

(Seebeck et al.1991).

Prey selection and individual variation in prey preference by cats (Leyhausen 1979, Konecny

1987, Gibson et al. 1994) may also threaten prey populations, particularly those in low

numbers (Newsome 1990).  For example, reintroduced rufous hare-wallabies persisted for

some time in the Tanami Desert of the Northern Territory with cats before killings began

(Lundie-Jenkins et al. 1993).  Specific cats were thought responsible, as killings ceased after

the removal of four individuals (Gibson et al. 1994).  In addition, cats often select the young

of a species (Jones 1977, Fitzgerald and Karl 1979, Childs 1986, Horsup and Evans 1993),

which has the potential to have a major impact on isolated colonies (e.g. Spencer 1991).  In

tropical Queensland, one individual feral cat was known to have killed five juvenile allied

rock-wallabies Petrogale assimilis out of a total juvenile population of 11.  Wallaby numbers

declined from 83 to 26 in 4 years, although drought was also implicated.

Further evidence for the impact of cats on native fauna comes from changes in island fauna

after introductions and removals of cats.  For example, on Little Barrier Island in New

Zealand, the stitchbird Notiomystis cincta increased over six fold from less than 500

individuals to 3000 in just a few years following the removal of cats in the early 1980s

(Griffin et al.1988).  Similarly, cats were introduced to St Francis Island in South Australia to

control the abundant brush-tailed bettong (B. penicillata) in the late 1800s, and by the early

1900s the bettong was extinct (Jones 1924).  Although other factors may have hastened this

process (e.g. clearing of vegetation), cats were considered to be the major cause.

Reintroduction programs also provide evidence for the impact of cats.  In some programs, cat

predation has been indicated from the analysis of radio collars from dead animals.  In other

programs initial failure has been turned to success after the removal of cats.  These programs

indicate that cats were the major cause of failure for some reintroduced species, including the

golden bandicoot Isoodon auratus (Christensen and Burrows 1995), burrowing bettong

Bettongia lesueur (Short and Turner 1993, Christensen and Burrows 1995) and the rufous

hare-wallaby Lagorchestes hirsutus (Gibson et al. 1994).  Further, cats have been implicated

along with other factors (e.g. habitat change and predation by foxes, dingoes, raptors and

goannas), in the failure of a number of other reintroductions including the brushtailed

phascogale Phascogale tapoatafa (Soderquist 1995), numbat Myrmecobius fasciatus (Kinnear

1991) and numerous macropod species (Short et al. 1992).  Although feral cats may not have
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been the cause of the local extinction in the first place, as habitat change and anti-predator

behaviours may have been site-specific (Dickman 1996), they clearly can prevent the re-

establishment of native fauna.

There are anomalies, however, where cats have coexisted with apparently quite stable

populations.  For example, while the golden bandicoot disappeared quickly after the

introduction of cats to Hermite Island, the ecologically similar southern brown bandicoot

Isoodon obesulus persisted with cats on both Francis Island and Kangaroo Island (Dickman

1996).  Similarly, the reintroduced golden bandicoot persisted for a time with cats in the

Gibson Desert, while the ecologically similar reintroduced burrowing bettong Bettongia

lesueur was highly vulnerable to cat predation (Christensen and Burrows 1995).  Differences

in biological and behavioural traits were considered to be the most likely cause for the

differences between the bandicoots and bettongs in vulnerability to cat predation (Christensen

and Burrows 1995).  Burrowing bettongs are gregarious, slow moving and leave the warren

systems (their only refugia) at dusk each night to travel on a set route to feed.  In contrast, the

bandicoots are nomadic, solitary, use spinifex clumps as shelter and are never far from refugia

even when in the open (Christensen and Burrows 1995).  Similarly, cats are thought to have a

significant impact on the endangered bridled nailtail wallaby, which is a solitary species that

responds to danger by lying flat and motionless (Horsup and Evans 1993). A complete

evaluation of behavioural and biological attributes (e.g. body weight, fecundity, habitat use

and mobility) of endangered native fauna, and their relative susceptibility to cat predation is

described in Dickman (1996).  However, while behavioural differences can account for some

of this variation in the persistence of native fauna, other factors such as abundant alternative

prey and habitat degradation, are also clearly important.

native fauna experiences abnormally high predation after the rabbit population crashes and

predators shift to alternative prey (Smith and Quin 1996).  This was illustrated on Macquarie

Island where the endemic ground-nesting parakeet Cyanoramphus novaezelandiae erythrotis

coexisted with cats in quite high numbers for at least 60 years between 1810 and 1880 until

the introduction of rabbits (Taylor 1979).  Predation then intensified as cat numbers increased,

and the parakeet rapidly disappeared between 1881 and 1890.  Hyperpredation by feral cats

has also been suggested as the principal cause of decline in conilurine rodents in Australia

(Smith and Quin 1996).
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Fragmented forest systems also increase impacts of predators when native species are

restricted to remnant vegetation (e.g. Dickman 1996).  In Tasmania, for example, where

habitats are largely intact (and foxes and rabbits are not present), no native mammals (except

the Thylacine) have gone extinct since European settlement.  Similarly, native mammals have

persisted with cats in tropical Australia and Kangaroo Island for at least a century with few

species becoming extinct and none that appear related to cat predation.  Intact habitats clearly

provide important refugia for native fauna.

Despite the lack of empirical evidence for the negative impacts of cats on native fauna

(Wilson et al. 1992), the consistency of increases in prey species after cat removals provides

strong evidence for the predatory impact of feral cats.  Two controlled field removal

experiments that are currently underway investigating the effect of cat predation on native

fauna (Risbey and Calver 1998, C. Dickman and P. Mahon unpublished data) will provide

valuable and much needed information.

Although most impacts of feral cats in Australia have caused declines and extinctions of

native fauna, cat predation can also affect native fauna in other ways, such as evolutionary

trends (Stone et al. 1994).  For example, wariness and smaller body size in lava lizards

(Tropidurus spp) tends to be correlated with cat presence in the Galapagos archipelago (Grant

1975, Kramer 1984, Stone et al. 1994).

2.3.2.  Competitive impacts

Although feral cats have a high potential to compete with native fauna, e.g. quolls, raptors and

lace monitor lizards (Brooker 1977, Caughley 1980, Weavers 1989, Cross 1990), where

resource requirements are similar, no conclusive competitive relationship has yet been

demonstrated (Dickman and Read 1992).

Quolls (Dasyurus spp.) are probably the most ecologically similar native species to feral cats

and consequently have the greatest potential for competition (e.g. Edgar 1983).  They are

sympatric in forest and woodland habitats in eastern, western and northern parts of the

continent (Godsell 1982, Serena and Soderquist 1989, Serena et al. 1991).  Cats eat similar

prey to all four quoll species which are active hunters, preying on small mammals, birds,

lizards, frogs, invertebrates and plant matter (Belcher 1995).  The spotted-tailed quoll D.

maculatus and western quoll D. geoffroii are, however, the most carnivorous (Belcher 1995,

Soderquist and Serena 1994).  The western quoll and eastern quoll D. viverrinus also have

similar den and habitat requirements to feral cats (Godsell 1982, Serena and Soderquist 1989,

Serena et al. 1991).  Declines in the spotted-tailed quoll and eastern quoll were recorded on
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the mainland soon after the release of cats (Rolls 1969) and feral cats were suspected to be the

major factor in the decline of the spotted-tailed quoll on King Island (Courtney 1963).

However, human predation and habitat alteration were also implicated in these declines.

Predatory birds (e.g. owls, kites, hawks, eagles and falcons) and large lizards, (e.g. goannas)

may also compete with feral cats given their similar diets (review in Dickman 1996, Weavers

1989).  For example, on Marion Island, the sub-Antarctic skua Catharacta lonnbergi

(territorial bird), declined in numbers after cats reduced their staple prey, the burrowing petrel

(Procellariidae) (Hunter 1990).  Further competitive interactions may occur between feral cats

and other native fauna, such as possums, gliders and bats, which occupy similar shelter sites

(e.g. hollow trees).

2.3.3.  Disease transmission

Indirect effects of cats may occur via the transmission of disease, parasites or pathogens to

native fauna.  Cats are definitive (or final) hosts for two pathogens that can produce severe

clinical signs and death in a wide range of native species (Dubey 1986), although their impact

at the population level is not known.

The first of these is the helminth parasite Spirometra erinacei, which is carried by feral cats in

eastern Australia (Coman et al. 1981) and which also infects foxes and dingoes (Coman

1973a).  It can cause muscular haemorrhage, damage to soft tissues and potentially death in

native animals (Munday 1988).  The second pathogen is the protozoan Toxoplasma gondii,

which causes toxoplasmosis.  Cats are the only definitive host for T. gondii, while humans,

native mammals, birds and livestock act as secondary hosts (Dubey 1986, Mahood 1980,

Obendorf and Munday 1990).  Symptoms include lethargy, poor coordination, blindness and

sometimes death, and have been recorded in at least 20 species of native mammals (Moodie

1995).  Toxoplasmosis can also cause abortions in humans (Frenkel 1973) and in sheep and

goats (Callow 1984).  It has been postulated that an apparent decline in native mammals prior

to 1770 was due to toxoplasmosis that had been introduced by cats (McKay 1994).  Although

toxoplasmosis has also long been suggested as the major cause for the decline of several

larger carnivorous marsupials around the turn of the century (Caughley 1980), there is no

evidence that it has caused past extinctions.

Further, cats transmit sarcosporidiosis, a disease that affects sheep and consequently the meat

industry (Dubey and Miller 1986, Langham and Charleston 1990).  Cats can also act as

important host species for rabies (Page et al. 1992).
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2. 4.  WHAT LIMITS FERAL CAT POPULATIONS?

Factors that limit feral cat populations have not been evaluated experimentally in Australia or

elsewhere.  However, interactions with other predators and declines in food availability have

been suggested as the major limiting factors (Jones 1977, Dickman 1996).  Other factors that

may limit feral cat populations include high kitten mortality, lack of shelter, cannibalism,

disease and parasitism.

2.4.1.  Interactions with other predators

Increases in feral cat populations have been reported after the removal of foxes in a number of

areas in Western Australia (Christensen and Burrows 1995, Short et al. 1995, Risbey and

Calver 1998, P. deTores pers. comm.), and after the removal of dingoes in the Diamantina

region (Pettigrew 1993) and Tanami desert (Lundie-Jenkins et al. 1993).  At Shark Bay in

WA, increases in cat numbers following fox removal were postulated to be the result of

reduced predation and competition (Risbey and Calver 1998).

Foxes are known to eat cats (Coman 1973b, Brunner et al. 1991, Taylor and Lupica 1998, D.

Risbey pers. comm., R. Paltridge pers. comm.) but they are eaten more frequently by dingoes,

although in low numbers (Newsome et al. 1983b, Lundie-Jenkins 1992, Pettigrew 1993,

Corbett 1995).  Cat remains have also been recorded in the diet of other predators, including

the lace monitor lizard Varanus varius (Weavers 1989), (presumably scavenged) and the

wedge-tailed eagle Aquila audax (mostly juvenile cats) (Brooker and Ridpath 1980).

Feral cats and foxes may also compete when resources are limited.  In Australia, these

predators are sympatric over much of their range (e.g. Bayly 1978, Newsome and Catling

1979, Triggs et al. 1984, Catling 1988, Newsome et al 1989, Catling and Burt 1995) and

occupy similar ecological niches.   They are both opportunistic predators (Van Aarde 1980,

Jones and Coman 1981, Apps 1983) and have a large overlap in diet (Triggs et al. 1984,

Catling 1988).  In addition, the abundance of feral cats tends to be correlated negatively with

foxes in southern NSW (Catling and Burt 1995).  However, the competitive or predatory

relationship between feral cats and other introduced predators is as yet untested.

2 4.2.  Food availability

A decline in food availability (particularly rabbits) has been suggested as the major limiting

factor for feral cat populations in some studies (Jones 1977, Jones and Coman 1982).  For

example, a numerical response by cats to changing rabbit densities (3-4 month lag) was

indicated in semi-arid NSW (Pech et al. 1992).  Further, more cat deaths occurred on
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Macquarie Island in winter when the availability of subadult rabbits declined, compared to

other seasons (Jones 1977).  Feral cats show a clear preference for subadult rabbits (Jones

1977, Fitzgerald and Karl 1979, Liberg 1984a, Catling 1988) and are not well adapted to

hunting adult rabbits (Parer 1977, Gibb et al. 1978, Corbett 1979).  In winter, when the

availability of subadult rabbits is generally low (Jones 1977, Fitzgerald and Karl 1979,

Catling 1988), very old, sick or juvenile cats may be unable to catch the larger adult rabbits

(Jones 1977).  In addition, juvenile cats have been observed starving when adult rabbits were

abundant (Coman 1991).

2.4.3.  Other factors

Feral cats also appear to suffer a high mortality rate (Coman 1991).  Despite the high

reproductive potential of cats (two litters per year, mean litter size 4.4, and sexual maturity at

12 months) (Jones and Coman 1982), feral cat populations often show a slow recovery rate

when removed from an area (Coman 1991).  For example, 21 cats were culled from an area in

Victoria but three years later, when the same culling procedures were applied, only one cat

was culled (Coman 1991).  Similarly, little recruitment was recorded in cats after their

experimental removal in semi-arid NSW, while the replacement of foxes was rapid in the

second year (Newsome et al. 1989).

High kitten mortality.  Disproportionately high mortality rates among subadult cats, compared

to adults, have been recorded in some studies (e.g. Brothers et al. 1985, Mirmovitch 1995)

and are thought to be the result of nutritional stress and disease (van Aarde 1984).  For

example, mortality rates of 42% for neonatal and pre-weaning and 37.9% for yearlings (4-12

months age) were estimated for the cat population on Marion Island (van Aarde 1984).  This

suggests an overall mortality rate of 79.9% in the first year of life.  Similarly, less than 43%

of young feral cats born on Macquarie Island survived to an age of six months (Brothers et al.

1985).

Subadult cats appear to be susceptible to nutritional stress more than adults (Jones 1977,

Coman 1991), particularly during autumn and winter when the availability of suitable prey

(e.g. juvenile rabbits, lizards and grasshoppers) is low (Jones 1977, Coman 1991).  In support

of this, adult cats on Macquarie Island were generally in good condition in winter, while the

condition of juveniles was highly variable (Jones 1977).  Further, adult cat abundance

remained relatively stable in the Victorian Mallee, while large fluctuations were recorded in

subadult numbers (Jones and Coman 1982).
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Heavy kitten mortality from infectious diseases has also been recorded in a number of studies

(Dards 1978, Oppenheimer 1980, Izawa et al. 1982).  Upper respiratory tract infections are

particularly prevalent and highly contagious in cats (Apps 1983).  Symptoms include nasal

congestion, running eyes, ulceration of the mouth, loss of appetite and general lethargy, which

Shelter.  In urban areas, cats appear to be more dependent on the availability of shelter than

food (Calhoon and Haspel 1989).  However, there is no evidence that shelter is a limiting

resource elsewhere.  Cats often use rabbit warrens, trees, logs, rock piles for dens (Calaby

1951, Mahood 1980), which are unlikely to be in limited supply in most parts of Australia.

Cannibalism.  Maternal cannibalism, and cannibalism by scavenging during periods of food

shortage, have been reported in a number of studies of cat populations (Hubbs 1951, Jones

1977, Jones and Coman 1981).  However, its importance as a population limiting mechanism

is not known.

Parasitism.  Investigation of the parasite loads of adult feral cats in Victoria and NSW

indicates that parasitism is not a limiting factor for feral cat populations (Coman et al. 1981).

No correlation was found between the degree of parasitism and body condition of cats.

However, parasitism in young cats was not investigated (Coman et al. 1981).  This lack of

severe parasitism may be due to the low population densities of feral cats and to their largely

solitary nature.  Detailed parasitic studies of feral cats are reviewed in Moodie (1995).
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CHAPTER 3

STUDY AREA AND GENERAL METHODS

3.1. DESCRIPTION OF STUDY AREA

3.1.1.  Topography

Research was carried out on the eastern shore of Lake Burrendong (Fig. 3.1a), located on the

Macquarie River about 32 km upstream of Wellington in central-eastern New South Wales

(32o  o

of sheep Ovis aries and cattle Bos taurus (Fig. 3.1b).  The study area encompasses about 90

km2 of hilly, undulating slopes extending down to a flat foreshore area which has been

extensively cleared of trees for grazing.

3.1.2.  Vegetation

The foreshores are dominated by perennial grasses including red grass Bothriochloa macra,

Danthonia sp. and Stipa sp.  Other species common in the pastures include burr medic

Medicago polymorpha, small woolly burr medic M. minima, narrow-leaf clover Trifolium

angustifolium and stinking and weeping love grasses Eragrostis spp.  The rugged higher

country is generally heavily timbered and dominated by white box Eucalyptus albens and

yellow box E. melliodora associations, with stands of cyprus pines Callitris spp. also being

common.  The understorey comprises shrubs, herbs and coarse grasses.  The most common

understorey species is the Daisy-bush (Olearia sp.) with Nodding blue-lily Stypandra glauca,

Western golden wattle Acacia decora and Hill wattle A. buxifolia distributed patchily

throughout the area.  Between the higher country and the foreshore areas are open woodland

areas with scattered trees and little understorey.  Ground cover in these areas is generally

sparse, comprising isolated bushes and fallen timber.  Weeds are prevalent and include

blackberry Rubus fruticosus, sweet briar Rosa rubiginosa, tree of heaven Ailanthus altissima

and prickly pear Opuntia stricta.
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3.1.3.  Mammal fauna

Feral cats Felis catus and red foxes Vulpes vulpes are established throughout the study area

and the European rabbit Oryctolagus cuniculus was abundant until the arrival of Rabbit

Calicivirus Disease (RCD) in June 1996 (Saunders et al. 1998, A. Newsome unpublished

data).  Other common introduced species include the pig Sus scrofa, house mouse Mus

domesticus and black rat Rattus rattus.  Native mammal species seen regularly include the

eastern grey kangaroo Macropus giganteus, euro Macropus robustus, swamp wallaby

Wallabia bicolor, and common brushtail possum Trichosurus vulpecula.

3.1.4.  Climate

The area is characterised by mild to cool winters (2-15 o C) and warm to hot summers (14-33 o

C) with an average annual rainfall of 614 mm.  Drought conditions prevailed in the region

from March 1994 to December 1995 (Fig. 3.2).  During this period, the cumulative deviation

of monthly rainfall was generally below the long-term monthly average (46 years) (after

Foley 1957).  It was considered that this period reflected suboptimal environmental conditions

for the area.

Fig. 3.2.  Cumulative deviation of monthly rainfall for the Burrendong region 
showing "drought" conditions in 1994 and 1995.
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3.2.  WHY BURRENDONG WAS SELECTED FOR THE STUDY

The Lake Burrendong area was selected for this study because it contained a high density

population of foxes, and feral cats were also present.  In addition, the land is typical of much

of the grazed country of the western slopes of the Great Dividing Range in eastern Australia,

so that results should have wider relevance.  Furthermore, the site was large enough to

successfully carry out an experimental removal of foxes, it had numerous high points for

radiotracking, and minimum interference from the public.

3.3.  STUDY SITES

Four sites were established on the eastern shore of Lake Burrendong in July 1994: Dog Trap

(DT); Gunnel Creek (GC); Devils Hole (DH); and Harrys Creek (HC) (Fig. 3.3).  Sites ranged

in size from 10 km2 at GC to 14 km2 at DT, 16 km2 at DH and 19 km2 at HC.  Two sites (DT

and GC) were subject to a fox removal experiment in October 1995 (Chapter 7).

3.4.  GENERAL METHODS

This section describes general methods that apply to more than one chapter.

3.4.1.  Scat collection and prey identification

Cat and fox scats were collected on random walks throughout the study area in most months

from July 1994 to June 1997.  Scats were distinguished between cat and fox by size, shape,

colour, texture and odour (Triggs 1996).  Scats that could not be identified positively were

excluded from the analysis.  Groups of scats were examined individually.  Scats were air-

dried and stored individually in plastic bags with location, habitat, date and scat description

recorded.  Fox scats were baked in an oven at 80 o C for 24 hours to kill parasites (Brunner

and Wallis 1986).  To separate the food items, all scats were soaked in 70% ethanol for 24

hours and rinsed through a fine sieve with hot water.
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Mammalian prey remains were identified from microscopic analysis of hairs using cross

section and whole mount techniques (Brunner and Coman 1974).  The age of ingested rabbits

was determined by measurements of claws and classified as adult or subadult by comparison

to a reference collection of entire rabbits from the study area.  Rabbits weighing ≤ 800 g were

considered subadult; claws of these animals were < 8 mm long.  If blowfly larvae were

present in scats, the contents were classified as carrion.  Kangaroo, sheep and cattle remains

were also classified as carrion, irrespective of the presence of blowfly larvae.  Carrion

remains could not be aged as few identifiable skeletal parts were found in the scats.  Non-

mammalian food items were identified by comparison to reference collections and reference

books (Cogger 1994, Zborowski and Storey 1995).

The percentage volume of each food item was estimated visually and the mean percentage

volume and percentage occurrence calculated for each monthly sample of scats.  Percentage

volume was defined as the proportion of the total volume of a scat that was occupied by a

particular food item, while percentage occurrence was defined as the proportion of scats in a

sample that contained a particular food item (Reynolds and Aebischer 1991).  As some scats

contained more than one food type, the sum of the percentage occurrences could exceed

100%.  Both methods were used to reduce the limitations imposed by each single method

(Reynolds and Aebischer 1991).  The accuracy of the visual estimate of percentage volume

was determined by the following method.  The contents of each scat (n = 10) were sorted into

food groups (mammal, bird, reptile, invertebrate and vegetation) in a petri dish.  A grid was

placed under the dish and the numbers of squares comprising each food group were counted.

The percentage volume of each food group in every scat was then estimated visually.  The

visual estimates and the grid method were compared using a paired t-test, where each food

group was tested separately.  The percentages were transformed using the arcsine

transformation so that the data approximated a normal distribution (Zar 1984).  Visual

estimates were considered reliable as they were not significantly different from the

quantitative method for assessing diet (P > 0.05).  All prey identifications were conducted by

the same person (R. Molsher) to reduce inconsistencies due to observer bias.

3.4.2.  Abundance indices for foxes, cats and rabbits

Abundance estimates (animals km-1) were obtained by two other VBCRC projects (A.

Newsome unpublished data, J. McIlroy unpublished data) using spotlight counts.  Counts

were conducted before (July 1994 to September 1995) and after fox removal (October 1995 to

August 1998) using a 100 W spotlight from the top of a vehicle travelling < 10 km/h.

Replicate spotlight counts, over three consecutive nights, were conducted after July 1995 in



Chapter 4: Feeding ecology of cats  51

each month at DT, GC, and DH.  At HC, spotlight counts were conducted at three-monthly

intervals for three consecutive nights over the entire period.  Moonlit, windy and rainy nights

were avoided to reduce weather-related variability in counts (Williams et al. 1995) and biases

due to inactivity of the species (Kolb 1992).  Transects followed the main access roads that

traversed each site, with length varying from 5.6 km at DT to 5.0 km at GC, 5.3 km at HC,

and 7 km at DH.

3.4.3.  Capture and handling of feral cats

Detailed trapping procedures are described in Appendix 1.  Feral cats were trapped using both

wire mesh cage traps (40 cm by 40 cm by 60 cm) and Victor Soft Catch leg-hold traps (Nos.

1, 1.5 and 3, Woodstream, Corp., Lititz, Pa., USA) (Figs. 3. 4a and b).  Leg-hold trap jaws

were padded with rubber to minimise injury.  Traps were set in a variety of habitats, including

under bushes, beside vehicle tracks, on animal runways and at rabbit warrens.  Trap sites were

chosen carefully to minimise capture of non-target species. Traps were checked each morning

from first light, left set and checked again in the afternoon during unfavourable weather.  A

total of 77 cats (48 recaptures) were caught in 6762 trap nights from November 1994 to

August 1996.  A further 18 individual cats were trapped as non-target animals by the VBCRC

Fox Sterility Project.

Trapped cats were anaesthetised with Ketamine (22mg/kg) and Rompun (1.1mg/kg Xylazine)

The anaesthetised cat was weighed, sexed, aged and detailed body measurements recorded

(Appendix 1).  Adult cats were fitted with SIRTRACK and AVM two-stage radio transmitters

that were encased in epoxy resin and attached to a leather collar with a 22 cm vertical whip

aerial.  Adult cats were
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also fitted with sheep swivel eartags (34 mm by 10 mm, diameter 5 mm, weight 1.8 g).  Male

cats were tagged in the left ear and females in the right.  Both eartags and transmitters were

daylight and by spotlight at night.

Radio transmitters were powered by AA lithium cells (40 pulses per minute with an 18 ms

The radio transmitters operated on the 216 MHz and 150-151 MHz bands with at least a 20

kHz spacing.  Transmitters had an expected life of 31 months, but operational life varied

greatly with few remaining functional after 15 months.  Ten radio transmitters stopped

functioning within one month of fitting.  The average range of the transmitters was 1 km

under line-of-sight conditions from elevated positions.  Radiocollared animals were located

with a hand-held three-element Yagi aerial and an AVM AR8000 receiver.  At least 24 hours

was allowed between trapping and initiation of radiotracking to avoid possible bias caused by

trapping and handling.

3.4.4.  Radiotracking

technique for providing data on location, movement and behaviour of mammalian species

(Harris et al. 1990).  Radiotracking data can be used for determining home range size,

patterns of activity, foraging behaviour, nest sites, habitat selection and dispersal movements.

The two main techniques for estimating locations of animals are 1) radio-assisted

surveillance, where radiotracking is used to simply locate the animal and direct behavioural

observations are then made, and 2) remote radiotelemetry, where location bearings are taken

from mobile or fixed tracking stations (White and Garrott 1990).  Radio-assisted surveillance

yields very accurate data but is very time consuming and not appropriate when numerous

fixes are to be obtained on a number of animals over a short period of time.  Remote

radiotelemetry, however, allows a large quantity of location fixes to be obtained which are

suitable for range analysis.  Fixed tracking stations give a high degree of precision and are

justified in terms of expense if the study is lengthy, while hand-held receiving stations give

greater mobility and flexibility to move over a large area and remain close to the animals

being monitored.  In this study, remote radiotelemetry from mobile tracking stations (i.e. R.

Molsher) was used to obtain triangulated location bearings for range analysis of cats.  Fixed

tracking stations were used to obtain locations on foxes (J. McIlroy and G. Saunders,

unpublished data).
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Triangulation.  Triangulation was used to estimate the locations of the transmitters.  This

involves taking two or more directional bearings from known locations that are remote from

the transmitter (White and Garrott 1990).  Bearings were taken from locations situated at least

200 m apart and were usually in areas that had a clear line-of-sight.  All location bearings

were estimated using a hand-held SILVA system sighting compass pointed in the direction of

the strongest signal of the radio transmitter.  At least three bearings were taken where possible

to reduce errors associated with signal bounce (White and Garrott 1990).  Each bearing was

given a code from 1-5, which represented the confidence of the observer in the obtained

bearing.  A code of 1 was given when the observer was very confident of the bearing and the

animal was sighted, while a code of 5 indicated that the bearing was doubtful.  Locations were

estimated from the bearings using Program LOCATE (Nams 1990).  Bearings with a code ≥ 3

were excluded from location estimates when they distorted location estimates (determined

visually), while bearings with a code < 3 were not excluded regardless of their congruence

with the other bearings.

Homing-in on the animal.  This method was used to locate animals to determine dens and rest

sites and to confirm that they were alive.  This non-triangulation method involves following

the line of increasing signal strength until the focal animal is sighted.  Direct observations are

technique was not used for home range determination in this study.

Fox spatial use.  The home range data were obtained for foxes by the VBCRC Fox sterility

project (J. McIlroy and G. Saunders, unpublished data) between June and December in both

1995 and 1996.  Simultaneous bearings were taken from three to four fixed radio towers every

hour for six hours beginning one hour after sunset.  Six locations were obtained for each fox

on each of eight nights every month.  Radio towers were located at elevated positions and

comprised a standard aluminium shed with a 6 m high aerial.  Each tower consisted of two

five element 150 MHz yagi antennae with 7 m of coaxial cable and matching baluns.

Locations of foxes were estimated on LOCATE using triangulation techniques.  Mean bearing

error estimated from fixed transmitters (n = 282) was 3.560 ± 0.25 s. e. at a mean distance of

4.94 km.
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Coordinate system.  The Universal Transverse Mercator (UTM) system, which is a worldwide

advantages of this method rather than the system of longitude and latitude is that it is metric,

provides a continuous Cartesian coordinate system which allows easy calculations of

distances between points, and simplifies the calculations used in triangulation (White and

Garrott 1990).

3.4.5.  Accuracy of radiotelemetry

Estimates of error.  

error (Springer 1979).  However, the accuracy of bearings may be affected by many factors

including the equipment used, terrain, weather, observers, power lines and vegetation (review

not measured exactly using triangulation techniques, then the associated error must be

estimated and reported.  The accuracy of bearings consists of both bias and precision, which

are measured by examining bearing error, where error is defined as the difference between the

true bearing and that estimated using a receiver (White and Garrott 1990, review in Salz

1994).  Estimates of error should be included in all radiotracking studies regardless of which

method is used to estimate animal locations.

The precision of an estimated location is dependent on three factors which must be considered

together to produce a reliable error measure (Salz 1994).  These factors include the variance

around the bearings (error arc), distance to transmitter and the intersection angle of the

of all the error arcs, was introduced (Heezen and Tester 1967) to incorporate these three

factors and provide an adequate measure of triangulation error (Salz and White 1990).

However, this technique does not work with more than two bearings and cannot cope with

signal bounce.  This is because the error estimate uses only bearing errors that were measured

of error polygons and use three bearings which produce a triangle and the area of the triangle

is quantified (Nams 1990).  Precision with this technique, however, does not increase with

1981a and b), overcomes most of these problems and is a more rigorous technique for

estimating triangulation error (White and Garrott 1984).  This technique estimates the most

likely true location of an animal and its associated error estimate by considering the

placement of the telemetry stations, the number of bearings and the deviation of each bearing

from the estimated location (Nams 1990).  In this study, locations and associated confidence
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ellipses (95%) were estimated with the Lenth technique of 95% confidence ellipses using

Program LOCATE II (Nams 1990).

Triangulation error was evaluated using fixed transmitters placed in two different habitat

types (forest and grassland) by an independent observer (Litvaitis et al. 1986).  Estimates of

the locations of these transmitters provided an estimate of the precision of the methods being

used.  Error was calculated from the difference between the observed signal azimuth and the

real azimuth.  There was no significant difference in the bearing error between forest (7.060 ±

0.550 s.e.) and grassland habitats (8.420 ± 0.630 s.e.) (t = -1.51; d. f. = 137; P = 0.13), so the

data were pooled.  Mean bearing error overall was 7.710 ± 0.420 (s.e.) at a mean distance of

950 m ± 50 m (s.e.).  This was considered acceptable, as it was less than 10 degrees (White

and Garrott 1990).

Movement error can also affect the accuracy of a location and occurs when animals move

between consecutive bearings.  Movement error was minimised in this study by taking

consecutive bearings as close in time as possible with a maximum of twenty minutes between

consecutive bearings.  Signal bounce was minimised by obtaining bearings from high points

where possible.

Validity of radiotracking data.  If an estimated location was considered unreasonable, was not

within a feasible distance of the previous location, or the rate of travel needed between the

previous location and the current location was not possible (White and Garrott 1990), then

that datum was excluded.

Autocorrelation of Data.  Most statistical techniques for home range analysis assume

t is not

influenced by its position at time t-1 (Cresswell and Smith 1992).  Where successive locations

are not independent, temporal autocorrelation may bias estimates and, in particular, may lead

to underestimation of home range sizes (Swihart and Slade 1985).  Although the degree of

temporal autocorrelation decreases with increasing time intervals between fixes (Swihart and

Slade 1985), in fixed duration studies, a trade-off occurs between sample size and sampling

interval.  Autocorrelated data, however, may be a better alternative for estimating home-range

size, than extremely long intervals between fixes where biologically important data may be

sacrificed (Reynolds and Laundre 1990, Rooney et al. 1998).
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In this study, consecutive locations were separated by ≥ 30 minutes to avoid problems

associated with autocorrelation.  In many carnivore studies, 30 minutes has been found to be

adequate to ensure independence between consecutive locations (e.g.  Newdick 1983,

Cavallini 1996).  However, in this study, despite the 30 minute time interval between

locations, tests to determine independence of animal-movement data (Swihart and Slade

1985) showed that some ranges remained autocorrelated.  In accordance with Powell (1987)

and Goodrich and Buskirk (1998), autocorrelation was disregarded because it was accepted

that individual movements were likely to depend on past experience and knowledge of the

location of resources within the home range.  Although all fixes may not have been

statistically independent (Swihart and Slade 1985) they were considered to be biologically

independent (Lucherini and Lovari 1996), as a time interval of 30 minutes was sufficient to

allow any radiocollared cat to traverse entirely its home range.

3.4.6.  Home range analysis

Although the size and shape of the home range of an animal is frequently measured there is

much disagreement over what it is and how to measure it (Anderson 1982).  A home range

area where the animal normally moves are not considered part of the home range (Burt 1943).

definition is a time frame over which the home range is measured.  In this study, home range

is defined as that area traversed by an animal in its normal activities during a specified time

period (Hansteen et al. 1997).

size and utilisation distribution (UD).  Home range size of mammals is often inversely

dependent on the availability of food (Mares et al. 1982) and increases with body size (Haspel

and Calhoon 1989) and metabolic requirements (Grant et al. 1992).  Home ranges are rarely

ranges can often provide a clearer picture of range use than total range area, particularly when

investigating intraspecific and interspecific relations (Harris et al. 1990).  An alternative

estimate of home range size and core area is the utilisation distribution (UD), which describes

more informative than estimates of range size (Worton 1987) and can visually illustrate

spatial use (Anderson 1982).
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There are many different methods of range analysis, each having its own strengths and

weaknesses that have been reviewed by Macdonald et al. (1980), Voigt and Tinline (1980),

Worton (1987), Kenward (1987), Harris et al. (1990) and White and Garrott (1990).  Range

analysis can be divided into two main categories of non-statistical and statistical (or

probabilistic) methods.  Probabilistic methods can be further divided into parametric and non-

parametric.

Non-statistical methods.  Non-statistical techniques for range analysis include the use of grid

cells (Siniff and Tester 1965, Voigt and Tinline 1980) and minimum convex polygons (MCP)

(Mohr 1947).  The grid cell approach concentrates on the grid cell in which each fix occurs

but has numerous limitations as it is affected by the size of the grid cell chosen and takes very

many fixes to reach sampling saturation (Kenward 1987).  The MCP is the smallest convex

polygon containing all the observed position locations and is the oldest and most widely used

non-statistical method for estimating home range size.  The advantages of the MCP are its

simplicity and unambiguity for comparisons between studies.  It is also less affected by a lack

of independence between successive location fixes (Harris et al. 1990) and the home range

software program used (Lawson and Rodgers 1997), compared to other estimators.  The MCP

also defines a limit to the area that may be visited by an animal and therefore the habitat types

and neighbouring individuals it can encounter (Kenward 1992).  However, it is influenced

strongly by outlying fixes and small sample sizes, and may include large areas that are never

actually visited by the animal (Harris et al. 1990).  Peeled polygons attempt to overcome

some of these problems by excluding a designated proportion of fixes furthest from the

activity centre.  For example, the 95% minimum convex polygon (MCP 95) excludes 5% of

fixes furthest from the activity centre.  The major limitation of the MCP is that it gives no

indication of how intensively an animal uses different parts of its range (Kenward 1987).

Statistical methods.  Probabilistic methods of range-analysis attempt to assess the UD of an

animal and can be calculated using both parametric (e.g. circular normal and bivariate

normal) and non-parametric methods (e.g. harmonic mean, Fourier transform).  Parametric

about a single arithmetic activity.  These methods are relatively stable with respect to sample

size but are unrealistic as they assume a single activity centre that is derived from the

arithmetic mean, and may thus have no biological significance (Harris et al. 1990).  Non-

parametric methods make fewer assumptions about the underlying distribution of space use,

and therefore overcome many of the problems associated with parametric methods, but are

more sensitive to changes in sample size.
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Kernel methods.  The kernel methods (Worton 1989) are a further development of probability

density functions and are less biased by small sample sizes.  While kernel methods include the

harmonic mean approach, they contain an additional concept of using a function with a

negative exponential term for fix distances.  The fix densities at grid intersections are then

derived using a bivariate normal kernel estimator (Worton 1989).  This results in less grid-

dependence than the harmonic mean function and makes the kernel contouring method more

robust and reliable while also avoiding some of the problems inherent in the harmonic mean

approach (Larkin and Halkin 1994, Worton 1987).  For example, kernel methods are free of

parametric assumptions, provide a means of smoothing data, have well-understood and

consistent statistical properties, and are used widely in both univariate and multivariate

probability density estimation (Worton 1989).  In addition, kernel methods provide a good

means of identifying areas of concentrated use (Worton 1987).

Resolution.  Because each range analysis method has its own advantages and disadvantages, a

multifaceted approach was used in this study to overcome the limitations of each single

method (Voigt and Tinline 1980).  Both statistical and non-statistical methods were used to

describe the range use of feral cats: 1) the minimum convex polygon including all locations

(MCP100), 2) MCP 95 including 95% of fixes closest to the harmonic mean centre, and 3) the

kernel contouring method including 95% of fixes closest to the harmonic mean centre (KE

95) (Fig. 3.5).  The core area was estimated using the minimum convex polygon and kernel

analysis, both including 50% of locations (MCP 50 and KE 50 respectively) (Fig. 3.5).  These

methods were chosen to allow comparisons with past and future studies.  The MCP methods

were chosen for their simplicity, ease of plotting, comparability to previous studies and

assumed independence of the statistical properties of the UD (Harris et al.1990).  The kernel

estimator (Worton 1987, 1989) was chosen as it is a non-parametric technique that is more

robust than other techniques and allows more than one core area to be identified.  Home

ranges were calculated only where ≥ 20 location fixes were obtained and an asymptote was

reached with increasing numbers of fixes.

Home ranges were calculated using the harmonic mean fix as the centre of activity.  The

harmonic mean fix is the fix where the inverse reciprocal mean distance to all the other fixes

is minimal (Spencer and Barrett 1984) and is more robust than other measures (Kenward and

Hodder 1996).  Fixed kernel, rather than adaptive kernel, methods were used in this study

because they are more appropriate for highly
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clumped and large data sets (Lawson and Rodgers 1997) and do not produce unacceptable

expansion of the outermost contours (Kenward and Hodder 1996).  In addition, fixed kernel

methods use a smoothing parameter of a fixed value over the plane, while the adaptive kernel

varies the smoothing parameter so that areas with a low concentration of points have higher

values and are therefore smoothed more than areas with a high concentration of points

(Worton 1989).

Fix resolution, which is a boundary strip created around polygon edges, was set at zero in this

study to allow comparison with other studies where boundary strips are suppressed.

RANGES V (Kenward and Hodder 1996) was selected as the most appropriate software

package for home range analysis as it is more suitable for large data sets and provides the

widest variety of algorithms for calculating home-range estimators (Lawson and Rodgers

1997).  In addition, RANGES V has the greatest number of user-selected options for

calculating each estimator (Lawson and Rodgers 1997).

3.4.7.  Habitat utilisation

Many studies use radiotracking data to examine habitat use and the various methods have

been reviewed by Alldredge and Ratti (1986), White and Garrott (1990) and Palomares and

important aspect of animal ecology.  Habitat preference occurs when a habitat type is used

more than expected from its availability (i.e. non-random) and is useful when used as a

statements about habitat preference cannot be made because the proportional use of one

habitat type is not independent of the remaining habitat types (Aebischer et al. 1993), and

other factors constraining use of preferred habitats, such as competitors or predators, can be

rarely removed.

Methods for determining habitat preference.  The most widely used statistical technique for

assessing whether habitats are used randomly by an animal or if selection exists, is a Chi-

square goodness-of-fit test of whether the observed habitat use is equal to expected use

(White and Garrott 1990).  This method, however, does not identify which habitats are

avoided or preferred.  To overcome this problem Neu et al. (1974) constructed confidence

intervals for each habitat based on the Bonferroni z-statistic.  Although the Neu method (Neu

et al. 1974) identifies where habitat selection occurs, it does not compare the relative

importance of each habitat type with respect to another.  The Johnson method (Johnson 1980)

ranks both the utilisation and availability of each habitat and then uses the difference between

the ranks as a measure of preference.  This method, however, does not test for habitat
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selection for each animal but uses each animal as an observation to test for preference by the

population.  Compositional analysis (Aebischer et al. 1993), which uses log-ratios to examine

proportional habitat use and allows the ranking of preferred habitats, overcomes most of the

problems associated with previous methods, and was therefore used in this study.  This

method uses the radiocollared animal as the sampling unit and thereby avoids problems such

as statistical dependence upon numbers of radio locations, non-independence among radio

locations and allows separation of within-animal and between-animal variation.  In addition,

compositional analysis considers habitat types simultaneously, thereby reducing the

likelihood of type I errors that are associated with multiple applications of the same statistical

test (Aebischer and Robertson 1992).  Further, compositional analysis allows powerful

statistical tests, such as ANOVA-like techniques, to be used to test various hypotheses about

habitat use between groups (e.g. age and sex).

In this study, compositional analysis was used to determine whether habitat use differed from

random, by converting proportional habitat use and habitat availability to log-ratios, using

open woodland as the denominator.  The arbitrary choice of denominator does not affect the

results (Aitchison 1986).  The log-ratio differences between use and availability were then

compared using a two-factor ANOVA, with a probability of < 0.05 indicating non-random

utilisation of available habitats.  Where habitat utilisation was significantly non-random, the

habitat types were ranked according to utilisation by constructing a ranking matrix based on

mean pair-wise differences between log-ratios (Aebischer et al. 1993).  For easier

interpretation, mean log-ratio differences were then replaced by their sign.  A row of positives

indicated that the particular habitat type was most preferred (highest rank), while a row of

negatives indicated it was least preferred (lowest rank).  Signs were tripled if significantly

t-test.  This method therefore ranked habitat

types according to utilisation, from most preferred to least preferred, and indicated when

different ranks represented statistically significant differences in their relative utilisation of

the corresponding habitat types.

Habitat availability.  Measures of habitat use are often compared with some measure of

habitat availability, which is usually defined from the total study area (Aebischer et al. 1993).

The boundaries of a study area are defined arbitrarily by the researcher and can have a large

effect on the conclusions drawn (Aebischer and Robertson 1992).  In this study, habitat

availability was evaluated separately for each of the four study sites as marked habitat

differences were apparent between sites.  The site was defined as the smallest minimum

convex polygon that included all home ranges of cats from that site (Quinn 1997).
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Habitat map.  Four broad habitat types were delineated on aerial photographs of the entire

study area (scale 1: 50,000 and 1: 12,500) according to the number of trees present (Fig. 3.6).

The habitat types comprised 1) mudflats, 2) grassland, 3) open woodland and 4) open forest.

Mudflats were areas devoid of trees and shrubs which were between the low and high water

marks of Lake Burrendong (Fig. 3.7a).  These areas were inundated with water at times, while

at other times were exposed with a sparse covering of grass when the dam level was low.

Grassland habitats were areas with ≤ 3 trees/ha (Fig. 3.7a and b).  Open woodland habitats

comprised >3-10 trees/ha (Fig. 3.7b), while open forest habitats had denser cover with >10

trees/ ha (Fig. 3.7c).  No distinction was possible between tree type or presence of understorey

from the aerial photos.  Patches less than one hectare were ignored as a hectare was beyond

the resolution of the radiotracking data.

Classifications of habitat types from aerial photos were ground-truthed to verify classification

and improve accuracy.  A 20 km transect was established across the entire study area (on

roads), with classification checks made every 500 m (n = 20 spots).  Comparisons were made

by an independent observer between my visual classification of the habitat types at each spot

and that delineated on the habitat map.  The habitat map was accepted as sufficiently accurate

as 90% of visual classifications corresponded to those delineated on the map.

Habitat boundaries were digitised and polygons formed for each habitat type using a

Geographic Information System (ARC/INFO).  The habitat map was then converted to raster

format where the cell size was 0.01, equivalent to one hectare.  Radio locations were overlaid

with the digitised map to obtain the proportion of habitat types utilised by individual animals,

using RANGES V.

Measurement of error.  

that the habitat type is assigned correctly.  However, even where data are precise, the

confidence ellipse of a location may overlap more than one habitat type.  Methods to

overcome these problems include, excluding these boundary locations or randomly assigning

the location to one of the habitats (White and Garrott 1986).  Neither of these methods is

appropriate, however, if habitat selection is of interest and data sets are small.  A third

approach is to ignore the confidence ellipse of the location and record the habitat type at the

estimated location.  This approach is valid where the habitat type does not affect the

radiotracking system.  In this study, this latter approach was used to determine habitat

utilisation as no effect of habitat was found on the radiotracking system (see Accuracy of

radiotelemetry).
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Errors in radiotracking can affect the detection of habitat selection by lowering the power of

tests (White and Garrott 1986).  When patch size is small relative to location precision, then

the probability of a Type II error is increased.  Type II errors occur when the researcher fails

to reject the hypothesis of no habitat preference when the animal is actually selecting habitats.

Therefore, statistics must be used in the same units of measurement (area) for the patch size

and triangulation precision (Salz and White 1990).  For this reason, habitat patches that were

less than a hectare were ignored in constructing the habitat map, and the scale of the map was

coarse to accommodate the coarse resolution of radiotracking data.

Levels of habitat preference.  Habitat preference was examined on two levels because of the

difficulties in defining availability and the different levels of choice faced by an animal

(Johnson 1980, Aebischer and Robertson 1992).  These stages were: 1) home range selection

within an arbitrarily defined study area; and 2) habitat use within the home range.  For

example, a particular habitat may not be important in terms of percentage area of a home

range, but it may be used more intensively than other habitats within the home range.  In this

study, habitat preference was expressed as the proportional use of habitat in: 1) the home

range compared to availability at the study site; and 2) location fixes compared to availability

in the home range.

Diurnal versus nocturnal habitat use.  Many studies examining habitat preference have

disregarded the time of day in which locations were obtained, and so may have

underestimated foraging habitat, if the locations were obtained on inactive animals (review in

Palomares and Delibes 1992).  To overcome this problem, some studies have considered day

and night habitat use separately, assuming that one period approximates resting time, and the

other activity (e.g.  Haroldson and Fritzell 1984).  This approach was adopted in this study.

Home range methods and study animals.  Home ranges for the habitat analyses were

delineated using the 95% minimum convex polygon (MCP 95) method.  The choice of MCP

95 was based on its widespread use in home range (Harris et al. 1990) and habitat selection

studies (e.g. Aebischer et al. 1993).  In addition, the kernel estimator is a probabilistic method

and therefore suffers from problems associated with serial correlation as it assumes

independence between points.  As with the home range size analyses, only home ranges with

≥ 20 location fixes and that reached an asymptote with increasing numbers of fixes were

included in the habitat analyses.  Habitat composition (proportions of each habitat type) of the

respective sites and home ranges (MCP 95) of individual cats were determined using

RANGES V.  Similarly, the proportion of location fixes in each habitat type was calculated
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for individual cats.  Where a habitat was available but not used, it was assigned a value of

0.01 (Aebischer et al. 1993).
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CHAPTER 4

FEEDING ECOLOGY AND POPULATION DYNAMICS OF THE FERAL CAT IN

RELATION TO PREY AVAILABILITY

4.1.  INTRODUCTION

Feral cats have been implicated in the decline of numerous species of native mammals

throughout Australia (Dickman et al. 1993, Short and Smith 1994, Smith and Quin 1996) and

dietary studies have shown that cats prey on vulnerable and endangered mammals (Seebeck et

al. 1991, Horsup and Evans 1993).  Although the introduced European rabbit is the major

prey for cats where it is abundant in Australia (Jones 1977, Bayly 1978, Mahood 1980, Jones

and Coman 1981, Catling 1988, Paltridge et al. 1997), predation on native fauna increases

when rabbit numbers decline (Catling 1988, Pech et al. 1992).  Individual variation in prey

preference (Leyhausen 1979, Konecny 1987, Gibson et al. 1994) may also threaten native

fauna when cats select a particular prey species disproportionately to their abundance.

Despite increasing evidence for the impact of feral cats on native fauna (review in Dickman

1996), the feeding ecology of feral cats in Australia is restricted to 16 published studies on

diet (review in Dickman 1996, Martin et al. 1996, Paltridge et al. 1997).  Of these studies,

only one has examined the influence of prey availability on dietary composition (Catling

1988).

Although feral cats are sometimes regarded as having a beneficial role in controlling pest

species, such as rabbits, house mice and black rats (e.g. Tidemann et al. 1994), their ability by

numerical responses (Boutin 1995).  Recent experimental evidence from semi-arid Australia

has demonstrated that feral cats and foxes could together exert a regulatory role on medium-

density rabbit populations (Pech et al. 1992).  However, at high rabbit densities, predation

was found to be inconsequential, and at low rabbit densities, cats shifted to a broader range of

alternative prey species (Catling 1988).  This ability of cats to shift between prey species as

prey abundance fluctuates has invoked concern from wildlife managers that the spread of

Rabbit Calicivirus Disease (RCD) may have a damaging effect on native fauna where rabbit

numbers decline (Newsome et al. 1997).

The aim of this chapter is to examine the diet and abundance of feral cats in relation to prey

availability.  This chapter also provides comparative data on cat diets at one study site, before

and after a large decline in rabbit abundance, which coincided with the arrival of RCD.  In
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addition, the diet of two individual cats is investigated in detail from collections of their scats

at latrines.

4.2.  METHODS

General methods for scat collection, prey identification and cat and rabbit abundance indices

(spotlight counts) are described in Chapter 3.  This chapter presents data on cat scats collected

randomly throughout the study area, and cat and rabbit abundance indices, for the period of

July 1994 to June 1997.

4.2.1.  Scat collection at latrines

In addition, single collections were made of scats found in two cat latrines and the data

analysed separately.  The latrines each occupied a maximum area of 30 cm by 15 cm and

were located 5 km apart.  The first latrine was among rocks, and the second in soft soil

beneath a low overhanging branch.  Given the usually solitary nature of feral cats (Leyhausen

1965), it was assumed that only one adult cat (cat A and cat B) visited each latrine.  Cat A

latrine (n = 

early November in 1995.  It was assumed that the cat defecated only in the latrine and that

n = 44 scats)

represented an estimated six weeks feeding during mid October to late November in 1996.

Both cats were female, and cat B was observed with kittens at the time of scat collection.

Smaller scats that were assumed to be those of kittens were excluded from the analysis.

4.2.2.  Estimates of minor prey populations

Indices of prey abundance were obtained for four other potential prey groups, carrion, small

mammals, reptiles and grasshoppers, at four to eight replicate sites between May 1995 and

January 1997.  Distances between sites ranged from one to ten km.

Carrion abundance was recorded opportunistically while driving throughout the study area in

most months from August 1995 to January 1997.  Approximately 50 km of tracks were

traversed each month, encompassing all areas where scats were collected.  All dead mammals

observed were counted as carrion and the data expressed as the total number of carcasses seen

per 50 km.  Carrion counts were assumed to be accurate.
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Small mammal abundance was determined every three months from May 1995 to December

1996 using standard Elliott trapping techniques (Catling and Burt 1997).  Twenty traps were

set in open woodland at each of seven sites for three consecutive nights, every three months.

Trapped animals were identified, weighed, sexed, and then released.  Animals were marked

on the top of the head with liquid paper, which remained at least for the duration of the

trapping session.  The abundance of mammals was expressed as the number captured per 100

trap nights.  Captured reptiles were also identified and released.

Reptile abundance was determined with active searches on foot at four sites each month from

November 1995 to January 1997.  Searches were conducted for one hour between 11 am and

3 pm at a time when reptiles were considered to be most active.  To reduce wariness and to

preserve habitat, standard transects were not established nor rocks and debris overturned.

Data were expressed as the number of reptiles seen per hour of search time.

Grasshoppers were counted on standard walking transects (100 m long) at eight sites each

month from December 1995 to January 1997.  Grasshoppers that took off or landed one metre

either side of the transect were counted.  Counts were conducted on cloudless days to reduce

weather effects on grasshopper activity (Mann et al. 1980).  Abundance was expressed as the

mean number per hectare.

4.2.3.  Data analysis

Seasons were defined as summer (December to February), autumn (March to May), winter

to confirm that sample sizes were large enough to warrant seasonal analysis of diet.  Seasonal

dietary differences in the percentage volume of each prey group in the scats were examined

using a general linear model.  Season, treatment, site and fox removal were fitted to the model

as fixed factors.  Year was incorporated into the error term of the model.  Each prey group

was tested separately to avoid problems associated with the lack of independence between

groups.  Prey groups that were not often recorded in the diet were log-transformed (log (X

+1)) to reduce the clumping of residuals resulting from a large number of zero counts (Zar

1984).

The dietary and numerical responses of cats to changing prey densities were examined using

the Pearson product-moment correlation coefficient.  Lag phases of 1-6 months were

examined in order to assess delayed responses in cat abundance to changes in prey density

(Pech et al. 1992).
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A dietary response curve was fitted to the observed relationship between rabbit abundance

and the proportion of scats containing rabbit by eye.  Although this curve was constrained to

asymptote at 100%, given the nature of percentage data, it was considered analogous to a true

Holling functional response curve (Holling 1959).  Despite numerous limitations being

associated with measuring functional responses using dietary changes reflected in scats

(Boutin 1995), percentage occurrence data were used as an index of the number of rabbits

eaten/cat/day under the following two assumptions.  Firstly, cats deposited only one scat per

day and secondly, any rabbit hair detected in a scat represented the remains of only one rabbit.

In support of these assumptions, previous studies have found that healthy cats deposit around

one scat per day (Howard 1957, Fitzgerald and Karl 1979) and the remains of multiple adult

rabbits were not usually detected in cat stomachs at Yathong in NSW (P. Catling, pers.

comm.).  Although an average-sized feral cat (4kg) consumes about 260 g of wet flesh per

day (B. Green, pers. comm.), well below the weight of an adult rabbit (> 800 g), it is assumed

that cats do not cache prey remains and do not kill more than one rabbit in one day.  Where

these assumptions are not met (e.g. partial prey consumption, multiple scats per day, or prey

caching), rabbit consumption will be underestimated.

Variation in dietary composition (frequency of scats containing a particular prey group)

between individual cats and a sample of scats from the cat population at Burrendong was

tested separately.

4.3.  RESULTS

A total of 499 cat scats was collected throughout the study from July 1994 to June 1997

(about 20 scats/month).  Most scats (35%) were found on rabbit warrens where little attempt

had been made to bury them.  In addition, 101 scats were collected from two cat latrines and

data from these were analysed separately.

4.3.1.  Overall diet

Mammalian remains occurred in all scats and comprised 87.5% by volume of the overall diet.

Rabbits were the most important prey both by volume (V) (68.4%) and occurrence (O)

(81.6%).  They were identified in scats in all sample months, except May 1997 when only

five scats were collected.  Carrion, mostly eastern grey kangaroo (O 17%, V 8%) and sheep

(O 4%, V 3%), was the next most important prey group by volume (11.5%) and occurred in

21.5% of scats.  Cattle (O 0.6%, V 0.4%) and pigs (O 0.2%, V 0.1%), which were assumed to

be carrion, were eaten infrequently.  Invertebrates (mostly Orthopterans) occurred in 41.5% of
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scats but were a minor component by volume (7.5%).  Other mammalian prey included

brushtail possums (O 4.6%, V 2.4%), house mice (O 6.2%, V 3.2%), black rats (O 2.6%, V

1.4%) and a dunnart (Sminthopsis sp.) (O 0.2%, V 0.006%).  Vegetation (mostly sweet briar

fruits and grass spp.) (O 26.3%, V 3.6%), birds (O 4.2%, V 0.8%) and reptiles (O 3.4%, V

0.3%) were minor components of the diet.  A complete list of food items identified is

included in Appendix 2.

4.3.2.  Seasonal variation in diet

A sample of 436 scats was classified as fresh (< one month old) based on appearance and

smell, and included in the seasonal analyses.  Older scats (n = 63) that were used in the

overall dietary analyses were excluded to avoid potential confounding of the seasons.

Rabbit was the major prey in all seasons (except for the small sample in autumn 1997) (Fig.

4.1).  Carrion tended to be eaten more frequently in winter and spring when it also contributed

a greater amount to the mean scat volume (Fig. 4.1).  Invertebrates were eaten throughout the

year but the species composition varied seasonally.  Those invertebrates eaten during winter

and spring comprised largely beetles (Coleoptera) and cockroaches (Blattodea), while

grasshoppers (Orthoptera) were eaten most often in summer and autumn.

Few significant seasonal differences in the diet of cats (% volume) were detected.  However,

invertebrates (F = 5.68; d. f. = 3, 33; P = 0.003) contributed less and possums (F = 3.41; d. f.

= 3, 24; P = 0.034) more to the mean scat volume in winter and summer respectively (Fig.

4.2).  No further seasonal comparisons were significant (P > 0.05).

4.3.3.  Diet in relation to prey availability

Peaks in rabbit abundance occurred in early summer in both 1994 and 1995, while in 1996,

numbers were substantially lower following the arrival of RCD in June 1996 (Fig. 4.3).

Rabbit remained important in the diet even at low rabbit densities during the drought and

post-RCD (Figs. 4.3 and 4.4).  Correlation analyses showed a significant dietary response by

cats to changes in rabbit abundance overall (r = 0.50; n = 18; P = 0.03) (Fig. 4.3).  Predation

on rabbits tended to be more severe when rabbits were on the decrease (r = 0.49; n = 11; P =

0.13) than when on the increase (r = 0.25; n = 7; P = 0.57) (Fig. 4.4), however, the

relationship was not significant.
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Of 407 occurrences of rabbit detected in scats, 36 were identified as adult (> 800 g), 31 as

subadult (≤ 800 g) and the remainder were of unknown age.  In winter 1995, when rabbit

numbers were low during the drought, most rabbits eaten and that
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could be aged were adults (82%, n = 23 aged rabbits).  In spring 1995, most rabbits eaten

were subadult (100%, n = 11 aged rabbits) at a time when a marked increase in subadult

rabbits was also observed (R. Molsher, personal observation).  Insufficient sample sizes (n <

10 scats) of aged rabbits in other seasons precluded further comparisons.

Cats tended to eat carrion more often in late winter and early spring when carrion abundance

was generally higher, but the relationship was not significant (r = 0.13; n = 12; P = 0.67)

(Fig. 4.3).  Carrion abundance declined over late spring and summer in 1995, increased in

autumn 1996, and reached a peak in July 1996 (mostly rabbit carrion) with the arrival of RCD

(Fig. 4.3).  Carrion recorded in other months, however, comprised mostly kangaroos that had

been culled.

Correlation analyses showed no significant dietary response by cats to changes in small

mammal abundance (P > 0.05).  Few small mammals were trapped over the

     Fig. 4.2.  Overall seasonal variation in the diet of 
     cats from July 1994 to June 1997 (n  = 436 scats).  
     Years were pooled. Legend as for Fig. 4.1.
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summer period and numbers were low following the 1995 drought (Fig. 4.3).  The most

common small mammal species trapped was the house mouse, followed by the common

dunnart (Sminthopsis murina), although its distribution was less ubiquitous.  Mammal species

captured in low numbers included the black rat and the yellow-footed antechinus (Antechinus

flavipes).  Reptiles were captured as non-target species over spring and summer.

No significant dietary response to reptile abundance was found (P > 0.05).  Most reptiles

were eaten from late spring to autumn, while numbers of reptiles sighted were highest in

midsummer in both 1996 and 1997 (Fig. 4.3).  Few reptiles were observed over the colder

months from May to August 1996 (Fig. 4.3).  Most reptiles observed were skinks (Family

Scincidae); the most common species was Egernia striolata.

Cats ate grasshoppers more often in summer, which tended to correspond to increases in

grasshopper abundance, but the dietary response was not significant

(r = 0.42; n = 9; P = 0.27) (Fig. 4.3).  Grasshopper abundance peaked over late summer and

autumn in 1996, declining rapidly to zero over winter and spring, before increasing again the

following summer (Fig. 4.3).

             Fig. 4.4.  Dietary response of cats to changing rabbit densities (n  = 436 scats).
             Data are divided into periods when rabbit numbers were on the     increase 
             (r  =  0.25), and    decrease (r  = 0.49).  The line is a dietary response curve
              fitted by eye.
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4.3.4.  Post-RCD diet

Cats continued to prey heavily on rabbits after the arrival of RCD at Burrendong in June

1996, despite a decline in rabbit abundance by over 90% (Fig. 4.3).  Ten months post-RCD,

an increase in house mouse consumption by cats was detected. House mice occurred in 100%

of scats in autumn and 43% in winter in 1997 (Fig. 4.1).  House mice had not occurred in

more than 19% of scats in any month in the 2.5 years prior to this period.

4.3.5.  Indices of abundance

Cat and rabbit abundance were not correlated significantly with lag phases of 0, 1, 2, 3, 4 and

5 months (P > 0.05) (Fig. 4.5).  With a six month lag period, however, a significant negative

correlation was found (r = -0.40, n = 24; P = 0.05), indicating that cat numbers were low six

months after high rabbit numbers were recorded.  Cat abundance also tended to be correlated

with the abundance of carrion (r = 0.44; n = 14; P < 0.10), small mammals (4 month lag, r =

-0.66; n = 7; P < 0.10), reptiles (1 month lag r = -0.52; n = 13; P < 0.10, 2 month lag r = -

0.61; n = 13; P < 0.05) and grasshoppers (3 month lag r = -0.51; n = 12; P < 0.10).

4.3.6.  Diet of individual cats

Rabbits were the main prey, both by volume (Fig. 4.6) and occurrence, for both cats A and B

in spring 1995 and 1996, as for all cats.  However, differences between individual cats and the

population in the importance of other prey types were found.  Cat A ate carrion (G = 7.15; d.

f. = 1; P < 0.05), reptiles (G = 13.36; d. f. = 1; P < 0.001), invertebrates (G = 12.35; d. f. = 1;

P < 0.001) and vegetation (G = 5.60; d. f. = 1; P < 0.05) significantly more often than the

population of cats, in spring 1995.  Similarly, cat B ate birds significantly more often (G =

18.51; d. f. = 1; P < 0.001), and carrion (G = 6.98; d. f. = 1; P < 0.05), reptiles (G = 13.04; d.

f. = 1; P < 0.001), and invertebrates (G = 7.64; d. f. = 1; P < 0.05) significantly less often,

a rubber washer (Cat A) and a sugar glider, Petaurus breviceps (Cat B).
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         Fig. 4.5.   Abundance of cats and rabbits recorded in spotlight transects from 
         July 1994 to  June 1997.  Means and standard errors are shown.  Data 
         collected by the VBCRC Predator-Prey Project.

0

10

20

30

40

M
ar

-9
4

Ju
n-

94

Se
p-

94

D
ec

-9
4

M
ar

-9
5

Ju
n-

95

Se
p-

95

D
ec

-9
5

M
ar

-9
6

Ju
n-

96

Se
p-

96

D
ec

-9
6

M
ar

-9
7

Ju
n-

97

Se
p-

97

R
ab

bi
t 

ab
un

da
nc

e
(n

o.
 k

m
-1

)

0

0.1

0.2

0.3

0.4

0.5

C
at

 a
bu

nd
an

ce
(n

o.
 k

m
-1

)

Drought RCD

Rabbit

Cat

    Fig.4.6.   Dietary comparison between individual cats (A and B; n  = 57 and 44 scats)  and
    the overall diet of cats recorded at Burrendong for (a) spring 1995 (n  = 76) and 
    (b) 1996 (n  = 36).  Means +  s.e. are shown.  (      overall diet,      individual cats: A in 
    spring 1995 and B in spring 1996).      
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4.4.  DISCUSSION

4.4.1.  Overall diet

Mammals dominated the diet of feral cats at Burrendong, occurring in all 499 scats examined.

By occurrence, rabbit was the single most important food item (81.6%) and carrion an

important secondary food (21.5%).  Invertebrates (41.5%), vegetation (26.3%), other

mammalian prey (13.6%), birds (4.2%) and reptiles (3.4%), were generally minor components

of the diet.  Few significant seasonal differences in diet were found; in consumption of

possum and invertebrates only.

4.4.2.  Diet in relation to prey availability

Rabbit was the staple prey for cats in this study, as elsewhere where rabbits are common

(Bayly 1978, Mahood 1980, Jones and Coman 1981, Strong and Low 1983, Catling 1988,

Paltridge et al. 1997).  The lack of seasonal variation in rabbit consumption may be due to the

generally high abundance of rabbits at Burrendong prior to RCD, or to the differences in

rabbit abundance between years.  Seasonal changes in rabbit consumption have been recorded

in some studies where consumption was highest in spring and summer during rabbit breeding

and lowest in winter (Fitzgerald and Karl 1979, Jones and Coman 1981, Catling 1988),

although the data in these studies were not tested statistically.

Almost half the ingested rabbits that could be aged (n = 67) were subadult.  Adult rabbits

were consumed mostly at the end of the drought when environmental conditions were

unfavourable and predation may have been high on sick or weak individuals.  Cats are not

well adapted to hunting adult rabbits (Parer 1977, Gibb et al. 1978, Corbett 1979) and several

dietary studies elsewhere show selection for juveniles (Jones 1977, Fitzgerald and Karl 1979,

Liberg 1984a, Catling 1988).  Body size may be important in this respect: in pastoral areas in

Western Australia, only larger male cats ate rabbits (age unknown) (Martin et al. 1996).

Carrion (mostly eastern grey kangaroo and sheep) was an important secondary food in this

study and tended to be eaten more often in winter and spring.  Increased carrion consumption

over winter has been recorded in other studies when rabbit consumption has declined (Jones

and Coman 1981, Catling 1988).  The high incidence of carrion in the diet of cats at

Burrendong (21.5%) contrasts with previous studies that have found carrion to be a minor

component of the diet (Coman and Brunner 1972, Jones 1977, Jones and Coman 1981, Martin

et al. 1996, Paltridge et al. 1997), or eaten only during drought (Catling 1988, G. Edwards

pers. comm.).  In New Zealand, cats scavenged carcasses only after the flesh had already been
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exposed (Langham 1990).  This unusually high occurrence of carrion in the diet at

Burrendong may be due to the high abundance of kangaroo carcasses from regular culling and

the high density of carnivores that are able to open carcasses, such as foxes, pigs and eagles.

Brushtail possums were minor prey for cats at Burrendong with occurrence in 4.6% of scats.

Possum was significantly more important in the diet during summer, which may have

reflected increased predation on subadults that had become independent from their mothers.

Seasonal variation in brushtail possum consumption by feral cats has also been recorded in

New Zealand, with adult possums being eaten in winter as carrion, and young possums in

spring when they first become independent (Fitzgerald and Karl 1979, Langham 1990).

Bird remains were in few scats (4.2%).  In contrast to popular belief, birds are seldom an

important prey item for feral cats (Coman and Brunner 1972, Clevenger 1995, Paltridge et al.

1997), presumably as they are difficult to catch (Turner and Bateson 1988).  Birds become

important food for cats when the abundance of mammalian prey is low or absent, such as on

islands (Fitzgerald and Veitch 1985, Kirkpatrick and Rauzon 1986).  Individual cats,

however, may become skilled at hunting birds; this may have occurred with cat B in this

study, where bird remains occurred in 41% of scats.

Reptiles were also a minor component of the diet (4.3%) which is consistent with other

studies where mammalian prey were also present (Coman and Brunner 1972, Karl and Best

1982).  As in other studies, reptiles were more common in the diet during the warmer months

(Triggs et al. 1984, Catling 1988, Paltridge et al. 1997) when they are most accessible.

Invertebrates (mostly grasshoppers and beetles) occurred in 41.5% of scats at Burrendong but

comprised a minor component by volume (7.5%).  In most studies, invertebrates are a minor

but consistent component of the diet of cats (Karl and Best 1982, Jones and Coman 1981),

with orthopterans being the dominant group eaten when abundant (Bayly 1976, Fitzgerald and

Karl 1979, Jones and Coman 1981, Fitzgerald and Veitch 1985, Tidemann et al. 1994, Martin

et al. 1996, Paltridge et al. 1997).  Seasonal declines in invertebrate consumption over winter

were recorded at Burrendong and elsewhere (Catling 1988), presumably reflecting general

declines in invertebrate activity and abundance over the colder months.

Vegetation was consumed frequently by cats in this study (26.3%) but consisted mostly of a

few strands of grass which may have resulted from incidental ingestion while foraging for

invertebrates.  Plant matter is not a necessary component of the diet of felids as it is for canids
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(Lloyd 1980) and is usually a minor component of the diet of feral cats (Bayly 1978, Triggs et

al. 1984) or not consumed at all (Catling 1988).

4.4.3.  Dietary response

A significant dietary response by cats was found for rabbits, but not for the other prey groups

(carrion, small mammals, reptiles and grasshoppers).  Indices of abundance for these latter

prey species may not have been sufficiently sensitive to detect small fluctuations in prey

abundance.

Rabbit consumption generally reflected changes in rabbit abundance.  Although many

assumptions were made when using % occurrence data as an index of the number of rabbits

eaten per cat per day, the dietary response curve shown in this chapter was considered

analogous to a true Holling Type II or III functional response curve.  At low prey densities a

Type II curve shows a constant or decreasing slope, while a Type III curve is sigmoidal,

switch their preference to whatever prey is most common (Begon and Mortimer 1981).

Although previous studies have shown that cats shift between prey species when the primary

prey declines (e.g. Catling 1988), prey switching sensu stricto has not been demonstrated in

Australia or elsewhere as few dietary studies have simultaneously measured the abundance of

multiple prey species (Fitzgerald and Karl 1979, Konecny 1987).  In this study, no distinction

was possible between Type II and Type III curves given the lack of dietary data at very low

rabbit densities where the effect of predators has a greater impact (Boutin 1995).  In addition,

declines in the rates of kill as prey density decreased, as measured by occurrence in scats, may

not have been detected by the dietary analysis in this study.

4.4.4.  Post-RCD diet

Cats continued to prey heavily on rabbits after the arrival of RCD at Burrendong in June

1996, despite the relatively low numbers of rabbits.  Ten months post-RCD, house mice

increased in importance in the diet.  However, it was not known whether this increase in

house mouse consumption reflected prey switching sensu stricto or opportunistic predation on

an increased mouse population, as mouse abundance was not measured during this period.

Despite the ability of cats to shift between prey species, cats in this study continued to feed on

rabbits for some time after numbers had declined by over 90% post-RCD.  Delayed dietary

shifts by cats after substantial declines in rabbit populations have also been recorded on

Macquarie Island (Rush 1992) and in the Flinders Ranges in South Australia (C. Holden pers.

comm.).  Similarly, kit foxes (Vulpes macrotis mutica) in California continued to eat their

preferred prey (small mammals), despite a substantial reduction in prey numbers (White et al.
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1996).  Although rabbit densities declined to relatively low levels post-RCD at Burrendong,

these densities may still have been sufficiently high for cats to be efficient in catching rabbits

so that shifts to alternative prey were not necessary.  Alternatively, selective predation may

have occurred on subadult rabbits that are unaffected by RCD (Newsome et al. 1997), or cats

may have been sustained on sick adult rabbits that were caught readily.

4.4.5.  Individual variation in diet- the latrines

The ability of individual cats to target particular prey species can threaten the persistence of

these species when in low numbers (Gibson et al. 1994).  In this study, Cat A had a much

higher incidence of reptiles and invertebrates in the diet, while Cat B ate more birds than did

the overall cat population for the same period.  This may reflect patchiness in the distribution

of these prey species or variation in prey preference.  There is some evidence that hunting

strategies of cats differ with age and dominance status and that individuals develop hunting

skills that are targeted at particular prey species (Leyhausen 1979).  For example, direct

observations of the hunting behaviours of feral cats on the Galapagos Islands showed that

some cats ate entire grasshoppers, while others ate only the abdomens (Konecny 1987).

Similarly, on Christmas Island, male cats ate significantly more plant matter than females

(Tidemann et al.  1994).  Although latrines have not formerly been described for feral cats,

they may be related to breeding in females or reflect a recent domestic history for those

individuals.

4.4.6.  Impact on native prey

Cats preyed on few native mammal species in this study.  Native mammals occurred in 4.8%

of scats and included the brushtail possum (n = 23), a dunnart (n = 1) and a sugar glider (n =

1).  Although this low occurrence may reflect the scarcity of native mammals at Burrendong,

cats may still have an impact on the persistence of these species by maintaining them at low

may seldom be found in the diet or not at all, while a prey species that occurs frequently in the

diet may be sufficiently abundant to show no predatory effect (Kinnear 1991).

4.4.7.  Numerical response

Cat abundance was correlated weakly and positively with carrion abundance and inversely

with rabbit (six month lag), small mammal (4 month lag), reptile (1 and 2 month lag) and

grasshopper (3 month lag) abundance.  However, behavioural changes in habitat use, rather

than true fluctuations in population size, may have accounted for these patterns.  For example,

increased activity by cats in open areas when scavenging carcasses would result in greater

detection in the spotlight, while a higher usage of forest habitats during the warmer months,
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when reptiles and grasshoppers are more active, may have decreased the chance of detection.

In addition, spotlighting was not considered a good index of abundance for feral cats as few

cats were detected in the spotlight, despite their presence being known through radiotracking

(Chapter 5) and observed numbers were highly variable between runs.  Possible changes in

habitat use by cats and difficulties in estimating cat abundance using spotlight techniques

precluded conclusive comments on the numerical response of cats to changes in prey

abundance.  More research is needed to improve the effectiveness of current techniques for

censusing cat populations (e.g. Mahon et al. 1998), particularly in forested areas.

4.5. CONCLUSION

Rabbits were the staple prey of cats, while carrion was an important secondary food.

Invertebrates, other mammalian prey, vegetation, birds and reptiles were generally minor

components of the diet.  Few significant seasonal differences in diet were found; however,

invertebrates contributed less and possums more to the diet in winter and summer,

respectively.  A significant dietary response was found to changes in rabbit abundance, but

not for the other prey types.  Cats continued to prey heavily on rabbits even after a 90%

decline in rabbit abundance occurred, which coincided with RCD.  House mice increased in

importance in the diet ten months post-RCD.  Although the abundance of cats was correlated

weakly with the abundance of some prey species, behavioural changes in habitat use may

have influenced the observed patterns.
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CHAPTER 5

HOME RANGE, RANGE OVERLAP AND HABITAT USE OF
FERAL CATS

5.1.  INTRODUCTION

Knowledge of spatial and social organisation is important in understanding the ecology of a

species and also has management implications.  For example, information on home range

size, overlap and habitat preference can be used to predict population densities, and distances

over which diseases may spread (Langham and Charleston 1990).  This information can also

influence the feasibility of fertility control (Bomford 1990), and can be used to suggest

designs for trapping and poison baiting regimes.  Numerous studies describe the spatial and

social organisation of urban (e.g. Page et al. 1992, Mirmovitch 1995) and farm cats (e.g.

Panaman 1981, Turner and Mertens 1986, Kerby and Macdonald 1988), but few studies

involve feral cats (summarised in Table 5.1).  Only two of these have been conducted in

Australia (Jones and Coman 1982, Schwarz 1995).  Feral cats are defined in this Thesis as

free-living cats that have minimal or no reliance on humans, and that survive and reproduce in

self-perpetuating populations (Moodie 1995).

Home range size, overlap and habitat use of carnivores can be influenced by factors such as

reproductive requirements, time of day, and intra- and interspecific relations (McNab 1963,

Harestad and Bunnell 1979, Macdonald 1983, Carr and Macdonald 1986, Konecny 1987,

Liberg and Sandell 1988, Langham and Porter 1991, Lucherini and Lovari 1996).  For

example, home range size usually increases with body size or metabolic requirements

(McNab 1963, Harestad and Bunnell 1979, Gittleman and Harvey 1982), and decreases when

food is abundant (Kruuk 1986, Sandell 1989, du Bothma et al. 1997).  Similarly, negative

correlations have been recorded between population density (as a response to abundant food)

and home range size (Liberg and Sandell 1988).  Inter-sexual differences are also apparent,

with the spatial distribution of females being more likely to be influenced by resource

availability, while that of males is also influenced by the distribution of potential mates during

the mating season (Sandell 1989).

The spatial and social organisation of cats shows great variability (see review in Liberg and

active defense of borders (Leyhausen 1965, Liberg 1980, 1984, Langham and Porter 1991),
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others mutual tolerance (Apps 1986).  Adult females may be solitary, or live in groups, and

may or may not tolerate dominant males within their territories (Liberg and Sandell 1988).

Much of this variability has been attributed to differences in prey distribution and abundance

(Fitzgerald and Karl 1986, Genovesi et al. 1995).

In general, where prey is abundant and clumped, home range sizes of cats decrease

(Fitzgerald and Karl 1986) and overlap increases (Liberg 1980).  Ranges of domestic cats

receiving supplemental feeding in urban areas, dockyards and on farms, are generally smaller

than those of feral cats (Dards 1978, Macdonald and Apps 1978, Jones and Coman 1982).

Cats in such environments may also form groups with overlapping ranges (Dards 1978,

Macdonald and Apps 1978, Corbett 1979, Liberg 1980, Panaman 1981, Izawa et al. 1982).

The information on social and spatial organisation of feral cats, however, is difficult to

interpret (Corbett 1979, Jones and Coman 1982, Brothers et al. 1985), primarily because

sample sizes are small (i.e. < 10 individuals) (Table 5.1).

In this Chapter, the home range size, overlap and habitat use of feral cats is examined at Lake

Burrendong during the winter of 1995, prior to fox removal.  Inter-individual variation

(sex/age) and the influence of rabbit abundance on home range size are also examined.  Social

organisation is inferred from observed patterns in spatial use.
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5.2.  METHODS

General methods for trapping, radiotracking, home range analysis, habitat use and rabbit

abundance indices are described in Chapter 3.  This section gives details of the statistical

analyses used to examine the home range and habitat use of feral cats at the four sites in

winter 1995 (May to August); prior to fox removal.  Rabbit abundance indices were also

calculated for the four sites in winter 1995 only.  GENSTAT was used for the t-tests,

ANOVAs, correlation and regression analyses.

5.2.1.  Home range size

Overall.  In winter 1995, 21 adult cats were radiotracked (730 location fixes) to examine

ranging behaviour (home range size, core area size and habitat use).  Consecutive locations

were separated by at least 30 minutes to reduce dependence between locations.  Four home

ranges with < 20 location fixes or which did not reach an asymptote with increasing numbers

of fixes (Wray et al. 1992) were excluded from the home range size analyses.  An additional

two cats were excluded from the analysis as they died during the radiotracking period and

appeared to exhibit abnormal ranging behaviour (i.e. limited movement) prior to death.  Home

range analyses were conducted on the remaining 15 cats for which 598 fixes were obtained.

Home ranges were calculated using three methods: a) minimum convex polygon (MCP 100);

b) MCP 95 including 95% of fixes closest to the harmonic mean centre; and c) kernel analysis

which included 95% of all fixes (KE 95).  MCP 100 estimates were calculated for comparison

with other studies only.  The core area of cats was estimated also using the minimum convex

polygon and kernel analysis, both including 50% of locations (MCP 50 and KE 50

respectively).  Matched pairs t-tests were used to compare the estimates obtained using the

two methods for home range (MCP 95 and KE 95) and core area (MCP 50 and KE 50) size.

As significant linear relationships were found between MCP 95 and KE 95 (r2 = 0.52, n = 13;

P = 0.002) and MCP 50 and KE 50 estimates (r2 = 0.79, n = 13; P < 0.001), only the MCP 95

and MCP 50 methods were used in subsequent analyses of ranging behaviour.

The effect on MCP 95 of sex and age of individual cats, and site where cats were

radiotracked, was examined using a non-orthogonal three-way ANOVA (sex by age by site).

Interaction effects were also examined.  Sex differences in MCP 100 estimates were

examined using a t-test to allow comparisons with other studies.  Correlation analysis was

used to examine the relationship between home range size and rabbit abundance.
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Influence of habitat composition.  Linear regression was used to examine the relationship

between home range size (dependent variable) and habitat composition (within the home

range and at the fixes, see Chapter 3) and habitat richness (number of habitat types within the

home range).  Separate regressions were performed for each habitat type to avoid problems

associated with the lack of independence between habitat types.  Since home range size did

not differ significantly between the sexes (P > 0.05), the data were pooled.

Day and night ranges.  Day and night range sizes (MCP 95) were examined separately as,

despite being primarily nocturnal (Langham and Porter 1991), feral cats can be active by day

(Jones and Coman 1982, Artois 1985).  In addition, the only other published study on cat

spatial use in Australia used solely day fixes (Jones and Coman 1982).  Elsewhere, studies of

cats have also obtained mostly day fixes (Liberg 1980, Fitzgerald and Karl 1986, Turner and

Mertens 1986) with only a few studies collecting night fixes (Corbett 1979, Warner 1985,

Konecny 1987, Langham and Porter 1990).  For this reason, approximately half the locations

were obtained during daylight hours and half at night in this study.  In winter, day was

defined as that period between sunrise and sunset (0700- 1700), while night was the

remaining period (1701 - 0659).  Differences between day and night home range sizes (MCP

95) were examined using the matched pairs t-test.  Twelve cats were used in this analysis, as

three cats with < 10 fixes in either the day or night ranges were excluded.

5.2.2.  Overlap in home ranges and core areas

Percentage overlaps for each adjacent and/or overlapping pair of home ranges (MCP 95) and

core areas (MCP 50) were calculated using the RANGES V program.  Adjacent ranges were

those that were <500 m apart, which was smaller than the average home range span of any of

the cats.  Range overlap was also calculated for day and night home ranges (MCP 95)

separately.  A non-orthogonal two-way ANOVA (sex by age) was used to test for the

influence of sex and age (young adult 1-3 years and old adult >3 years) on percentage overlap

for adjacent pairs overall, and for day and night periods separately.  Percentage overlaps were

arcsine transformed so that the data approximated a normal distribution (Zar 1984).  Three

sex combinations (FF, FM and MM) and three age combinations (YY, YO, OO) were

possible (where F = female, M = male, Y = young adult and O = old adult cats).  Age

determination of cats is described in Appendix 1.

5.2.3.  Habitat utilisation

Habitat analyses were conducted on the same 15 cats that had sufficient fixes for the home

range size analyses.  Four habitat types were defined which included: a) mud flats; b)

grassland; c) open woodland; and d) open forest (see Chapter 3).  Based on these types,
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habitat compositions (proportions of each habitat type) in home ranges (MCP 95) of

individual cats, at location fixes, and in the four sites, were determined using RANGES V.

Habitat selection was evaluated using compositional analysis (Aebischer et al. 1993) on both

levels of habitat use: a) selection of a home range from within an arbitrarily defined study

area; and b) differential use of habitat types within the home range.  Habitat selection was

determined using a two-way ANOVA (no blocking) with the log-ratio differences as the

dependent variable, and site and habitat as factors.  Where significant habitat selection was

found, the habitat types were ranked according to utilisation (see Chapter 3).  The influences

of age and sex on habitat selection were examined using a non-orthogonal three-way ANOVA

where the log-ratio difference was the response variable, and habitat, age and sex were fitted

to the model as factors.  Interaction effects were also examined.  Differences between night

and at the fixes, were examined using a two-factor ANOVA (habitat by day/night), where the

percentages were arcsine transformed prior to analysis.

5.3.  RESULTS

5.3.1.  Home range size

Overall.  Home range sizes of cats in winter 1995 (n = 15 cats, 598 location fixes) ranged

from 17 to 747 ha (MCP 100 and MCP 95) and from 25 to 575 ha (KE 95) (Table 5.2).  Core

areas ranged from 2.5 to 165 ha (MCP 50) and from 7 to 152 ha (KE 50) (Table 5.2).  Kernel

estimates were significantly larger than those estimated with the minimum convex polygon

method for home range (MCP 95 and KE 95) (t = 3.84; d. f. = 14; P < 0.001) and core areas

(MCP 50 and KE 50) (t = 2.68; d. f. = 14; P = 0.02).

Male home ranges (MCP 95 x  = 284 ha, n = 11) tended to be larger than those of females

( x  = 151 ha, n = 4) but were not significantly so (F = 4.22; d. f. = 1, 4; P = 0.11).  MCP 100

estimates were also not significantly different between males ( x  = 423 ha, n = 11) and

females ( x  = 238 ha, n = 4) (t = 1.71; d. f. = 13; P = 0.11).  No difference in range size was

found between young adult (1-3 years, x  = 271ha, n = 7) and old adult cats (>3 years, x  =

221ha, n = 8) (F = 1.24; d. f. = 1, 4; P = 0.33).

Mean home range sizes (MCP 95) varied between sites, ranging from 176 ha at Gunnel Creek

to 329 ha at Harrys Creek, but were not significantly different (F = 1.88; d. f. = 3, 4; P = 0.28)
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(Fig. 5.1).  Site differences also occurred in rabbit abundance (Fig. 5.1).  Home range sizes

(MCP 95) tended to be smaller at higher rabbit densities but the relationship was not

significant (r2 = 0.063; P = 0.72).

Influence of habitat composition.  Home range size was not related significantly to habitat

composition of the home range, proportion of fixes in each habitat, or habitat richness (P >

0.05).

Day and night ranges.  Day range sizes ( x  = 211 ha) were not significantly different to night

ranges ( x  = 193 ha) overall (t = 0.55; d. f. = 11; P = 0.59), or for sexes separately (Female t

= 0.05; d. f. = 3; P = 0.96; Male t = 0.57; d. f. = 7; P = 0.59) (Table 5.3).
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             Table 5.2.  Home range and core area size (ha) of 21 radiocollared cats in winter 1995 
   (730 location fixes).

Study site and         Home range area      Core  area
animal ID No.fixes Age (yrs) Sex A/tote MCP 100 MCP 95 KE 95 MCP 50 KE 50
Dog Trap

216380 54 1.5 M Yes 240 162 224 41 19.5
216620 49 1.5 M Yes 484 342 541 66 84
150044 65 >3 M Yes 348 322 286 84 96
151763 18 1.5 M No 208 120 333 14 35

Gunnel Creek
216340 24 >3 M Yes 18 17 25 6 7
216160 37 1.5 M Yes 390 364 459 76 84
216320 21 >3 M Yes 674 246 575 54 110
216420 39 1.5 F Yes 221 75 247 17 23
216056 19 1.5 M No 680 639 1370 142 39
216440 16 >3 M No 682 649 870 117 263

Devils Hole
216040 20 >3 M Yes 372 131 488 2.5 13
216360 23 1.5 M Yes 319 318 422 13 51
216120 46 >3 F Yes 151 102 126 7.5 11

*216400 30 >3 F Yes 36 35 32 2 4
*216600 36 >3 M Yes 108 80 104 4 6
216653 13 1.5 F Yes 672 648 845 161 118

Harrys Creek 
216060 44 >3 F Yes 196 187 246 32 53
151147 53 1.5 M Yes 747 406 541 165 152
151983 51 1.5 M Yes 521 308 508 49 64
216017 34 >3 F Yes 385 241 310 54 68
216509 38 >3 M Yes 540 503 476 69 125

mean (n = 15) 598 374 248 365 49 64
s.e. 50.9 34.9 43.4 10.8 11.6

A/tote = asymptote; MCP 100 = minimum convex polygon; MCP 95 and 50 = minimum convex polygon
including 95% and 50% of locations, respectively, which were closest to the harmonic centre; KE 95 and
50 = kernel analysis including 95% and 50% of locations respectively. KE 50 and MCP 50 are indices
of the core area. Cats in italics (n  = 6) were excluded from the home range size analyses due to 
insufficient fixes (< 20 fixes) or * the cat died during the radiotracking period.
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Table 5.3.  Mean (+ s.e.) day and night home range sizes (ha) for 12 cats in winter 1995.
* three cats were excluded where insufficient fixes (< 10) were obtained for day/night comparisons.

                Range size (MCP 95)
Day Night No. fixes

male (n = 8) 261 + 30.7 236 + 45.2 368
female (n =4) 110 + 20.4 108 + 40.6 163

Overall 211 + 29.9 193 + 36.7 531

    Fig. 5.1.   Site differences in rabbit abundance (no.10 km-1) and home range 
    sizes (MCP 95) of cats in winter 1995.  Means and standard errors are shown. 
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5.3.2.  Overlap in home ranges and core areas

A large degree of overlap ( x  ± s.e. 21% ± 3.6) in home ranges (MCP 95) was found between

28 adjacent and overlapping pairs of cats (Fig. 5.2), however, core areas (MCP 50) were

further apart ( x  ± s.e. 7% ± 2.8) (Fig. 5.3).  Percentage overlap in home ranges was

influenced by age (F = 4.62; d. f. = 2, 48; P = 0.02) (Fig. 5.4), but not by sex (F = 0.33; d. f. =

2, 48; P = 0.72) and no interaction effect was detected (F = 0.53; d. f. = 3, 48; P = 0.66) (Fig.

5.2).  Core area overlap also tended to be influenced by age (F = 2.10; d. f. = 2, 50; P = 0.13)

(Fig. 5.4) but not by sex (F = 0.13; d. f. = 2, 50; P = 0.88) and no interaction effect was

detected (F = 0.00; d. f. = 1, 50; P = 0.96) (Fig. 5.3).  Adjacent pairs that comprised a young

adult and an old adult cat had a greater degree of overlap in home ranges and core areas than

did young-young and old-old combinations of cats (Fig. 5.4).

When day ( x  ± s.e. 15% ± 3.4) and night ( x  ± s.e. 20% ± 4.1) ranges were analysed

separately, no significant differences in percentage overlap were found between the two

periods (F = 0.84; d. f. = 2, 72; P = 0.44).  However, age influenced the percentage overlap

between adjacent pairs (F = 4.95; d. f. = 2, 72; P = 0.01) and a significant age by sex

interaction was detected (F = 2.94; d. f. = 2, 72; P = 0.05) (Fig. 5.5).  Combinations of cats

where both individuals in the pair were young adult males had the largest degree of overlap

when day and night ranges were pooled (Fig. 5.5).  No overlap was found among old adult

males (n = 10 pairs) or between young adult male and female combinations (n = 12 pairs)

(Fig. 5.5).  No interaction effects were detected between sex, age and day/night (F = 0.12; d.

f. = 1, 72; P = 0.73).

5.3.3.  Habitat utilisation

Habitat use.  When home ranges of 15 cats were overlaid on to the four habitat types across

the entire study area (Fig. 5.6), most home ranges covered at least three of the four habitat

types (Table 5.4).  Overall, cats used woodland and forest habitats more often than grassland

and mudflats in winter 1995 (Fig. 5.7).  Both levels of habitat use (proportional habitat within

the home range and proportional habitat use at the location fixes) produced similar results

(Fig. 5.7, Table 5.4).
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          Fig. 5.5.  Percentage overlap for different age and sex combinations of cats.
          Day and night ranges (MCP 95) were pooled.  Means and standard errors are 
          shown.  Numbers of adjacent/overlapping pairs of cats are shown above the bars
          where Y = young (1 - 3 years); O = old (> 3 years); F = female; M = male.
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           Fig. 5.4. Percentage overlap in home ranges (MCP 95) and core areas (MCP 50)
           between adjacent/overlapping pairs of cats for different age group combinations.
           Y = young (1 - 3 years); O = old (> 3 years).  Means and standard errors  are shown.
           No core area overlap occurred among YY and OO individuals.
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Table 5.4.  Percentage habitat composition for cats in winter 1995 at each study site 
              (bold type), within each home range (MCP 95), and at the location fixes.
              Percentages do not always total 100 as small areas were outside the digitised habitat map. 

% home range % location fixes
Study site and Grassland Open Open Mudflat Grassland Open Open Mudflat
animal ID woodland forest woodland forest
Dog Trap 17.3 25.5 45.2 9.9
216380 0.4 11.2 88.5 0 3.7 16.7 79.6 0
216620 21.3 27.9 39.1 10.5 24.5 40.8 26.5 8.2
150044 9.1 27.7 63.1 0.1 1.5 27.7 70.8 0

Gunnel Creek 4.9 53 42.1 0
216340 19.4 55.0 25.6 0 12.5 62.5 25 0
216160 4.5 45.0 50.5 0 8.1 43.2 48.7 0
216320 0.0 61.9 38.1 0 0 52.4 47.6 0
216420 2.4 53.1 44.5 0 5.1 41 53.9 0

Devils Hole 15.1 52.3 29 3.2
216040 20.7 71.5 7.8 0 45 45 10 0
216360 2.0 98.0 0 0 0 100 0 0
216120 5.4 53.4 41.3 0 6.5 56.5 37.0 0

Harrys Creek 23.1 53.2 12.7 8.6
216060 21.3 78.7 0 0 22.7 77.3 0 0
151147 14.2 78.3 7.5 0 15.1 81.1 3.8 0
151983 45.3 42.9 4.8 7.0 45.1 47.1 3.9 3.9
216017 38.2 37.5 5.7 15.3 52.9 38.2 2.9 2.9
216509 6.9 61.9 31.1 0 10.5 71.1 18.4 0
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Fig. 5.7.  Proportional habitat use for 15 cats in winter 1995 at two levels,
a) % habitat composition of home range, and b) % fixes in each habitat type.
Means and standard errors are shown.
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Site differences in habitat use reflected differences in habitat availability (Fig. 5.8).  For

example, at Dog Trap, where forest habitat was most available, cats used it more often than at

the three remaining sites, where woodland was most available and most used.

Habitat selection.  Compositional analysis revealed that cats did not establish their home

ranges at random within each site (F = 8.79; d. f. = 2, 30; P < 0.001).  Calculation of the

ranking matrix showed that mudflats were significantly under-used relative to the remaining

three habitat types (Tables 5.4 and 5.5a).  Overall, open woodland was the most preferred

habitat (rank 3), followed by open forest (rank 2) and grassland (rank 1) (Table 5.5a).

Relative to one another, however, the utilisation of these three habitat types did not differ

significantly from random (Table 5.5a).  Habitat preference was not influenced by age (F =

2.32; d. f. = 1, 30; P = 0.138) or sex (F = 0.01; d. f. = 1,30; P = 0.916) of individual cats and

no interaction effects were detected (F = 0.06; d. f. = 1, 30; P = 0.807).  In addition, no

significant habitat by site interaction was found (F = 0.44; d. f. = 5,30; P = 0.818).

Habitat utilisation as described by the location fixes of each cat was also significantly

different to that expected given the habitat composition of the home ranges (F = 34.03; d. f. =

2, 22; P < 0.001).  Cats significantly avoided mud flats in preference for open woodland

(Tables 5.5b and 5.6).  Grassland was the most preferred habitat (rank 3), followed by open

woodland (rank 2) and open forest (rank 1) (Table 5.5b).  Relative to one another, however,

again the utilisation of these habitat types did not differ significantly from random (Table

5.5b).  Habitat preference was not influenced by age (F = 0.29; d. f. =1, 23; P = 0.597) or sex

(F = 0.51; d. f. = 1, 23; P = 0.482) of individual cats and no interaction effects were detected

(F = 0.61; d. f. = 1, 23; P = 0.44).  However, a significant habitat by site interaction was

detected (F = 7.53; d. f. = 5, 22; P < 0.001) indicating that cats preferred different habitats at

different sites (Fig. 5.8).

Day versus night.  Habitat composition of home ranges (F = 0.02; d. f. = 1, 120; P = 0.895)

and at fixes (F = 0.03; d. f. = 1, 120; P = 0.854) did not differ between day and night periods

(Table 5.6).
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Habitat availability
% habitat in home range
% fixes in habitat

      Fig. 5.8.  Habitat use relative to availability for 15 cats at the 
      four sites in winter 1995.
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Table 5.5.  Magnitude of mean log-ratio differences between utilised and available
    habitat compositions for 15 radiocollared cats in winter 1995. Each mean is replaced 
    by its sign and tripled where the mean differs significantly from 0. The rank for each habitat
    type, according to use, is calculated from the number of positive values in each row where  
    the most-used habitat type has the highest rank.  The comparison of  utilised with available
    habitat composition is assessed at two levels: (a) home-range selection within the study site;
    and (b) habitat utilisation within the home range. 

 a) Habitat composition for home ranges versus the site

grass wood forest mud Rank
grass - - +++ 1
wood + + +++ 3
forest + - +++ 2
mud --- --- --- 0

b) Habitat composition derived from location fixes versus home ranges

grass wood forest mud Rank
grass + + + 3
wood - + + 2
forest - - + 1
mud - --- - 0
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5.4.  DISCUSSION

5.4.1.  Home range size

Home range sizes of cats at Burrendong were similar to those reported in semi-arid Australia

but larger than those reported elsewhere (see Table 5.1), possibly reflecting low prey density

or more dispersed food resources (Macdonald 1983, Genovesi et al. 1995).  Larger home

range sizes in response to low or patchy food availability have been recorded widely in

carnivores (e.g. Jones and Theberge 1982, Kruuk 1986, Sandell 1989) and felids in particular

(Genovesi et al. 1995, Poole 1995, du Bothma et al. 1997, but see Breitenmoser et al. 1993).

However, the abundance of rabbits (the staple prey for cats at Burrendong; see Chapter 4) did

not influence home range size in this study.  This may have been due to the lower availability

of rabbit kittens in winter compared to other seasons (Catling 1988), the ubiquitous

distribution of rabbits, or to the large inter-individual variation in range size.  In addition,

indices of rabbit abundance were recorded only using spotlight counts along one track that

traversed each site which may not have been representative of the entire site in which range

sizes were calculated.  Some other studies of carnivores have also shown little change in

home range size after declines in abundance of their staple prey (Lockie 1966, White and

Ralls 1993).

Male ranges tended to be larger than those of females in this study, as has been reported

elsewhere for urban (Dards 1978), farm (Macdonald and Apps 1978), and feral cats (see

Table 5.1), and other felids (Corbett 1979, Johnson and Franklin 1991, du Bothma et al.

1997).  Larger male ranges are common among carnivores, particularly when animals are

polygynous (Sunquist 1981, Gosling and Baker 1989).  Larger ranges increase the number of

potential mates an animal encounters and may also, in part, reflect their greater energetic

needs given their larger size (McNab 1963, Harested and Bunnell 1979, Haspel and Calhoon

1989, but see Konecny 1987, Reiss 1988).  However, the magnitude of the intersexual

difference in range size reported here (i.e. male ranges 1.8 times bigger than females) was less

than the 3.5 to 10 fold difference recorded elsewhere (see reviews in Tabor 1983, Liberg and

Sandell 1988), which may be related to seasonal differences.  Locations of cats in this study

were recorded only in winter, while many other studies have examined home range size in

spring and summer.  In spring and summer, pregnant and lactating females greatly reduce

their range size (Jones and Coman 1982, Fitzgerald and Karl 1986, Iwamoto et al.

unpublished data).  This may have accounted for the larger intersexual differences in range

size recorded in other studies.
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(> 3 years) in this study was probably due to all radiotracked cats being adults.  Elsewhere,

smaller ranges of subadult compared to adult cats have been recorded (Corbett 1979, Liberg

1981, Fitzgerald and Karl 1986).

Temporal differences in range size were not detected in this study indicating that cats were

active both by day and night, as has been recorded elsewhere (Fitzgerald and Karl 1986).

However, most home-range studies of feral cats have used either day (Liberg 1980, Jones and

Coman 1982, Fitzgerald and Karl 1986) or night fixes (Corbett 1979, Konecny 1987) and

only one study in farmland in New Zealand has compared day and night range sizes

(Langham and Porter 1991).  This study found that both male and female feral cats used

larger ranges at night compared to the day, and assumed this to reflect greater nocturnal

activity by cats (Langham and Porter 1991).  However, this New Zealand study also showed

that cats occupying willow habitats (which provided cover) were active during the day.  The

authors suggested that cover may have allowed cats to hunt prey, such as birds, during the day

which they otherwise may have been unsuccessful in capturing in more open habitats.  At

Burrendong, diurnal activity by cats may also have reflected abundant cover for hunting.

Further, ranges were recorded in spring and summer in the New Zealand study, which may

have accounted for the smaller home range sizes if activity was reduced during the warmer

daytime temperatures.  In winter at Burrendong temperatures were sufficiently cool to allow

daytime activity.  The lack of temporal differences in range size recorded here increases the

comparability between studies that have used solely day or night location fixes in estimates of

range size.

5.4.2.  Social organisation

The home ranges of adult feral cats at Burrendong overlapped extensively ( x  ± s.e. 21% ±

3.6), particularly among members of the opposite sex.  Higher inter-sexual compared to intra-

sexual overlap has been recorded elsewhere (Schwarz 1995).  This presumably reflects the

solitary nature of adult male (Jones and Coman 1982, Fitzgerald and Karl 1986, Konecny

1987, Langham and Porter 1991) and female cats (Jones and Coman 1982, Fitzgerald and

Karl 1986, Konecny 1987), and possibly the formation of kin groups (Macdonald and Apps

1978).  At Burrendong, the home ranges of old adult males (> 3 years) were relatively

exclusive, particularly among core areas.  Adult female cats were also solitary, however, only

four females were radiotracked and the spatial behaviour of neighbouring females was not

known.  Observed cats were generally solitary unless accompanied by kittens.
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Felids are, with few exceptions, solitary species presumably because of their stealthy hunting

(Corbett 1979, Gittleman 1989, Sandell 1989, Johnson and Franklin 1991).  However, when

food resources are abundant and/or clumped, female cats often form stable groups (generally

kin) and males move between the groups (Macdonald and Apps 1978, Liberg 1980, 1984,

Breitenmoser et al. 1993, Genovesi et al. 1995, Mirmovitch 1995); although individuals of a

group usually hunt solitarily (Panaman 1981) and ranges of different groups overlap little

(Izawa et al. 1982).  Explanations as to why some Carnivora live in groups have traditionally

invoked two reasons; cooperative hunting of large prey and the need for defence against

predator attack (Fox 1970).  While these reasons may account for the social grouping

observed in wolves and lions, they do not account for those species that live in groups but

hunt alone, such as feral cats, red foxes and badgers (Kruuk 1972, 1978, Dards 1978,

Macdonald and Apps 1978, Kruuk and Parish 1981).  Possible reasons for these groupings

may include opportunities to learn from other group members, division of labour, care of the

sick and alloparental care (see review in Macdonald 1983).  In urban environments where

food and shelter are provided, the survival rate of offspring that disperse is lower than that of

among cats may also differ between habitats.  For example, cats sleeping together on a sub-

Antarctic island may receive a thermoregulatory benefit (van Aarde 1978).

The high degree of inter-sexual overlap between young adult (1-3 years) and old adult (>3

years) cats at Burrendong may indicate the presence of kin groups (e.g. Macdonald and Apps

1978), although kin ties were not examined.  Young males do not usually disperse from their

overlap therefore may have reflected individuals that had not yet dispersed from their natal

range.

Territoriality, where more or less exclusive areas are actively defended (Davies and Houston

1984), was not examined in this study but has been recorded for feral cats elsewhere (Liberg

1980, 1984, Langham and Porter 1991).  In New Zealand, adult male feral cats patrolled

boundaries at night and observations were made of aggressive chases of strange males when

in the vicinity of oestrous females (Langham and Porter 1991).  In Sweden, female kin groups

overlapped little with other female groups, and active avoidance of and aggression towards

foreign females at home range borders was observed (Liberg 1984b).  Communal and

defended territories of female cat kin groups have also been reported elsewhere (Leyhausen

1965, Macdonald and Apps 1978).  Territoriality was suggested, but not confirmed, in this

study with the mutually exclusive home ranges of old adult males and the lack of burying of
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scats (Chapter 4), which may indicate their use as territory demarcations (Liberg 1980,

Brothers et al. 1985).

5.4.3.  Habitat utilisation

Home ranges of cats in this study comprised mostly open woodland and open forest habitats

with smaller areas of grassland and mudflats.  This reflected the relative availability of these

habitats at the sites, as significant avoidance was recorded only for mudflats.  However,

within home ranges, grassland and open woodland were the most frequently used habitat

types, regardless of availability.

Habitat use in felids presumably reflects the influence of prey availability and the need for

protective cover from predators and from detection by prey while hunting (Johnson and

Franklin 1991).  In Scotland, wildcats (Felis silvestris) established home ranges mostly in

forest-scrub associations in valleys at low altitudes where their preferred prey (rabbits) were

more common, while birch forest, farmland and moorland habitats were used less often

(Corbett 1979).  In coastal New Zealand, feral cats used ungrazed non-dune areas more often,

where prey were abundant, than grazed non-dune habitats (Alterio et al. 1998).  In the

Galapagos Islands, cats used lava/scrub habitats significantly more than grassy and sandy

plain habitats (Konecny 1987).  In an agricultural area in northern Italy, feral cats selected

habitats providing good cover (arboreal shelter belts, reed thickets, vegetation at the end of

drain channels) and hunted often in meadows but avoided cultivated fields (Genovesi et al.

1995).  In Tasmania, feral cats favoured habitats that included at least some ground cover and

avoided habitats where ground cover was absent, even where prey was abundant (Schwarz

1995).  At Burrendong, rabbits are the staple prey for cats and are more abundant in grassland

and open woodland habitats than the mudflats and denser open forest (R. Molsher personal

observation).

Inter-individual (sex, age) or temporal (day/night) differences in habitat use were not detected

in this study and have not been examined previously (Genovesi et al. 1995).  No evidence

was found for the use of wooded areas during the day for shelter and open areas (e.g.

grassland) at night (Artois 1985) where rabbits are more abundant.  The lack of temporal

difference in home range size and habitat use is consistent with the hypothesis that cats at

Burrendong hunt and rest at various times during both the day and night.  Inter-sexual

differences in habitat use may be expected later in spring when pregnant or lactating females,

which have higher energetic needs (Scott 1976), reduce their range size (Jones and Coman

1982) and occupy more productive habitats (Konecny 1987).
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5.5.  CONCLUSION

The solitary habits and large home ranges of cats at Burrendong are similar to those recorded

for feral cats living in other areas where humans provide no food and resources are widely

dispersed (Corbett 1979, Jones and Coman 1982, Liberg and Sandell 1988).  Male ranges

tended to be larger than those of females but the difference was not significant.  Home range

sizes were not influenced by the age of adult cats or by rabbit abundance.  The high degree of

inter-sexual overlap between young and old adult cats indicated kin groups, although kin ties

were not examined.  Cats tended to use habitats in relation to availability, but significant

avoidance of mudflats was detected.  Home ranges of cats comprised mostly open woodland

and open forest, while within ranges, grassland was the most frequently used habitat type,

presumably reflecting a higher abundance of rabbits.
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CHAPTER 6

OVERLAP IN RESOURCE USE AND INTERACTIONS BETWEEN FERAL
CATS AND RED FOXES

6.1.  INTRODUCTION

The aim of this chapter is to examine the degree of overlap in resource use between feral cats

and foxes and to record any evidence of avoidance or aggressive interactions (i.e. interference

behaviour).  Although high overlap in resource use is not sufficient to demonstrate

competition (Lawlor 1980), it can indicate a high potential for exploitation competition

(Schoener 1983).  Similarly, observations of aggression and spatial segregation between

sympatric carnivores can indicate interference competition (e.g. Dekker 1983, Sargeant and

Allen 1989).  Dietary overlap between cats and native spotted-tailed quolls (Dasyurus

maculatus) is also examined briefly as quoll scats were collected unexpectedly and

opportunistically in the study area.  Quolls are a potential competitor for cats at Burrendong

as they have similar dietary requirements (Belcher 1995).

The niche-complementarity hypothesis predicts that for coexistence to occur among

ecologically similar species, high overlap in one dimension will be compensated by low

overlap in another (Schoener 1974, Fuentes and Jaksic 1979, Jimenez et al. 1996).  Food,

habitat and time are the three most important dimensions along which competitors can

potentially partition resources (Schoener 1974).  Much evidence exists for food and habitat

segregation between sympatric mammalian predators (Fuller and Keith 1981, Litvaitis 1981,

Major and Sherburne 1987, Sargeant et al. 1987, Harrison et al. 1989, Theberge and Wedeles

1989, White et al. 1995, Cypher and Spencer 1998), but not for time (White et al. 1994).

Temporal differences in activity between sympatric predators may not be advantageous and

do not always result in low dietary overlap (Jaksic et al. 1981, Jaksic 1982).  For example,

et al. 1976, Kotler et al. 1992, see also Appendix

3) predicts that the killing of prey at one point in time can reduce prey activity and

consequently reduce foraging efficiency for subsequent predators.

Interference behaviour has been documented widely among sympatric mammalian predators

in the northern hemisphere where there is high overlap in resource use (e.g. Fuller and Keith

1981, Major and Sherburne 1987, Harrison et al. 1989, see review in Chapter 1).  However,

the competitive or predatory relationship between feral cats and foxes has not been quantified

in Australia or elsewhere.  In Australia, red foxes and feral cats are sympatric over much of

their range and have a large overlap in diet (e.g. Bayly 1978, Triggs et al. 1984, Catling 1988,
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Newsome et al 1989, Catling and Burt 1995).  Sympatry is thought to be maintained by both

predators utilizing different age groups of the same staple prey and different supplementary

prey (Catling 1988).  Intraguild predation has also been indicated, as cat remains are found

occasionally in the diet of foxes (Coman 1973b, Brunner et al. 1991, Taylor and Lupica 1998,

D. Risbey pers. comm., R. Paltridge pers. comm.).  The home ranges and habitat use of

sympatric foxes and feral cats have not been examined previously.  Information on niche

overlap, resource partitioning and agonistic encounters between cats and foxes will indicate

the potential for competition and/or intraguild predation.

The general objective of this chapter is to investigate the potential of foxes to limit the

abundance of cats via overlap in resource use or direct interactions (e.g. interference,

predation).  The specific aims of this chapter are to examine:

1) the degree of overlap in diet, home range and habitat use between cats and foxes;

2) the numerical relationship between cats and foxes;

3) the dietary and numerical responses of cats and foxes to fluctuating rabbit abundances;

4) the dietary overlap between cats and quolls;

5) the habitat types in which cats and foxes deposit scats;

6) whether foxes kill and/or eat cats;

7) any evidence for aggression or avoidance (temporal and spatial) between cats and foxes.

All work described was carried out at the Burrendong study area described in Chapter 3.

6.2.  METHODS

General methods for radiotracking, habitat use, abundance indices for foxes, cats and rabbits

(spotlight counts), and scat analyses are described in Chapter 3.  This section gives details of

the statistical analyses (Pearson product-moment correlation coefficient, ANOVAs, Tukey

tests, G-tests and t-tests), that were employed using GENSTAT and SYSTAT computer

programs.  Spatial data for cats and foxes in this chapter were collected in the untreated area

(no fox removal) in winter 1995 and 1996.  Fox spatial data were collected by the VBCRC

Fox Sterility Project (Chapter 3).  Abundance indices for cats, foxes and rabbits (VBCRC

Predator Prey Project) are presented for only the two untreated sites (Devils Hole and Harrys

Creek) from July 1994 to June 1997.  Cat and fox scats for dietary analysis were collected

over the entire study area including from experimental (removal) areas.  In addition, spotted-

tailed quoll scats were collected opportunistically and the diet of this species compared with

that of cats.
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6.2.1.  Numerical response

Predator-predator.  The numerical relationship between cat and fox abundance indices, as

estimated from spotlight counts, was evaluated using the Pearson product-moment correlation

coefficient.  Because of the lack of temporal independence in successive estimates of predator

abundance, correlations were used in a descriptive rather than hypothesis-testing sense.

Predator-prey.  The numerical response of cats and foxes to changing rabbit densities was

also evaluated descriptively, using the Pearson product-moment correlation coefficient.  Lag

phases of 1, 2, 3, 4, 6, 8, and 12 months were examined in order to assess any delayed

responses in predator abundance to changes in prey density (Pech et al. 1992).

6.2.2.  Dietary comparison between cats and foxes

Overall diet.  A non-orthogonal three-way ANOVA was used to compare percentage volumes

of prey groups in scats between predators, seasons and years (predator by season by year).

Only the main effects and the predator interactions were fitted to the model.  The season by

year, and predator by season by year interactions, were used as the residual in this analysis.

The percentage volumes were arcsine transformed to approximate a normal distribution (Zar

1984), with each prey group tested separately to avoid problems associated with the lack of

independence between prey groups.  In addition, a dietary comparison was made between cats

and foxes in the occurrence of each prey group using the G-test (Sokal and Rohlf 1994).  Each

prey group was tested separately.

Seasonal variation.  Seasons were defined as summer (December to February), autumn

(1973) method was used to confirm that sample sizes were large enough to warrant seasonal

analysis of diet.  Seasonal variation in the percentage volumes of prey groups in scats between

cats and foxes was examined using a non-orthogonal three-way ANOVA as described above

(predator by season by year).  Only fresh scats (< one month old) were used in seasonal

analyses to avoid confounding of seasons.  Age was judged by appearance and smell and with

comparison to a reference sample of scats that had been left exposed.

Rabbit consumption relative to availability.  The dietary response of cats and foxes (%

occurrence of rabbits in the diets) to changing rabbit densities was examined using the

Pearson product-moment correlation coefficient.



Chapter 6:  Overlap in resource use  115

Dietary breadth and overlap.  Dietary (niche) breadth of both predators was evaluated using

B = 1 / Σ pj
2

where pj 

was also standardised on a scale of 0 to 1.0 (Hurlbert 1978) to facilitate comparisons with

other studies and calculated as:

BA = B - 1/ n- 1

where n

appropriate method for examination of dietary breadth as it is used widely in ecological

studies and allows comparisons with other studies.  This index is minimal when the

population is specialised in using only one food item and maximal when the population uses

all resources in equal proportions (Krebs 1989).  Dietary breadth estimates were considered

significant if B or BA values differed by >10% (Dickman 1986b).

Dietary (niche) overlap between cats and foxes was evaluated using two methods: Percentage

Overlap (Pjk

and the measures of specific and general overlap (SO, GO) of Petraitis (1979, 1985).

Percentage overlap ( Pjk ) was calculated as:

 Pjk = [ Σn (minimum pij; Pik) ] x 100

where pij; Pik  = the proportion that resource i is of the total resources used by species j and k,

and n = the total number of resource states.  This index ranges from 0 (no similarity) to 100

(complete similarity).  The advantages of this method are its wide use, which allows

comparisons to be made with other studies, and its ability to measure the actual overlap of the

resource utilisation curves of two species.  In addition, this method is not sensitive to the way

in which the resource states are divided by the observer (Krebs 1989).  However, it does not

give any indication as to whether the overlap obtained is significant statistically.  To

overcome this problem, Petraitis (1979, 1985) introduced measures of specific overlap (SO)

and general overlap (GO).

Specific overlap (SO) calculates the probability that the utilisation curve (proportional usage

of each resource) of one species is drawn from the utilisation curve of another species.

Petraitis derived the equation by examining whether or not an observed species utilisation of

resource states could have been drawn randomly from the environmental resource spectrum.

Specific overlap was computed as:

SOi,k = e Eikj
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where e is the exponential, Eik= Σr
k (p1k ln p2k) - Σ r

k (p1k ln p1k) and r = the number of resource

states.  To determine whether SO is significant the (U) test statistic was calculated as:

Ui,k = -2Ni ln (SOi,k)

where Ni = number of scats, and Ui,k is distributed as Chi-square with r - 1 degrees of freedom.

General overlap (GO) calculates the probability that the resource utilisation curve of two or

is computed as a weighted average of species utilisation curves as follows:

GO = eE

where e is the exponential, E = Σs
i Σr

j [ nij (lncj- lnpij) ] / T and T = total number of scats.  To

determine whether GO is significant the test statistic (V) was calculated as:

V = -2T ln GO

where V is distributed as Chi- squared with (S - 1) (r - 1) degrees of freedom, and S = the

number of species.  The null hypothesis underlying both measures of overlap was that the two

Dietary breadth and overlap measures were determined for each season, Post-RCD (June

1996 to June 1997), and overall.

Scat deposition.  Habitat types in which scats were found were defined broadly as macro-

(Callitris, grassland, woodland) and microhabitat types (rabbit warren, on sand-plots, on

tracks, at dams, hollow log entrances, at carcasses, under bushes, on rocks or bare ground)

and recorded at the time of collection (see Chapter 3).  Differences between cats and foxes in

the proportional frequency of deposition in macro- and microhabitat types were evaluated

using the G-test.

6.2.3.  Direct predation of cats by foxes

The possibility of direct predation of cats by foxes was determined from the analysis of fox

scats, using techniques for identification of hair remains as outlined in Chapter 3.

6.2.4.  Dietary comparison between cats and quolls

Dietary differences between cats and spotted-tailed quolls in the percentage occurrence of

each prey group were evaluated using the G-test (Sokal and Rohlf 1994).  Each prey category

was tested separately to avoid problems associated with the lack of independence between

prey groups.
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6.2.5.  Spatial use comparison between cats and foxes

Home range and core area size.  Differences between cats and foxes in the size of home

ranges (MCP 95) and core areas (MCP 50) were examined using t-tests for both winter 1995

and 1996.

Overlap in home ranges and core areas.  The degree of overlap in adjacent ranges (< 500 m)

was quantified using RANGES V, which produces a matrix of the percentage overlap for each

pair of overlapping ranges. Differences in the percentage overlap of home ranges (MCP 95)

and core areas (MCP 50) between cats and foxes, and between conspecifics, were evaluated

using a one-way ANOVA.  Multiple comparisons were then made between the three groups

using the Tukey test. Percentages were arcsine transformed (Zar 1984).

Trap locations of cats in relation to fox ranges.  Trap locations of cats in winter 1996 were

overlaid on to the core areas (MCP 50) of cats and foxes to examine their proximity.

Overlap in habitat utilisation.  Both levels of habitat use were examined: a) habitat

composition within the home range; and b) proportional habitat at the location fixes.  A two-

way ANOVA was used to compare proportional habitat use between cats and foxes (predator

by habitat type).

Habitat selection was evaluated using compositional analysis (Aebischer et al. 1993) on both

levels of habitat use: a) selection of a home range within the study site; and b) differential use

of habitat types within the home range.  Habitat selection was evaluated using a one-way

ANOVA with the log-ratio differences between use and availability as the dependent variable,

and habitat type as the factor.  Separate ANOVAs were performed for each predator (cat,

fox), each level of habitat use (home range, location fixes) and each year (1995, 1996).

Where significant habitat selection was found, the habitat types were ranked according to

utilisation (see Chapter 3).  Differences in habitat selection (log-ratios) between cats and

foxes were evaluated using a two-way ANOVA (predator by habitat type).

6.2.6.  Direct interactions

6.2.6.1.  Simultaneous radiotracking

To evaluate possible avoidance interaction in more detail, four cats and six foxes were

radiotracked simultaneously at Spring Creek (Fig. 3.3) in an untreated area in October 1996.

Fixes were obtained every hour for six hours on each night for 11 nights, between 1800 and

2400 h.  Consecutive bearings were taken within a 20-minute period.  Size differences in
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home ranges (MCP 95) and core areas (MCP 50) between cats (n = 232 fixes) and foxes (n =

331 fixes) were evaluated using the t-test.

Relationships between the movements of different animals were investigated at two levels,

using static interaction and dynamic (temporal) interaction analysis (Macdonald et al. 1980).

Static interaction is determined from the spatial overlap of two home ranges and the

congruence of their utilisation distributions, while dynamic interaction is the dependency in

the movements of two individuals within the known limits of their home range (Doncaster

1990).

Static interaction.  The percentage overlap of two home ranges provides a first approximation

of static interaction (Macdonald et al. 1980).  If A1 and A2 represent the home ranges of

animals 1 and 2 respectively, and A1,2 is the area of overlap, then static interaction (S) is

S1,2= A1,2/A1;              and S2,1= A1,2/A2

where S1,2 2,1 is the

1 = A2 then S1,2 would

not equal S2,1 (Macdonald et al. 1980).  Percentage overlap between overlapping or adjacent

(< 500 m) ranges was calculated using RANGES V.  Differences in percentage overlap of

home ranges (MCP 95) and core areas (MCP 50) were evaluated between cats and foxes, and

between conspecifics, using a one-way ANOVA.  Multiple comparisons were made between

the three groups using the Tukey test.  Percentages were transformed prior to analysis using

the arcsine transformation (Zar 1984).

Dynamic interaction (temporal overlap).  Dynamic interaction is an improvement on static

interaction; it takes into account the possibility that, although two ranges may overlap, the

animals may not occur in the same place at the same time.  Dynamic interaction determines

the dependency in the simultaneous movements of a pair of individuals and is a more subtle

measure of the relationship between two animals than static interaction (Macdonald 1980,

Doncaster 1990).  This technique, which incorporates the time series of the locational data,

has not been used widely in predator studies.  It requires that the animals be monitored

simultaneously with a constant sampling interval within each data collection period.  The

(Jacobs 1974) which was calculated using RANGES V.  This analysis produces a single

(Kenward and Hodder 1996).  A value of 0 indicates that the observed and possible distances
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compared to reduce the influence of distant locations (Kenward et al. 1993).

Distances between individuals.  Mean geometric distances between cats and foxes, and

between conspecifics, were compared using a one-way ANOVA.  Multiple comparisons were

made between the three groups using the Tukey test.

Habitat use.  Differences between cats and foxes in the proportional use of each habitat type

were evaluated using the t-test.  Each habitat type was tested separately to avoid problems

associated with the lack of independence between habitat types.  Percentages were not log or

arcsine transformed as variation between values was small (Zar 1984).  Both methods of

habitat composition, home range and fixes, were examined.

6.2.6.2.  Video observations

To examine potential avoidance and aggressive behaviours between cats and foxes, carcasses

were staked out and videotaped for 140 hours over a two-month period in spring 1996.  A

feeding area was established where carcasses (mostly kangaroo carcasses and sheep

stomachs) were regularly deposited.  Red light, rather than white light, illuminated the feeding

area, in order to reduce wariness as has been found in captive foxes (Newsome 1995).

Animals entering the feeding area were videotaped between the hours of 1800 and 0600.  The

video camera was housed in a canvas hide and placed approximately 30 m from the carcasses.

The ratio of possible visits to actual visits was calculated from the numbers of radiocollared

cats and foxes known to be in the area (possible), and the numbers of individuals observed on

the video tape (actual).

6.2.6.3.  Causes of mortality for radiocollared cats

Carcasses of dead radiocollared cats were examined for possible causes of death.  Teeth-

marks on radio collars were examined under a stereo-dissecting microscope and compared

with reference skulls of cats and foxes.  Examination of the kill site also provided clues as to

the cause of death.

6.2.6.4.  Anecdotal observations of direct interactions

Observations of interactions between cats and foxes were recorded, including those from co-

workers and landholders in the area.  An interaction was defined as any encounter where a cat

and fox were ≤ 100 m apart.  Outcomes of interactions were classified as tolerance,

aggression or displacement (after Gese et al. 1996).  Tolerance was scored when both

predators appeared to ignore each other, while displacement occurred when one predator
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approached or chased the other predator, causing the latter to move away from the immediate

area.  Aggression was defined as agonistic behaviour, such as fighting or back-arching.

6.3.  RESULTS

6.3.1.  Numerical response

Predator-predator.  Cat and fox abundance estimates were not correlated significantly (r =

0.28, n = 27; P > 0.05).  Overall, foxes ( x  ± s.e.: 0.64 km-1 ± 0.065) were 10.6 times more

numerous than cats (0.06 km-1 ± 0.010) at the untreated sites (Fig. 6.1).  Fox counts ranged

from 0 to 1.3 km-1, while those for cats ranged from 0 to 0.2 km-1.

Predator-prey.  A significant negative relationship was found between the abundance of foxes

and rabbits (r = -0.44, n = 27; P < 0.05), but not for cats and rabbits (r = -0.29, n = 27; P >

0.05).  However, using a four month lag period, both fox (r = -0.47, n = 20; P < 0.05) and cat

abundance (r = -0.43, n = 20; P < 0.05) were correlated significantly and negatively with

rabbit abundance.  No significant relationships were found for lag phases of 1, 2, 3, 6, 8 and

12 months (P > 0.05).  Rabbit abundance ranged from 0.4 to 51.9 km-1 ( x  ± s.e.: 15.5 km-1 ±

2.8) with numbers declining dramatically post-RCD (Fig. 6.1).

6.3.2.  Dietary comparison between cats and foxes

Overall diet.  Totals of 499 cat scats and 343 fox scats were collected randomly throughout

the study area in most months from July 1994 to June 1997.  Mammals occurred in all cat

scats and 92.7% by percentage occurrence (O) in fox scats, comprising 87.5% and 49.4% by

volume (V), respectively, of the overall diet of cats and foxes (Table 6.1).  Cats ate primarily

rabbit (O: 81.6%, V: 69%) and carrion

(O: 21.5%, V: 11.5%), while vegetation (O: 64.1%, V: 28.1%), rabbit (O: 52.2%, V: 27.9%),

invertebrate (O: 61.8%, V: 21%) and carrion (O: 51%, V: 17%) were important foods for

foxes (Table 6.1, Fig. 6.2).  Data for % occurrence and % volume showed similar trends (Fig.

6.2).

Rabbit comprised significantly more by volume of the diet of cats than of foxes (F = 21.98; d.

f. = 1, 11; P < 0.001), while invertebrates (F = 4.71; d. f. = 1, 11; P = 0.053) and vegetation

(F = 20.27; d. f. = 1, 11; P < 0.001) were more important in the diet of foxes (Fig. 6.2).

Carrion was eaten in similar quantities by both predators (F = 2.85; d. f. = 1, 11; P = 0.120).

Similarly, by occurrence, rabbit was eaten significantly more often by cats than by foxes (G =



Chapter 6:  Overlap in resource use  121

82.36; d. f. = 1; P < 0.001), while carrion (mostly eastern grey kangaroo) (G = 77.06; d. f. =

1; P < 0.001), invertebrates (G = 33.78; d. f. = 1; P < 0.001) and vegetation (G = 121.42; d.

f. = 1; P < 0.001) were eaten significantly more often by foxes (Fig. 6.2).  Among the minor

prey items, house mice and birds tended to be eaten more often by foxes than by cats, while

cats tended to eat possum and reptiles more often than foxes, but the differences were not

significant (P > 0.05) (Table 6.1; Fig. 6.2).

Seasonal variation.  Totals of 436 cat scats and 321 fox scats were classified as fresh (< one

month old) based on appearance and smell, and included in the seasonal analyses.  A

marginally significant predator by season interaction was found in the percentage volume of

invertebrates (F = 3.87; d. f. = 3, 11; P = 0.041) and rabbits (F = 2.78; d. f. = 3, 11; P =

0.091) in the diet.  Invertebrates were more important in summer for foxes, and in autumn for

cats, compared to other seasons (Fig. 6.3).  Rabbits tended to be less important in the diet for

foxes in summer than in other seasons, while no marked seasonal variation was evident for

cats (Fig. 6.3).  No clear seasonal differences in diet between cats and foxes were found for

the other prey groups (P > 0.05) (Fig. 6.3).

Rabbit consumption relative to availability.  Positive, almost significant correlations, were

recorded between the occurrence of rabbit in the diet and rabbit abundance recorded at the

untreated sites for both cats (r = 0.44, n = 16; P = 0.08) and foxes (r = 0.42, n = 17; P = 0.09)

(Fig. 6.4).  Post-RCD, cats and foxes continued to feed on rabbits despite a dramatic decline

in rabbit abundance (Fig. 6.4).  Rabbit was more important in the diet of cats than foxes in

most months of the study and reached 100% occurrence in cat scats on seven occasions

compared to only one occasion for foxes (Fig. 6.4).

Dietary breadth and overlap.  Foxes consumed a greater range of food items than cats;

significantly greater dietary breadth was recorded for foxes than for cats overall, and in most

seasons, except autumn (Table 6.2).  In autumn, dietary breadth indices were higher for cats

than in other seasons prior to RCD (B = 4.32, BA = 0.37), at which time dietary breadth did

not differ significantly between the two predators (Table 6.2).  Dietary breadth for foxes was

highest in winter compared to other seasons (B = 5.29, BA = 0.48) (Table 6.2).  Both predators

tended to consume a wider range of prey types post-RCD than in most other periods pre-RCD

(Table 6.2).

Measures of dietary overlap (Pjk) were high between cats and foxes overall (75%) and ranged

from 73% in spring and summer to 78% in autumn (Table 6.2).  Specific overlaps (SO) for

each period and overall were significant (P < 0.05) and the null hypothesis of complete
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overlap was rejected.  In autumn, when general overlap was higher (GO = 0.97) than in other

periods, the null hypothesis was rejected (V = 19.25; d. f. = 7; P < 0.01).  General overlap

during the other periods was also high, with the null hypothesis of complete overlap being

rejected in all comparisons (P < 0.05).

        Fig. 6.1.  Abundance indices (no. km-1) for cats, foxes and rabbits recorded in
        spotlight counts at the untreated sites (DH and HC) from July 1994 to June 1997.
        Data collected by other VBCRC projects.
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        Fig. 6.2.  Dietary comparison  of the major prey groups for cats (n  = 499 scats)
        and foxes (n  = 343 scats).  ** significant at P  < 0.05, *** P  < 0.001
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 Table 6.2. Dietary breadth and overlap indices for cats (n  = 436 scats) and 

foxes (n  = 321 scats).
Where B = Levins' measure of dietary breadth, BA = standardised Levins' measure, and

 Pjk  = percentage overlap, SO = specific overlap, GO = general overlap and post-RCD = 

 June 1996 to June 1997. * denotes values differing by 10% or more.

           Dietary breadth                 Dietary overlap
                (B )                (B A )

cat fox cat fox Pjk SO 1,2 SO 2,1 GO
winter 3.56 5.29 * 0.28 0.48 * 74% 0.81 0.82 0.95
spring 3.49 4.45 * 0.28 0.38* 73% 0.81 0.81 0.95

summer 3.63 4.36 * 0.29 0.37* 73% 0.80 0.79 0.95
autumn 4.32 4.46 0.37 0.38 78% 0.87 0.86 0.97

post-RCD 4.54 5.26 * 0.39 0.47* 75% 0.82 0.81 0.95
overall 3.75 4.83 * 0.31 0.42* 75% 0.85 0.86 0.96

       Fig. 6.4. Rabbit consumption by cats (n  = 436 scats) and foxes (n = 321 scats) 
       relative to rabbit abundance recorded in spotlight counts at the two untreated sites.
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Scat deposition.  More scats were collected from both predators in grassland compared to

Callitris and woodland habitats (Fig. 6.5a).  However, cats and foxes deposited scats

differently in the macrohabitat (G = 12.75; d. f. = 2; P = 0.002) and microhabitat types (G =

113.99; d. f. = 5; P < 0.001).  Foxes deposited scats more often in grassland habitats than cats,

while cats deposited scats more often in Callitris and woodland habitats (Fig. 6.5a).

Similarly, cats deposited scats more often on rabbit warrens and at hollow log entrances than

foxes, while foxes deposited scats more often on sand plots, tracks and at dams (Fig. 6.5b).

Cats and foxes deposited scats in similar frequency at carcasses.

6.3.3.  Direct predation of cats by foxes

No cat remains were found in any of the fox scats (n = 343 scats).

              Fig. 6.5. Comparison between cats and foxes in the (a) macro- and (b) microhabitats in 
              which scats were collected.

a. Macrohabitat

0

20

40

60

80

100

P
er

ce
nt

ag
e

cat  
fox   

Callitris grassland woodland

b. Microhabitat

0

10

20

30

40

50

rabbit
warren

sand plot track dam hollow
log

carcass

P
er

ce
nt

ag
e

cat  
fox  



Chapter 6:  Overlap in resource use  128

6.3.4.  Dietary comparison between cats and quolls

Rabbits were the main prey for both cats and quolls (Fig. 6.6).  Invertebrates were next most

important in terms of frequency in the diet for both cats and quolls, occurring in 41.5% and

33.3% of scats respectively.  Vegetation was eaten significantly less often by quolls (0%) than

by cats (26.3%) (G = 6.81; d. f. = 1; P < 0.05).  Reptile remains were not found in quoll scats.

No significant differences were found for the other major prey types (P > 0.05, G-tests).

6.3.5.  Spatial use comparison between cats and foxes

Home range size.  Cats tended to occupy smaller home ranges (MCP 95) than foxes in winter

in both 1995 and 1996 but the differences were not significant (1995: t = -0.10; d. f. = 14; P =

0.92; 1996: t = -0.68; d. f. = 19; P = 0.50) (Table 6.3).  Core areas of cats and foxes were of

similar size in both 1995 (t = 0.10; d. f. = 14; P = 0.92) and 1996 (t = 0.99; d. f. = 19; P =

0.34) (Table 6.3).

        Fig. 6.6.  Dietary comparison between cats (n  = 499 scats) and spotted-tailed quolls
        (n  = 12 scats) at Burrendong.  ** significant at P  < 0.05, G -test.
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Overlap in home ranges and core areas.  A large degree of overlap occurred between the

home ranges of cats and foxes, whereas little overlap was detected in core areas in both winter

1995 (Fig. 6.7) and 1996 (Fig. 6.8).  In winter 1995, mean % overlap         (± s. e.) of home

ranges did not differ significantly between the three groups: cats and foxes (27.1% ± 3.7); cats

and cats (25.8% ± 5.3); and foxes and foxes (19.5 ± 7.2) (F = 0.37; d. f. = 2, 81; P = 0.692)

(Fig. 6.9).  However, core areas did vary significantly (F = 3.17; d. f. = 2, 81; P = 0.047)

(Fig. 6.9).  The amount of overlap in core areas between cats and cats (7.7% ± 4.1) was

greater than the zero overlap recorded between cats and foxes (Tukey P = 0.060).  In winter

1996, mean % overlap did not differ significantly between the three groups for both home

ranges (F = 1.77; d. f. = 2, 149; P = 0.174) and core areas (F = 1.56; d. f. = 2, 149; P =

0.213) (Figs. 6.8 and 6.9).

Trap locations of cats in relation to fox and cat core areas.  Most cats (n = 6) were trapped in

close proximity to their core areas, with only two cats trapped in fox core areas (Fig. 6.8).

Overlap in habitat utilisation.  Both cats and foxes used open woodland most often and

mudflats less often than other habitat types in both 1995 and 1996 (Fig. 6.10).  No significant

differences were found between cats and foxes in their relative use of the four habitat types at

both levels of habitat composition: home range within the study site and at the location fixes

within the home range (P > 0.05, Table 6.4).

Table 6.3.  Home range (MCP 95) and core area (MCP 50) sizes for cats 
     and foxes in winter 1995 and 1996.  Means and standard errors are shown.

                Range area
Home range (ha) Core area (ha) No. locations

Winter 1995 cat (n  = 8)     275 + 48.5     49 + 18.6 309
fox (n  = 8)     285 + 92.2     46 + 11.2 489

Winter 1996 cat (n  = 8)     309 + 57.8     93 + 25.5 410
fox (n  = 13)     396 + 115.4     64 + 14.9 1677

Total 2885
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               Fig. 6.10.  Habitat use (% fixes in each habitat type) of cats and foxes in winter
               1995 (798 fixes) and 1996 (2087 fixes).  Means and standard errors are shown.
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        Fig. 6.9.   Percentage overlap in home ranges and core areas between cats and foxes
        and between conspecifics in winter 1995 and 1996.  Means and standard errors are
        shown.  Values above bars represent the number of overlapping pairs.
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Table 6.4.  Outcome of a two-way ANOVA for evaluating differences in habitat use
between cats and foxes in winter 1995 and 1996.  Habitat composition was determined at
two levels: a) within study site, and b) within home ranges.  Values represent the cat/fox

by habitat interaction.

F d. f . P

Winter 1995 a) within study site 0.54 3, 56 0.66

b) within ranges 0.89 3, 56 0.45

Winter 1996 a) within study site 0.49 3, 76 0.68

b) within ranges 0.62 3, 76 0.60

Habitat selection.  Habitat selection, at the level of habitat composition within the home range

compared to availability at the site, did not differ between cats and foxes in both 1995 and

1996 (P > 0.05).  However, at the level of habitat composition at the location fixes relative to

availability in the home range, habitat selection differed strongly between cats and foxes in

both 1995 (F = 6.69; d. f. = 2, 31; P = 0.004) and 1996 (F = 4.58; d. f. = 2, 51; P = 0.015).

In 1995, cats (mean log ratio = 0.278) used grassland more often than foxes (mean log ratio =

-0.383) in relation to availability in their home ranges (t = 2.97; d. f. = 12; P = 0.01).  In

1996, cats (mean log ratio = -1.39) tended to use mudflats less often than foxes (mean log

ratio = 1.33) in relation to availability (t = -1.90; d. f. = 5; P = 0.11).

Compositional analysis revealed that cats did not establish their home ranges at random

within the two untreated sites in either 1995 (F = 4.81; d. f. = 2,21; P = 0.019) or 1996 (F =

3.55; d. f. = 2,21; P = 0.047).  Calculation of the ranking matrix showed that mudflats were

significantly under-used relative to the three remaining habitat types in 1995, and relative to

open woodland in 1996.  Foxes did, however, establish their home ranges at random with

respect to habitat in both years (1995: F = 0.31; d. f. = 2,18; P = 0.739; 1996: F = 1.30; d. f.

= 2, 33; P = 0.287).

Habitat utilisation by cats based on location fixes was also significantly different to that

expected from the habitat composition of the home ranges in 1995 (F = 16.55;   d. f. = 2, 15;

P < 0.001), but not in 1996 (F = 3.52; d. f. = 2, 16; P = 0.054). In 1995, cats avoided

mudflats in preference to grassland and open woodland.  Foxes selected habitats in proportion

to availability in both years (1995 F = 0.66; d. f. = 2, 18; P = 0.529; 1996 F = 1.86; d. f. = 2,

33; P = 0.172).
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6.3.6.  Direct interactions between cats and foxes

6.3.6.1. Simultaneous radiotracking

Sizes of home ranges (MCP 95) and core areas (MCP 50) of four cats and six foxes are

summarised in Table 6.5.  No significant difference was found in the size of home ranges

between cats ( x  ± s.e.: 386 ha ± 187.7) and foxes (258 ha ± 94) in October 1996 (t = 0.67; d.

f. = 8; P = 0.52).  Similarly, core areas were not significantly different in size between cats

and foxes (t = 1.21; d. f. = 8; P = 0.26).

Static interaction.  A large degree of home range (MCP 95) overlap was found between cats

and foxes ( x  ± s.e.: 20% ± 4.8), cats and cats (34% ± 7.2), and foxes and foxes (22% ± 7.3),

with no significant difference between the groups (F = 0.29; d. f. = 2, 52; P = 0.743) (Fig.

6.11a).  However, core areas (MCP 50) were further apart, with minimal overlap recorded

between cats and foxes (3.5% ± 3.03) and foxes and foxes (0.04% ± 0.03), and considerable

overlap recorded between cats and cats (59% ±

 Table 6.5.  Home range (MCP 95) and core area (MCP 50) sizes (ha) of  four cats
(232 fixes) and six foxes (331 fixes) at Spring Creek in October 1996.

Radio Tag         Range size (ha)
Frequency ID Sex No. fixes MCP 95 MCP 50

cat 216696 C2 M 50 199.5 29.7
216934 C3 F 55 84.1 18.9
216874 C1 M 48 331.5 67.2
151983 C4 M 79 928 345
mean 386 115
s.e. 187.7 77.3

fox 150320 F2 F 58 306 134
151320 F1 F 69 125 33
150900 F4 F 70 57 12
151740 F3 F 67 115 11
150800 F5 F 33 687 16
150580 F6 F 34 259 7
mean 258 36
s.e. 94 20
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10.80) (Fig. 6.11b).  The difference in the amount of overlap between the three groups was

significant (F = 19.58; d. f. = 2, 52; P < 0.001).  Overlap between cats and cats was

significantly greater than that recorded between cats and foxes (P < 0.001, Tukey) and

between foxes and foxes (P < 0.001, Tukey).  No difference in the amount of overlap was

found between cats and foxes, and foxes and foxes (P > 0.05, Tukey).

Dynamic interaction.  

adjacent ranges (Table 6.6) indicating attraction in spatial movements, while indices were

mostly negative or close to zero between cats and foxes, indicating weak avoidance behaviour

foxes overall was 0.0007 (n = 12), indicating that cat movements were not influenced by fox

were 0.178 (n = 3) and between foxes and foxes 0.03 (n = 4).

Distances maintained between individuals.  Significant differences were found in the mean

geometric distances between cats and foxes and between conspecifics (F = 3.64; d. f. = 2, 15;

P = 0.051).  Cats kept significantly further away from foxes ( x  ± s.e.: 1426 m ± 150.8) than

they did from other cats (663 m ± 61.5) (P = 0.045, Tukey) (Fig. 6.12).  Similarly, foxes

tended to keep further away from cats than they did from each other (1134 m ± 183.2), but the

difference was not significant (P = 0.511, Tukey) (Fig. 6.12).  No significant difference was

found in the distances between cats and cats, and foxes and foxes (P = 0.368, Tukey) (Fig.

6.12).

    Table 6.6.  Jacobs' index describing the nature of the interaction between cats (C1-4) 
and foxes (F1-6) and between conspecifics in Spring Creek in October 1996.
Where 0 = no interaction, -1 = avoidance and +1 = attraction.  Values are shown for
 individuals with adjacent/overlapping home ranges

            Animal ID
C2 C3 F1 F2 F3 F4 F5 F6

216696 216934 151320 150320 151740 150900 150800 150580
C1 216874 0.34 0.23 -0.04 0.19 0.16 -0.20
C2 216696 -0.03 -0.09 0.02 -0.04 0.01
C3 216934 0.01 -0.01
C4 151983 -0.01 0.01
F1 151320 -0.03 0.16 -0.06
F2 150320
F5 150800 0.04
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Habitat use.  Both levels of habitat use (proportional habitat within the home range and

proportional habitat use at the location fixes) produced similar results (Fig. 6.13).  Open

woodland was the most used habitat type by both cats and foxes while mudflats were used

less often at Spring Creek in October 1996.  Cats tended to use open woodland habitats more

often and grassland less often than foxes, but the differences were not significant at the level

of either home range or at the fixes (P > 0.05) (Fig. 6.13).

6.3.6.2. Video observations

In 140 hours of video observations, over 100 fox/fox interactions were recorded but only one

cat/fox interaction.  On this occasion, the cat remained at the carcass and the fox (a sub-adult)

ran off.  Cats visited the carcasses on only two occasions and only when foxes were not in the

immediate vicinity.  This area was known to be visited by at least three radiocollared cats and

three radiocollared foxes, but only one individual cat visited the carcasses compared to at

least 15 individual foxes.  The ratio of possible visits to actual visits was 1:3 for foxes and 1:

0.3 for cats.

6.3.6.3. Causes of mortality for radiocollared cats

Of 17 confirmed cat deaths, decomposition was too advanced in nine cases for the cause of

death to be determined.  Where a cause of death was determined from carcass examination (n

= 8), three were attributed to fox attack, three to trap injury, one was sick when trapped, and

one was inadvertently shot.  Fox attack was determined from the analysis of teethmarks on

radio collars and puncture wounds detected in some bones.  Teethmarks on the three radio

collars were consistent with fox teeth marks (Fig. 6.14a).  In addition, the leather collars were

ripped, while collars of cats that died from other causes were generally intact (Fig. 6.14b).

6.3.6.4. Anecdotal observations of direct interactions

Eleven observations of interactions (i.e. < 100 m) between cats and foxes are described in

Table 6.7.  Cats and foxes generally ignored each other (tolerance) at distances ≥ 50 m apart,

while aggressive or displacement interactions were often observed when < 50 m apart (nos. 6,

8, 9 and 10, Table 6.7).  On incident 6, a fox was sighted in the spotlight at the top of a dam

levee.  On sighting, the fox moved off and a cat appeared on the levee within 5 minutes.  On

9, a cat was observed in a tree, while a fox was located 20m away.  On incident 10, a fox was
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end as it circled the cat.  The fox then chased the cat out of sight, a fox yelp was heard, and

the cat was seen running off.

     Fig. 6.12.  Geometric distances recorded between cats (n = 4) and foxes (n  = 6) 
     and between conspecifics at Spring Creek in October 1996.  Means and standard 
     errors are shown. Values above bars represent the number of adjacent/overlapping pairs.

0

400

800

1200

1600

2000

cat/cat fox/fox cat/fox

M
ea

n 
di

st
an

ce
 (

m
)

n  = 4

n  = 3

n  = 11



Chapter 6:  Overlap in resource use  139

     Fig. 6.13.  Habitat composition of a) home ranges and b) at  fixes for      cats 
     (n  = 4) and       foxes (n  = 6) at Spring Creek in October 1996.  Means and 
     standard errors are shown.
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6.4.  DISCUSSION

Cats and foxes at Burrendong had a large overlap in diet, home ranges and habitat use,

indicating a high potential for exploitation competition.  Some resource partitioning was

detected, and avoidance and aggression were observed.

6.4.1.  Overlap in diet: cats and foxes

Both predators preyed mainly on mammals and to a lesser extent birds, reptiles, invertebrates

and vegetation.  Although dietary overlap was high (75%), cats and foxes used many of the

same prey types in different proportions.  Rabbits were more important in the diet of cats than

foxes, particularly in summer, when invertebrates were a significant dietary component for

foxes.  In contrast, carrion, invertebrates and vegetation were significantly more important in

the diet of foxes than cats, overall.  These interspecific differences in diet are consistent with

those reported for sympatric cats and foxes elsewhere (Bayly 1978, Triggs et al. 1984, Catling

1988, Brunner et al. 1991, Wallis et al. 1996).

6.4.2.  Overlap in diet: cats and quolls

The similarity in diet between cats and spotted-tailed quolls at Burrendong also indicated

potential for exploitation competition, although few quoll scats (n = 12) were collected.

Rabbits were the main prey for both predators and invertebrates second in importance.

Carrion, reptiles and vegetation were eaten more often by cats than by quolls, while possums

and birds tended to be eaten more often by quolls.  The diet of the spotted-tailed quoll at

Burrendong was similar to that recorded in open forest-woodland in Victoria (Belcher 1995),

which is the only other study that has examined diet in this species.

6.4.3.  Overlap in habitat use

Differences in habitat use between felids and canids were expected given their morphological

and behavioural differences (Eisenberg 1986, Kruuk 1986).  Felids often hunt using

concealment, stalking and sudden attack, which require cover, while canids typically use

open-area pursuit techniques to exhaust large prey, while at close range they pounce on small

prey (Kruuk and Turner 1967, Kleiman and Eisenberg 1973, Eisenberg 1986, Henry 1986,

Koehler and Hornocker 1991).  Dense cover for felids allows concealment from prey but can

also provide cover from potential agonistic encounters with other predators (e.g. Litvaitis and

Harrison 1989).  In contrast, canids do not usually use vegetation for concealment and tend to

have increased hunting success in open habitats (Wells and Bekoff 1982, but see Murray et al.

1995).  Differences in hunting behaviour between canids and felids suggest that the two

groups should hunt in different habitat types, even when they share the same staple prey.
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However, considerable overlap in both diet and habitat use were observed in this study and in

studies of sympatric canids and felids elsewhere (e.g. Artois 1985, Major and Sherburne

1987, Litvaitis and Harrison 1989, Koehler and Hornocker 1991).  For example, sympatric

wild cats (Felis silvestris) and red foxes had similar dietary requirements in an agricultural

region in France, and both predators rested in wooded cover during the day and were active at

night in open areas (Artois 1985).  Partitioning of habitats on a finer scale, however, may

elucidate greater habitat segregation (e.g. Artois 1985).

Home ranges of both cats and foxes at Burrendong comprised mostly open woodland

followed by grassland, open forest and mudflat habitats, which largely reflected the

availability of these habitats.  Scats from both predators were also deposited in similar

macrohabitats; grassland was the most common habitat type followed by Callitris and

woodland.  However, some interspecific differences were detected in habitat preference and

the microhabitats in which scats were deposited.  While foxes established home ranges in

habitats relative to availability, cats avoided mudflats.  In addition, within individual home

ranges, cats showed a preference for grassland habitats and again avoided mudflat areas,

while no habitat preference was detected for foxes.  Further, cats deposited scats more often

than foxes at rabbit warrens and at log entrances, while foxes deposited scats more often than

cats on sand plots, tracks and at dams.

The avoidance of mudflats by cats presumably reflected the paucity of prey in these areas and

the lack of available shelter.  Similarly, the preference for grassland habitats by cats

presumably reflected the greater abundance of rabbits in these areas (personal observation)

and the greater reliance on rabbits as prey, compared to foxes.  The influence of prey

availability on habitat preference has been documented widely in mammalian carnivores (e.g.

Litvaitis et al. 1985, Phillips and Catling 1991).  For example, bobcats were most abundant in

dense understories in eastern Maine, where snowshoe hares were most abundant (Litvaitis et

al. 1985).  Similarly, foxes in coastal south-eastern Australia frequently used dry sclerophyll

forest habitats, where small and medium-sized mammals were most abundant, while

heathland and beach habitats were used rarely (Phillips and Catling 1991).

The interspecific differences recorded in the microhabitats in which scats were deposited were

consistent with the locations of cats and foxes observed at Burrendong.  Cats often used rabbit

warrens and hollow logs for shelter, while foxes were observed frequently on or near tracks.

In Western Australia, the higher deposition of scats by foxes than by cats at sand plots (which

contained buried meat baits) was consistent with cats being reluctant to dig up baits (Risbey et

al. 1997).
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6.4.4.  Home range size

Cats at Burrendong tended to occupy smaller home ranges than foxes, which is consistent

with studies of these predators elsewhere in Australia (e.g. Jones and Coman 1982, Coman et

al. 1991, Phillips and Catling 1991).  However, the simultaneous locations, which were

obtained only at night, showed that cats tended to occupy larger home ranges than did foxes

in October.  This discrepancy may be due to the small sample size (four cats and six foxes)

and the short time span (one month) over which simultaneous locations were obtained.

Alternatively, it may have reflected a sex bias as all foxes used in this study were females.

Although red fox home range sizes do not usually differ between the sexes (e.g. Cavallini and

Lovari 1994), vixens may have been denning in October, at which time activity is usually

reduced and mostly diurnal (Phillips and Catling 1991).  In addition, three of the four cats on

which simultaneous locations were obtained were males which generally occupy larger home

ranges than females (see Chapter 5).

6.4.5.  Avoidance

Spatial segregation between cats and foxes at Burrendong indicated mutual avoidance with

most evidence suggesting that cats avoided foxes, rather than the converse.  Although all

known cats and foxes in the study area were not radiocollared, as uncollared animals were

frequently observed, overlap within species was greater than between species.  Similarly, little

interspecific overlap in core areas was observed.  Most cats (n = 6) were trapped within or in

close proximity to their core areas, while only two cats were trapped in fox core areas.  In

addition, the actual distances maintained between simultaneously radiotracked cats and foxes

were greater than those maintained between conspecifics.  Video observations (140 hours)

indicated avoidance of carcasses by cats in the presence of foxes.  Although carrion was an

important supplementary prey for both predators and no interspecific differences were

detected in the frequency of scat deposition at carcasses, cats visited the carcasses on only two

occasions compared to over 100 visits by foxes.  Cats visited the carcasses only when foxes

were not in the immediate vicinity although the video area was located within the home

ranges of three radiocollared cats and three radiocollared foxes.  However, during the day

when the video camera was turned off cats may have fed at the carcasses.  It was not possible

to distinguish diurnal scavenging by birds and cats.  The video observation of avoidance of a

cat by a fox probably reflected the subadult status of the fox.

Although no significant temporal avoidance was detected between simultaneously

radiotracked cats and foxes (i.e. movements of both predators were random with respect to

each other); they may have avoided each other in more subtle ways that were beyond the
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resolution of radiotracking data.  This is supported by observations of no apparent interaction

between cats and foxes at distances greater than 50 m.  In addition, more subtle interactions

could occur if one predator followed another and took approximately the same foraging route

without maintaining direct contact (Doncaster and Macdonald 1997).  Simultaneous locations

of sympatric bobcats and coyotes in Maine also indicated a lack of attraction or avoidance

between neighbouring heterospecifics, despite a large overlap in diet and spatial use and a

negative correlation in abundance between the two predators (Major and Sherburne 1987,

Litvaitis and Harrison 1989).  Alternatively, cats may have avoided foxes in more overt ways

such as by being diurnally more active.  Thus video observations and simultaneous

radiotracking at night may have underestimated the real amount of temporal segregation.

Avoidance of the dominant predator by a subordinate predator has been recorded widely in

carnivores (e.g. Voigt and Earle 1983, Major and Sherburne 1987).  For example, coyotes

exclude red foxes from their core areas and foxes occupy territories on the periphery or

outside of coyote territories (Voigt and Earle 1983, Major and Sherburne 1987, Sargeant et al.

1987, Harrison et al. 1989).  Although coyotes are aggressive and sometimes kill foxes,

particularly when carcasses are present, at other times coyotes tolerate foxes (Fuller and Keith

1981).

6.4.6.  Aggression

Aggression by foxes toward cats was indicated with the evident killing of three radiocollared

cats by foxes.  It was not known whether foxes subsequently ate the three cats as

decomposition was too advanced.  No cat remains were detected in any of the 343 fox scats

(or 255 fox stomachs, Appendix 3) that were collected from Burrendong, although elsewhere

cat remains have been found in the diet of foxes (Coman 1973b, Brunner et al. 1991, Taylor

and Lupica 1998, D. Risbey pers. comm., R. Paltridge pers. comm.).

Anecdotal observations further indicated aggression toward cats.  Although foxes tolerated

cats at distances greater than 50 m, they were aggressive or displaced cats at distances less

than 50 m.  Similarly, neighbouring groups of red foxes in Bristol avoided direct encounters

with each other at close distances (<50 m), presumably through sight or scent (White and

Harris 1994).

6.4.7.  Niche overlap theory

Traditional niche theory predicts that overlap should be lower when resources are scarce (e.g.

Pianka 1974, Schoener 1982, Caughley and Sinclair 1994), but this has been challenged

increasingly in recent years (Freeland 1983, Arthur 1987, Vadas 1990, Hansson 1995).
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Overlap can also increase when resources are scarce (e.g. Schoener 1982, Litvaitis and

Harrison 1989), since coexisting species may expand their niches to exploit suboptimal

resources.  Examination of dietary breadth and overlap between cats and foxes at Burrendong

supports this interpretation.  Cats increased their dietary breadth in autumn to include a

greater range of prey types when the availability of young rabbits was low (c. f. Catling

1988), and dietary overlap with foxes increased to 78%.  Cats were also more trappable in

autumn, which provided further support that rabbits were scarce (see Appendix 1).  In

addition, when rabbit numbers declined dramatically post-RCD, the dietary breadth of both

predators increased and overlap was high.  Increased overlap between sympatric felids and

canids during lean periods has been recorded elsewhere (Litvaitis et al. 1986, Litvaitis and

Harrison 1989, Koehler and Hornocker 1991).  In eastern Maine, bobcats overlapped more

with coyotes in winter and spring when prey were less abundant and bobcats were in poor

physical condition (Litvaitis et al. 1986, Litvaitis and Harrison 1989).  Similarly, overlap

among mountain lions, bobcats and coyotes increased during winter when resources were

limited in central Idaho (Koehler and Hornocker 1991).

6.5.  CONCLUSION

Intraguild predation was not indicated in this study as no cat remains were found in any of the

fox scats.  However, cats and foxes had a large overlap in diet, home ranges and habitat use,

thus indicating a high potential for exploitation competition, particularly if resources were

limited.  Foxes may attempt to lessen competition by killing cats (interference competition).

Mutual avoidance of the two species was indicated by the greater distances and lower overlap

in home ranges and core areas recorded between species compared to conspecifics.  Video

observations suggested that cats avoided carcasses when foxes were in the vicinity.  Some

resource partitioning was detected in both diet and habitat use.  Further resource partitioning

may have occurred if prey items and habitat types had been examined on a finer scale.  In

addition, temporal differences in activity, although not examined here, may facilitate

coexistence between cats and foxes (e.g. Das 1993, Artois 1985).  However, to effectively test

the hypotheses that foxes limit cat abundance through interspecific competition or intraguild

predation, an experimental removal of foxes is clearly required.  Such an experiment is

presented in Chapter 7.
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CHAPTER 7

EFFECTS OF FOX REMOVAL ON ABUNDANCE, DIET AND
USE OF SPACE BY CATS

7.1.  INTRODUCTION

Reported increases in feral cat abundance following fox removals in Australia (Short et al.

1995, Christensen and Burrows 1995, Risbey and Calver 1998, P. de Tores pers. comm.)

suggest that foxes may limit cat populations, possibly through predation but more likely via

interspecific competition (exploitation and/or interference).  The large degree of overlap in

diet, home range and habitat use recorded between feral cats and foxes in Chapter 6 indicated

a high potential for exploitation competition, particularly if resources were limited.  In

addition, observations of avoidance and aggression between the two predators indicated

possible interference competition.  The aim of this chapter is to further investigate the

ecological interaction between feral cats and foxes using a fox removal experiment, and to

test the hypothesis that foxes limit cat populations through interspecific competition.

Studies of the role of competition in limiting carnivore species are rare in Australia and

elsewhere, and experimental field tests are generally lacking.  Much of the evidence

suggesting competition among coexisting mammalian carnivores is based on large overlaps in

resource use (e.g. White et al. 1995, Koehler and Hornocker 1991).  Where increases in the

abundance of one predator after the removal of the other have been recorded (e.g. Litvaitis

and Harrison 1989, Lindstrom et al. 1995), other factors may have been implicated such as

intraguild predation (Polis et al. 1989) or increases in prey availability (Hairston 1985).

Although some field studies have provided strong evidence for competition by manipulating

densities of one competitor and observing changes in population size and resource use of the

remaining competitor (e.g. Underwood 1978, Fonteyn and Mahall 1981, Dickman 1986a,

Hairston 1986, Valone and Brown 1995), none has involved mammalian carnivores.

In this chapter, the possibility that foxes limit feral cat populations through interspecific

competition is examined using a fox removal experiment.  To test the hypothesis of

competition, four parameters (cat abundance, home range size, habitat use and diet) were

examined at treated and untreated sites and before and after fox removal.  Examination of

these parameters allowed testing of two further hypotheses, intraguild predation and

facilitation.  The directions of predicted resource shifts for all hypotheses are summarised in

Table 8.1, and the hypotheses tested in this chapter are described as follows:
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H0:  Foxes do not limit cat populations.

According to this null hypothesis, foxes do not limit cat populations.  Cats are limited

independently instead through other factors such as food availability.  This hypothesis will be

supported if, after a reduction in foxes, there is no increase in the abundance of cats, nor

change in diet, home range size, or habitat use.  Food limitation will be supported if cats show

a numerical response to changes in prey density (Chapters 4 and 6).

H1:  Foxes do limit cat populations, when prey densities are low, through interspecific

competition (exploitation and / or interference).

a) Exploitation competition.  This hypothesis predicts that, if the home ranges of foxes and

cats overlap significantly, the diet of the two species will be significantly different.  This

hypothesis will be supported if, after fox removal, cats increase in abundance and there is a

dietary change toward prey eaten previously by foxes.  In addition, home range size should

decrease, as cats now have access to more prey within their foraging ranges.

b) Interference competition.  This hypothesis predicts that, if the home ranges of foxes and

cats do not overlap significantly, the diet of the two species will not differ.  Interference

competition will be demonstrated if, after fox removal, cats increase in abundance and change

their habitat use.  Home range size may also increase after fox removal as cats become free to

use areas previously occupied by foxes.  Alternatively, home range size may not change if

new cats move into the area and the abundance of cats increases.  A dietary change would not

be expected, unless a shift to previously unused habitats allowed access to new prey that

occurred there.  In general, shifts in resource use are expected to occur much more quickly,

e.g. on a moment to moment basis, under interference competition than under exploitation,

where resource shifts may take place over weeks or months.

7.2.  METHODS

General methods for scat collection and for calculation of abundance indices for cats, foxes

and rabbits are outlined in Chapter 3.  Data were collected for four sites: Dog Trap (DT)

(100% fox removal); Gunnel Creek (GC) (50-80% fox removal); Harrys Creek (HC)

(untreated site); and Devils Hole (DH) (untreated site).  An additional fifth site was included

for the dietary analysis that included all scats collected outside the two untreated sites but

which were within the untreated study area.  Cat dietary data were collected between July

1994 and June 1997, while spatial data were collected for three seasons: winter 1995 (May to
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August); summer 1995/96 (November to March) and winter 1996 (May to August).  The

VBCRC Predator-Prey Project conducted the spotlight counts and the fox baiting program.

All statistical analyses in this chapter were performed using GENSTAT (ANOVA, analysis of

deviance, regression, general linear modelling) and Excel (t-test, G-test, correlation analyses).

7.2.1.  Fox removal experiment

The fox removal and reduction treatments were implemented from October 1995 at the two

removal sites, Dog Trap (100% removal) and Gunnel Creek (50-80% removal) (A. Newsome

baiting and spotlight shooting, with control continuing to the present.  Baits were

also shot when seen at the removal sites with a low velocity 0.222-calibre rifle.  Although the

two treated sites were not subjected to the same intensity of fox removal (i.e. 100% and 50-

80%), the heavy reduction of foxes in both sites provided a suitable experimental treatment.

Fox densities were not manipulated at the two untreated control sites (DH and HC).  A BACI

design (Underwood 1994) was therefore established with two treated (DT and GC) and two

untreated sites (DH and HC).

At the 100% fox removal site (DT), 86 baits were buried at a depth of 5 cm.  Baits were

placed at 200 m intervals along the edges of the main access roads throughout the site.  Baits

were checked at the beginning of each month and replaced where necessary.  All baits were

then replaced at the end of each month and when rainfall exceeded 25 mm.  At the partial fox

removal site (GC), 27 baits were placed at 400 m intervals on the edge of the main access

roads throughout the site.  Baits were exposed for 10 days every three months.

7.2.2.  Abundance indices for cats, foxes and rabbits

Spotlight counts were conducted by existing VBCRC projects (Chapter 3) and used to

monitor the success of the fox removal program and the influence of fox removal on feral cat

and rabbit numbers (A. Newsome unpublished data, J. McIlroy unpublished data).  Data are

expressed as sightings per km (+ standard errors) for each season, and before (July 1994 to

September 1995) and after (October 1995 to August 1998) fox removal.  To determine the

influence of fox removal on abundance indices, indices were converted to ratios (mean

before/mean after) and a t-test used to examine differences in the mean ratios between treated

and untreated sites.
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7.2.3.  Cat diet

By occurrence.  Effects of fox removal on the numbers of scats in which each prey group

occurred were tested using an analysis of deviance with binomial error and logit link.

Treatment (treated vs. untreated sites), fox removal (before vs. after) and site (1 to 5) were

fitted to the model as factors.  Five prey groups considered important to cats (rabbit, carrion,

house mouse, possum and invertebrates) were included in the analysis.  Each prey group was

tested separately to avoid problems associated with the lack of independence between prey

groups.

By volume.  Effects of fox removal on the % volume of each of the five prey groups in the

diet of cats were examined using a general linear model, where treatment (treated vs.

untreated sites), fox removal (before vs. after) and site (1-5) were fitted to the model as

factors.  Each prey group was tested separately (as above), with those groups that were

recorded infrequently in the diet being log-transformed (log X +1) to reduce the clumping of

residuals.

Scat deposition.  As described in Chapter 6, the macro- (grassland, Callitris, and woodland)

and microhabitats (rabbit warren, on sand-plots, on tracks, at dams, hollow log entrances, at

carcasses, under bushes, on rocks or on bare ground) in which scats were found, were

generally recorded at the time of collection.  However, because these were not always

recorded, sample sizes for macro- and microhabitat analyses were reduced to 226 and 320

scats respectively.  Fox removal effects on the numbers of cat scats in each macro- and

microhabitat type were tested using analysis of deviance with binomial error and logit link.

The response variable was the number of scats in each habitat type, and treatment (treated vs.

untreated sites), fox removal (before vs. after) and site (1 to 5) were fitted to the model as

factors.  Each habitat type was tested separately.  Surveys for scats were of similar intensity in

the different sites before and after fox removal.

7.2.4.  Cat home range size

All analyses were conducted on the MCP 95 estimate of home range size only because MCP

95 and KE 95 were significantly and positively related (r2 = 0.78; n = 41; P < 0.001).

Similarly, the MCP 95 and MCP 100 estimates were significantly related (r2 = 0.68; n = 41; P

< 0.001).  Only those home ranges with ≥ 20 location fixes and which reached an asymptote

with increasing numbers of fixes, were included in the analyses.  In addition, two cats that

died during the radiotracking period in winter 1995 were excluded (Chapter 5).  Sample sizes

of cats, therefore, were as follows: winter 1995, n = 15 (before fox removal); summer

1995/96, n = 11 (after fox removal); and winter 1996, n = 17 (after fox removal).
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Fox removal effects.  Effects of fox removal on the home range sizes of cats were tested using

general linear regression where MCP 95 was the response variable, and sites, treatment, and

fox removal were fitted to the model as factors.  In addition, season (winter 1995, summer

1995/96 and winter 1996), sex and age (young vs. old) were fitted to the model as factors to

examine their influences on home range size. To avoid possible confounding of seasonal

effects, this analysis was repeated after excluding the summer 1995/96 period.  In addition, a

general linear regression (as outlined above) was used to examine the effect of fox removal on

home range size of only those seven cats whose home ranges were estimated for all three

seasons.

Effects of fox removal on day and night home range sizes (MCP 95) of cats were examined

using general linear regression.  Home range size was the response variable, and site,

treatment, time of day (day vs. night), fox removal, sex and age were fitted to the model as

factors.  Cats with fewer than 10 location fixes in either day or night ranges were excluded

from the analysis.  Sample sizes for day/night range analyses were as follows: winter 1995, n

= 12; summer 1995/96, n = 9; and winter 1996, n = 15.  This analysis was conducted for cats

for all three seasons, and then repeated with summer 1995/96 excluded.  This analysis was not

conducted on the seven cats that survived all three seasons as three of the cats had insufficient

fixes (< 10) in either day or night ranges.

Day vs. night range size.  Differences between day and night home range sizes overall were

tested with a matched pairs t-test for each season separately.

Influence of rabbit abundance.  The relationship between home range size of cats and rabbit

abundance at the four sites was evaluated using regression analysis.

7.2.5.  Cat habitat use

All analyses were conducted on the proportion of fixes in each habitat type within the home

range.  This was considered a more sensitive measure of habitat use than the habitat

composition of the home range.  Each habitat was tested separately to overcome problems

associated with the lack of independence in proportional use between habitat types.

Fox removal effects.  The effect of fox removal on the overall habitat use of cats was

examined using general linear regression where the response variable was the proportion of

location fixes in each habitat type, and treatment and fox removal were fitted to the model as

factors.  Sex and age were also fitted to the model to examine interaction effects.  Summer
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habitat use was excluded from the examination of fox removal effects to avoid possible

confounding of seasonal effects.

Fox removal effects on habitat use were also examined on a finer temporal scale using general

linear regression, where day and night location fixes were examined separately.  The

proportion of location fixes in each habitat type was used as the response variable, and

treatment (treated vs. untreated sites), fox removal (before vs. after) and time of day (day vs.

night) were fitted to the model as factors.  Sex and age were fitted to the model to examine

interaction effects.  Cats with fewer than 10 location fixes in day and night ranges were

excluded from the analysis in both winter 1995 (n = 3 cats) and winter 1996 (n = 2 cats).  This

analysis was repeated with the two periods, before fox removal (winter 1995) and after fox

removal (winter 1996), examined separately (treatment by time of day).

Season, sex and age variation.  Variation in habitat use between seasons, sexes and ages of

cats for all three seasons (winter 1995, summer 1995/96, winter 1996) was examined using

general linear regression. The proportion of fixes in each habitat type was used as the

response variable and season, sex, age and site were fitted to the model as factors.

Day vs. night.  General linear regression was used to examine differences between day and

night habitat use overall with all three seasons included in the analysis. The proportion of

fixes in each habitat type was used as the response variable, and season, time of day, and site

were fitted to the model as factors.

Diet of cats in winter 1995 and 1996 only.  Fox removal effects on the numbers of scats

containing each prey group were also examined for the period when habitat use was recorded

(winters in 1995 and 1996).  Each prey group was tested separately using the G-test.

7.3.  RESULTS

7.3.1.  Abundance indices for cats, foxes and rabbits

Effectiveness of the fox removal.   Fox abundance indices did not differ significantly after fox

removal at the treated sites relative to the untreated sites (t = 1.81; d. f. = 2; P = 0.212).

However, fox reductions were considered reasonably effective as fox numbers declined after

fox baiting began in October 1995 at the 100% fox removal site (DT) and remained stable but

low at the 50-80% reduction site (GC), while at the
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           Fig. 7.1.  Indices of abundance for  foxes, cats and rabbits recorded in spotlight
           counts at treated (DT and GC) and untreated sites (DH and HC) from July 1994
           to August 1998. Data collected by existing VBCRC projects.   Fox baiting began 
           in October 1995 at the two treated sites. Means and standard errors are shown. 
           w = winter, sp = spring, s = summer and a = autumn; site names are described
           in full in the text.
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 Fig. 7.2.  Abundance indices for foxes, cats and rabbits recorded in spotlight
 counts at treated (DT and GC) and untreated sites (DH and HC), before
 (July 1994 to September 1995) and after (October 1995 to August 1998)
 fox removal.  Means, calculated over all sessional samples, and standard errors 
 are shown.
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untreated sites (DH and HC) fox numbers increased (Figs. 7.1 and 7.2).  In particular,

following implementation of control measures, fox abundance in the two removal sites was

lower than in the two non-removal sites over the next 10 seasons.  Fox numbers ranged from

0 km-1 in spring 1995 at DT, to 1.6 km-1 at HC in summer 1996/97 (Fig. 7.1).  Seasonal

increases in fox numbers were found each year in summer and autumn at most sites (Fig. 7.1).

Cat abundance.  No change in cat abundance was detected after fox removal at the treated

sites relative to the untreated sites (t = 0.25; d. f. = 2; P = 0.824) (Figs. 7.1 and 7.2).

Numbers of cats detected in the spotlight were low at all sites and remained relatively stable

throughout the study, ranging from 0 km-1 at DT in spring 1994 and 1995, to 0.40 km-1 at GC

in summer 1994/95.  No clear seasonal peaks in abundance were detected (Fig. 7.1).

Rabbit abundance.  Rabbit numbers did not increase after fox removal at the treated sites

relative to untreated sites (t = 0.31; d. f. = 2; P = 0.784) (Figs. 7.1 and 7.2).  Numbers

collapsed at all sites in 1997 following the arrival of Rabbit Calicivirus Disease (RCD) in

June 1996 (A. Newsome unpublished data).  At DH, rabbit numbers ranged from 1.8 km-1

during the drought in summer 1994/95, to 39.3 km-1 in summer 1995/96, before declining to

2.8 km-1 in spring 1996 immediately post-RCD.  Seasonal peaks in rabbit abundance occurred

in spring at most sites in other years (Fig. 7.1).

7.3.2.  Cat diet

By occurrence.  Although remaining below 20%, the frequency of carrion consumption by

cats increased significantly at the treated sites relative to the untreated sites after the removal

of foxes (F = 21.39; d. f. = 1, 3; P < 0.05) (Fig. 7.3.). No significant differences were found

for any of the other prey types tested (P > 0.05).

By volume.  Invertebrates decreased significantly in the diet of cats by volume at the untreated

sites relative to the treated sites (F = 4.28; d. f. = 1, 33; P = 0.046) (Fig. 7.4).  This was not

related to seasonal effects (treatment by removal by season interaction;
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             Fig. 7.3. Fox removal effects on the importance (% occurrence) of five major prey
             groups in the diet of cats (n  = 408 scats). ** significant at P  < 0.05

               Before fox removal (July 1994 to September 1995)       
               After fox removal (October 1995 to June 1997)
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F = 1.94; d. f. = 3, 24; P = 0.149).  No significant differences were found for the other prey

types tested (P > 0.05).

Scat deposition.  Numbers of scats found in both the macro- and microhabitat types did not

differ significantly after fox removal at the treated sites relative to the untreated sites (P >

0.05) (Fig. 7.5).  However, fewer cat scats tended to be found in the grassland habitats and

more in the woodland habitats at the treated sites after fox removal, while scat deposition

remained similar in each macrohabitat at the untreated sites (Fig. 7.5a).  Similarly, more cat

scats tended to be found at rabbit warrens at the treated sites after fox removal, and fewer

elsewhere (Fig. 7.5b).  At the untreated sites, similar numbers of scats were found at rabbit

warrens after fox removal, and more scats were found on tracks, and fewer at hollow log

entrances and carcasses compared to before fox removal (Fig. 7.5b).

             Fig. 7.4. Fox removal effects on the importance (% volume) of five major prey
             groups in the diet of cats (n  = 408 scats). ** significant at P  < 0.05

               Before fox removal (July 1994 to September 1995)       
               After fox removal (October 1995 to June 1997)
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7.3.3.  Cat home range size

Fox removal effects.  Overall, there were no changes in home range size (MCP 95) of cats

after fox removal between treated and untreated sites when all three seasons were included in

the analysis (F = 0.01; d. f. = 1, 39; P = 0.908; Fig. 7.6).  However, weakly significant

interaction effects were found with age (F = 3.85; d. f. = 1, 31; P = 0.059), but not with sex

(F = 1.64; d. f. = 1, 31; P = 0.210).  Home range sizes of old cats (> 3 years) increased after

fox removal at the treated sites relative to the untreated sites where they did not change (Fig.

7.7). Home range sizes varied between the four sites but were not significantly different

overall (F = 1.77; d. f. = 1, 39; P = 0.170), or between treated and untreated sites (F = 1.95;

d. f. = 1, 39; P = 0.170) (Fig. 7.6).

When the summer 1995/96 season was excluded from the analysis, again no fox removal

effects were detected on home range size (F = 0.00; d. f. = 1, 28; P = 0.965).  However, when

only those seven cats whose ranges were estimated for all three seasons were included in the

analysis, home range size decreased significantly at the treated sites after fox removal,

relative to the untreated sites where range sizes increased (F = 6.87; d. f. = 1, 12; P = 0.022)

(Fig. 7.8).  This response was less pronounced when summer 1995/96 was excluded from the

analysis (F = 4.25; d. f. = 1, 5; P = 0.094).  Home range sizes were smaller for the seven cats

at the treated sites compared to the untreated sites overall (F = 7.50; d. f. = 1, 17; P = 0.014)

(Fig. 7.8).

When day and night ranges were analysed separately no fox removal effects on home range

size were found (F = 1.24; d. f. = 1, 64; P = 0.270).  In addition, no significant interactions

with sex (F = 0.05; d. f. = 1, 56; P = 0.832) or age (F = 0.53; d. f. = 1, 48; P = 0.470) were

detected.  Similar results were found when summer was excluded from the analysis (F = 0.74;

d. f. = 1, 40; P = 0.396), with no interactions with sex (F = 0.02; d. f. = 1, 40; P = 0.894) or

age (F = 0.41; d. f. = 1, 32; P = 0.526) being found.

Day vs. night range size.  Day and night range sizes did not differ significantly in both winter

1995 (t = 0.56; d. f. = 11; P = 0.58) and 1996 (t = 0.29; d. f. = 14; P = 0.77) (Fig. 7.9).

However, in summer 1995/96, day ranges ( x  ± s. e.: 232 ha ± 43) were
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      Fig. 7.7.  Home range size (MCP 95) of young (1-3 years, n  = 27) and old
      (>3 years, n  = 16) cats,        before (winter 1995) and        after fox removal
      (summer 1995/96 and winter 1996) at treated and untreated sites.  Means and 
      standard errors are shown.  Numbers of cats are above the bars.
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     Fig. 7.6. Fox removal effects on the home range size (MCP 95) of cats for three 
     periods.  Means and standard errors are shown.  Numbers of cats are above the bars.
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Fig. 7.8.  Fox removal effects on the home range size (MCP95) of seven cats
that survived all three seasons.  Means and standard errors are shown.
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Fig. 7.9.  Seasonal variation in the     day and      night home range size (MCP 95)
of cats. ** significant at P  < 0.05.  Means and standard errors are shown.  Numbers 
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significantly larger than night ranges ( x  ± s. e.: 162 ha ± 33) (t = 3.15; d. f. = 8; P = 0.014)

(Fig. 7.9).

Seasonal variation.  A decline in home range size was found at most sites in summer, with

home ranges increasing again the following winter in 1996 (Fig. 7.6).  However, this change

was not significant overall (F = 0.30; d. f. = 2, 31; P = 0.745) or for the seven surviving cats

(F = 0.91; d. f. = 2, 15; P = 0.425) (Fig. 7.8).  In addition, no significant season by site

interactions were detected for all cats (F = 0.15; d. f. = 6, 31; P = 0.987) or for the seven

surviving cats (F = 1.51; d. f. = 2, 15; P = 0.253).

Sex and age differences.  Overall, male cats (n = 33, x  ± s. e.: 292 ha ± 24.7) had

significantly larger home ranges than female cats (n = 10, x  ± s. e.: 132 ha ± 23.7) (F =

18.17; d. f. = 1, 31; P < 0.001).  However, no differences were found between young (1-3

years) (n = 27, x  ± s. e.: 258 ha ± 26.5) and old cats (> 3 years) (n = 16, x  ± s. e.: 250 ha ±

40.9) (F = 0.68; d. f. = 1, 31; P = 0.416).

Influence of rabbit abundance.  No relationship was found between home range size and

rabbit abundance at the four sites when all data were pooled over the three seasons (r2 = 0.00,

n = 44; P = 0.65).

Site fidelity.  Cats tended to remain within the same area for extended periods of time.  All

home ranges of the seven cats that were monitored for all three seasons were in the same area.

7.3.4.  Cat habitat use

Fox removal effects.  After fox removal, no change in habitat use was detected overall at the

treated sites relative to the untreated sites for any of the habitat types (P > 0.05) (Fig 7.10,

Table 7.1).  Changes that occurred after fox removal were in the same direction at both the

treated and untreated sites (Fig. 7.10).  No significant age or sex interactions were detected (P

> 0.05).
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Table 7.1.  The effect of fox removal on the use of four different habitat types by cats
overall.

Values given in the summary table are F-ratios and P values, which represent the fox removal
(before vs. after) by treatment (treated vs. untreated sites) interactions.

F(1, 28) P

grassland 0.37 0.55

woodland 0.10 0.75

forest 0.00 0.96

mudflat 1.23 0.28

When day and night periods were examined separately, there were no temporal differences in

habitat use before fox removal (winter 1995) at both the treated and untreated sites for any of

Fig. 7.10.  Fox removal effects on the overall habitat use of feral cats at treated and
untreated sites, before (winter 1995) and after (winter 1996) fox removal.  Means 
and standard errors are shown.  No significant differences were found.
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the habitat types (P > 0.05) (Fig. 7.11a, Table 7.2a).  However, after fox removal (winter

1996), cats increased significantly their use of grassland habitats at night at the treated sites,

with the opposite trend at the untreated sites (P < 0.05) (Fig. 7.11b, Table 7.2b).  Similarly,

open forest habitat tended to be used more often during the day at the treated sites with the

opposite trend at the untreated sites, but this difference was not significant (Table 7.2b, Fig.

7.11b).  When both periods (winter 1995 and winter 1996) were included in the analysis, the

differences between day and night habitat use after fox removal were not significant (P >

0.05, Table 7.2c).

    a) Before fox removal        b) After fox removal

   Fig. 7.11.  Differences in     day and     night habitat use a) before (winter 1995, n  = 12 cats) and 
   b) after (winter 1996, n = 15 cats) fox removal at treated and untreated sites.  Means and standard 
   errors are shown. ** significant at P  < 0.05.
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Table 7.2.  The effect of fox removal on the use of four different habitat types by cats
with day and night ranges analysed separately.

Values given in the summary table are F-ratios and P values (** P< 0.05), which represent
interactions of (a and b) treatment by time (day vs. night), and (c) treatment by time by fox

removal.

    a) before fox removal            b) after fox removal        c) before and after fox

removal

F(1, 20) P F(1, 26) P F(1, 46) P

grassland 0.00 0.98 4.23 0.05** 1.87 0.18

woodland 0.06 0.81 0.11 0.74 0.01 0.92

forest 0.16 0.69 1.93 0.18 1.55 0.22

mudflat 0.91 0.35 0.17 0.68 0.75 0.39

Season, sex and age variation.   Overall, there were no consistent seasonal differences in

habitat use across the four sites (P > 0.05) (Table 7.3a, Fig. 7.12).  For example, cats at

Gunnel Creek increased their use of grassland in summer compared to winter, while the

reverse occurred at Dog Trap (Fig. 7.12).  Overall, sex and age did not influence the habitat

use of cats when all three seasons were combined (P > 0.05) (Table 7.3b and c).

Table 7.3.  Influence of season, sex and age on the habitat use (% fixes in each habitat)
of cats.

Values given in the summary table are F-ratios and P values.  Data for all three seasons
(winter 1995, summer 1995/96 and winter 1996) are pooled.

a) Season b) Sex c) Age

F(2, 23) P F(1, 23) P F(1, 23) P

grassland 0.25 0.78 0.52 0.48 1.79 0.19

woodland 1.48 0.25 0.07 0.79 0.02 0.88

forest 1.47 0.25 1.37 0.26 2.84 0.11

mudflat 0.19 0.83 0.76 0.39 1.25 0.28
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Fig. 7.12.  Similarities in cat habitat use between seasons at the four sites.
Means and standard errors are shown.

winter 1995 n  = 15 cats
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Day versus night.  When all four sites were pooled there were no significant differences

between day and night habitat use for each habitat type (P > 0.05) and no significant season

by day/night interactions (P > 0.05) (Table 7.4).

Table 7.4.  Similarities in habitat use between day and night periods for each habitat
type and for all three seasons.

Values given in the summary table are F-ratios and P values, which represent day vs. night
differences and the season by day/night interactions.

             Day vs. night                     Season by day/night

F(1, 52) P F(2, 52) P

grassland 0.01 0.94 0.03 0.97

woodland 0.09 0.76 0.18 0.84

forest 0.20 0.65 0.25 0.78

mudflat 0.06 0.81 0.44 0.65

Diet in winter 1995 and 1996 only.  When dietary data were examined for the same period as

habitat use (winter 1995 and 1996 only), a significant increase in the frequency of carrion

consumption occurred for cats at the treated sites after fox removal (G = 5.15; d. f. = 1; P =

0.023) (Fig. 7.13).

Fig. 7.13. Diet of cats before (winter 1995) and after (winter 1996) fox removal 
 at the treated sites. ** significant at P < 0.05.
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7.4.  DISCUSSION

7.4.1. General ecology of cats

Spatial use described for cats overall in this chapter (i.e. three seasons and all sites) was

consistent with that recorded for cats in the winter 1995 period at the untreated sites (Chapter

5).  Males occupied larger home ranges than females.  Home range size was not influenced by

age, season or rabbit abundance.  However, in summer, range sizes of cats were significantly

larger during the day than at night.  This was probably due to increased foraging on diurnal

prey such as reptiles and grasshoppers during the warmer months (Chapter 4, Catling 1988).

Habitat use was not influenced by sex or age and no seasonal or temporal differences were

detected.

Fox densities at Burrendong ranged from 0 to 1.6 km-1 and cat densities ranged from 0 to 0.4

km-1.  These densities were similar to those recorded for foxes (e.g. Newsome and Catling

1992, Marlow 1992, review in Saunders et al. 1995) and cats (e.g. Ridpath 1990, Short et al.

1995, review in Dickman 1996) elsewhere in Australia.

7.4.2.  Fox removal experiment

Effectiveness of the fox removal treatment

Despite the lack of a significant removal effect on foxes, the fox treatment was considered

reasonably effective as both treated sites were subjected to the removal of some foxes and

relative reductions of fox density were achieved in both.  In addition, fox numbers were

always lower in the two removal sites than in the two untreated sites for the entire period of

the experiment.  Although 100% fox removal was not achieved at DT, foxes were reduced to

very low numbers and this resulted in the two treated sites being relatively similar.

Exploitation and interference competition

Despite no increase in cat abundance after fox removal, significant changes in resource use by

cats at the treated sites suggested that foxes limit cat populations through interspecific

competition.  After fox removal, cats ate significantly more carrion and used open habitats

more often at night.  In addition, a reduction in range size was recorded at the treated sites

after fox removal when only those seven cats that were radiotracked for all three seasons were

included in the analysis; but the sample size was small.

Although carrion was not a staple prey for cats at Burrendong or elsewhere (e.g. Jones and

Coman 1981, Catling 1988, Martin et al. 1996, Paltridge et al. 1997), the increase in carrion

consumption (indicative of exploitation) suggests that foxes may have previously limited their
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access to carcasses (through interference).  Although no direct evidence was obtained, video

observations reported in Chapter 6 indicated that cats avoided carcasses when foxes were in

the vicinity.  Further, the higher nocturnal use of grassland habitats by cats after fox removal

may indicate that in the absence of interference from foxes, cats were free to make use of the

more open areas where carcasses were more abundant.  Several hundred kangaroos were shot

during a cull in winter 1996, and probably more frequently in grassland habitats where

visibility for shooters was high.  Personal observations suggested no apparent difference in

carrion availability between treated and untreated sites.

The abundance of rabbits (staple prey for cats) was also higher in the grassland habitats

(personal observation) compared to the other habitats, which may have facilitated a habitat

shift to these areas after fox removal (Litvaitis et al. 1985).  Although no increase in rabbit

consumption by cats was detected, a larger number of cat scats tended to occur at rabbit

warrens after fox removal at the treated sites relative to the untreated sites.

The tendency for cats to use forest habitats more often during the day after fox removal may

indicate a need for cover from other predators such as wedge-tailed eagles.  Alternatively, the

occasional fox in the treated areas may have been sufficient for cats to continue to seek cover

from potential agonistic encounters with them (Litvaitis and Harrison 1989).  Felids typically

prefer mixed associations that include open areas and trees for cover (e.g. Witmer and de

Calesta 1986, but see Murray et al. 1994).  In France, wild cats rested in wooded cover during

the day and were active at night in open areas (Artois 1985).  The continued need for cover by

cats in the fox removal area may also have reflected the permanence of a previously adaptive

behaviour (with either a genetic or a cultural basis) (Cavallini and Lovari 1994).  In Italy, red

foxes continued to select habitats with densest cover for resting despite not being hunted for

ten years (Cavallini and Lovari 1994).

The seven cats that were radiotracked for all three seasons significantly reduced their range

size after fox removal which was consistent with exploitation competition, although no

change in home range size was detected for cats overall.  The exploitation competition

hypothesis predicts that the removal of the dominant competitor would allow the remaining

competitor access to more prey (if there is already habitat overlap), and consequently reduce

their range size (Macdonald 1983, Stephens and Krebs 1986).  Significant dietary partitioning

between sympatric cats and foxes (Chapter 6) provides further support for exploitation

competition.
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Why no increase in cat abundance?

Despite the significant behavioural shifts in resource use, cat abundance did not increase in

the two and a half years following the removal of foxes.  This may have been due to a number

of factors.  For example, spotlighting was not considered a good index of abundance for feral

cats (see Chapter 4).  The time lag may have been too short to allow a numerical response to

be detected (e.g. Munger and Brown 1981).  The dramatic decline in rabbit abundance, after

the arrival of RCD eight months after fox removal, may also have reduced the potential for

compensatory breeding and/or immigration.  Alternatively, compensatory breeding by feral

cats may have occurred, but kittens were prey for alternative predators such as goannas

(Weavers 1989) or wedge-tailed eagles (Brooker and Ridpath 1980).

Interaction between cats and foxes was weaker at Burrendong than in WA?

The lack of increase in cat abundance at Burrendong contrasts with the findings in two

Western Australian (WA) studies where cat numbers increased within 12 months of fox

removal; at Heirisson Prong (HP) (Short et al. 1995) and the Gibson Desert Nature Reserve

(GDNR) (Christensen and Burrows 1995).  This suggests that the interaction between cats

and foxes was weaker at Burrendong than in the WA studies.  Three possible reasons are

suggested as to why this may be.

Firstly, the method and scale of fox removal differed.  At HP, a fox-free area was established

using a predator-proof fence, which would have greatly reduced the potential for incursions

by foxes, compared to using poison baits as at Burrendong.  In addition, fox removals were

conducted over much larger areas in WA compared to at Burrendong (Burrendong: 9 km2;

HP: 200 km2 of buffer zone and 12 km2 of core area; GDNR: 20 km radius), which should

also have reduced potential incursions.  As total fox removal was not achieved at Burrendong,

the continual presence of a few foxes over a small area may have been sufficient to inhibit

compensatory responses by cats to fox removal.

Secondly, interference competition may have been weaker at Burrendong where habitat

structure is more complex than in the WA studies (Oksanen et al. 1979).  Interference

behaviour involves aggression and fighting and is usually only cost effective if the dominant

competitor subsequently gains access and control of a shared resource, which is more difficult

in complex habitats (Oksanen et al. 1979).  In open habitats, subordinate species are readily

seen and easier to evict, while complex habitats allow them to hide and escape aggression.

Avoidance of aggressive encounters in complex habitats, such as forest and scrub

environments, has been demonstrated in other mammalian communities (Hoffmeyer 1973,

Hall and Lee 1982, Dickman 1991), but not in more open habitats.  In the more complex
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woodland and forest habitats at Burrendong the cost of interference may simply outweigh the

benefit of gaining access to a shared limited resource, in contrast to HP (heath) and GDNR

(open arid area).  Abundant trees at Burrendong would allow cats to avoid aggression from

foxes.  Anecdotal observations suggest that cats have also increased over large areas in forest

habitats after fox removal in southwestern WA (P. de Tores pers. comm.), but over relatively

long periods of time.

Thirdly, rabbit densities pre-RCD at Burrendong were much higher (max. 40 rabbits km-1)

than those recorded at HP (max. 7 rabbits km-1), and this may have allowed coexistence of

cats and foxes for much of the time with interference being necessary only during limited

periods of low rabbit abundance.

Were increases in cat population densities in WA real?

The reported increases in cat densities after fox removals in the two WA studies may have

reflected factors other than release from competition or predation by foxes, as control sites

were not established.  For example, increased prey densities can allow imitation of the effects

of competitive release (Hairston 1985).  At HP, increases in cat abundance after fox removal

coincided with an increase in rabbit abundance.  Similarly, at GDNR increases in cat

abundance coincided with increased rainfall (and presumably increased prey populations) and

with reduced densities of both foxes and dingoes.  In contrast, no increase in rabbit densities

occurred at Burrendong at the treated sites relative to the untreated sites after fox removal.

Rabbit densities decreased at all sites following the arrival of RCD, eight months after fox

baiting began.

Further, increases in cat abundance in the WA studies may have reflected behavioural

changes in habitat use, rather than true population increases.  A shift to more open habitats

after fox removal at HP, as occurred at Burrendong, may have increased their detection in the

spotlight.  Similarly, a habitat shift by cats at GDNR may have increased their encounter rate

with bait stations (index used to estimate density) which were placed on roads.  In support of

this, Dickman (1991) recorded an increased apparent density of insectivorous mammals

within an hour of removal of a dominant species, clearly indicating a behavioural response.

7.5.  CONCLUSION

Significant resource shifts by cats after fox removal strongly suggested interspecific

competition, mediated by both exploitation and interference interactions.  However, because
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cats did not increase in abundance after fox removal, the null hypothesis of no limitation by

foxes could not be rejected.  Further experimental evidence is required to test this hypothesis.

Fox removal treatments should be conducted over as large an area as possible to maximise

responses of the remaining species, and over a period of several years.  Ideally, reinvasion

would also be allowed at a later stage and resource shifts again quantified.  Replication of this

experiment in a range of habitat types (simple vs. complex) would allow the interaction with

habitat structure to be examined.  In addition to calculating indices of abundance, examination

of resource use before and after fox removal between replicated treated and untreated sites is

essential.
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CHAPTER 8

GENERAL DISCUSSION

In this chapter, I first describe the major results arising from the examination of cat ecology in

previous chapters and then discuss factors that influence the cat population at Burrendong.  In

the final section, I outline areas for further research and then discuss the implications of this

study for the management of vertebrate pests.

8.1.  ECOLOGY OF FERAL CATS

8.1.1.  Diet

From an examination of diet in relation to prey availability, several conclusions can be drawn

regarding the feeding ecology of feral cats at Burrendong.

(i) Rabbits were the staple prey of cats, as elsewhere in Australia where rabbits are common.

Contrary to findings in previous studies, carrion was an important secondary food,

particularly in winter and spring, which presumably reflected the high abundance of kangaroo

carcasses from regular culling in the study area.  Invertebrates, vegetation, other small to

medium-sized mammalian prey, birds and reptiles were generally of minor importance, and

appeared to be taken opportunistically.

(ii) Cats showed a significant dietary response to fluctuations in rabbit abundance, but not for

the other prey groups (carrion, small mammals, reptiles and grasshoppers).  Rabbits tended to

be eaten relative to availability, but remained important in the diet even when rabbit

abundance declined dramatically post-RCD.  Ten months post-RCD, house mice increased in

importance in the diet.  However, it was not known whether this represented prey switching

sensu stricto or opportunistic predation on an increased mouse population, as mouse

considered analogous to a true type II or III functional response curve.  Insufficient data

points at low prey densities precluded a definitive distinction between type II and III curves.

(iii) Two latrines found at Burrendong may have reflected a recent domestic history for the

individuals using them, or perhaps were related to breeding dens.  Both individual cats using

the latrines were females, and one was known to be rearing kittens.  Results from the

examination of their scats highlighted the ability of individual cats to target particular prey

groups.

8.1.2.  Home range size, overlap and habitat use
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Several conclusions regarding the spatial and social organisation of feral cats at Burrendong

were drawn from an examination of home range size, range overlap and habitat use.

(i)  Home ranges of cats were similar in size to those reported in the only other published

study of spatial use by cats in Australia (Jones and Coman 1982), but larger than those

recorded elsewhere (e.g. Langham and Porter 1991, Genovesi et al. 1995).  This presumably

reflected low prey density or more dispersed food resources (Macdonald 1983).  Male ranges

were larger than those of females, but no sexual differences were found in habitat use.

Similarly, no differences were found between young (1-3 years) and old (> 3 years) cats in

home range size or habitat use, although all cats radiotracked were adults.  The lack of

temporal (day/night) differences in home range size and habitat use at Burrendong is

consistent with the hypothesis that cats hunt and rest at various times during both the day and

night (Fitzgerald and Karl 1986).

(ii)  Both male and female cats tended to be solitary, despite extensive overlap in home

ranges.  The high degree of inter-sexual overlap recorded between young (1-3 years) and old

(> 3 years) cats may indicate the presence of kin groups (e.g. Macdonald and Apps 1978),

although kin ties were not examined.  Young males do not usually disperse from their

Territoriality was indicated by the mutually exclusive home ranges of old adult males and the

presence of unburied scats, which may have been used as territory markers (Liberg 1980,

Brothers et al. 1985).

(iii)  Habitat composition of home ranges generally reflected the availability of habitats at the

site, but cats significantly avoided mudflats.  Home ranges overlapped mostly with open

woodland and open forest habitats with smaller areas of grassland and mudflats.  However,

within individual home ranges, cats used grassland and open woodland habitats most often.

Rabbits were more abundant there than in other habitats, indicating a preference by cats for

prey-rich patches for foraging.  Cat habitat use was consistent with studies of other felids

where habitats that are prey-rich and provide cover from predators are preferred (Witmer and

de Calesta 1986).

8.2.  WHAT LIMITS CAT POPULATIONS AT BURRENDONG?

To determine what factors limit cat populations at Burrendong, I tested four hypotheses using

a fox removal experiment.  A number of parameters for cats were examined before and after

fox removal at treated and untreated sites.  These included cat abundance, home range size,
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habitat use, and diet (Chapter 7).  Acceptance of a hypothesis should come when all

predictions are satisfied, not just one.  Multiple outcomes are possible for each hypothesis as

more than one mechanism can operate at once.  The hypotheses are summarised in Table 8.1.

and are described as follows:

Hypothesis 1:  Cat populations are limited by factors such as food availability, and not by

foxes, independent of resource overlap.

Hypothesis 2:  Foxes limit cat populations at low prey densities through interspecific

competition (exploitation and/or interference).

Hypothesis 3:  Foxes limit cat populations through intraguild predation.

Hypothesis 4:  Cats benefit from the presence of foxes through facilitation.

8.2.1.  Hypothesis 1: Food availability

Although food availability is likely to be a major limiting factor for predators (Hairston et al.

1960), this hypothesis received minimal support for cats at Burrendong.  Cats did not show a

numerical response to changes in the abundance of their staple prey (Chapter 4).  However,

the main index of abundance, spotlighting, proved not to be a reliable index of cat abundance

as few cats were detected in the spotlight, despite their presence being known through

trapping and
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radiotracking.  Moreover, observed correlations in cat and prey abundance indices probably

reflected changes in cat habitat use rather than fluctuations in population size.  For example,

the positive correlation between indices of cat and carrion abundance likely reflected

increased activity by cats in open areas when scavenging at carcasses and consequently,

greater detection in the spotlight.  Similarly, negative correlations between the abundance of

cats and reptiles (one and two month lags) or grasshoppers (three month lag) may have

reflected a higher usage of forest habitats by cats during the warmer months when these prey

are more active.  This may have decreased the chance of detection of cats in the spotlight.

In contrast, fluctuations in rabbit abundance have been suggested as a major limiting factor

for feral cats on Macquarie Island (Jones 1977).  In winter there, when rabbit abundance

(particularly subadults) declined, cats were observed to be starving (Jones 1977).  Effects

were predicted to be greater on old, debilitated and young cats that were unable to catch the

larger adult rabbits.  Similarly, a numerical response to rabbits was recorded in semi-arid

NSW where cat densities increased 3-4 months after rabbit densities increased (Catling 1988,

Pech et al. 1992).  The lack of a numerical response by cats to fluctuating rabbit densities at

Burrendong may also have been due to cats being already satiated at the high rabbit densities

that occurred prior to RCD.  Further, abundant alternative prey, such as reptiles and

invertebrates  may have allowed dietary shifts when young rabbits were less available

(Chapter 4, Catling 1988).

8.2.2.  Hypothesis 2: Interspecific competition with foxes

Although no increase in cat abundance was detected after fox removal, significant shifts in

resource use by cats indicated that interspecific competition was an important limiting factor

for feral cats at Burrendong (Chapter 7, Table 8.1).  Exploitation competition was indicated

by the large overlap in diet, home range and habitat use between cats and foxes (Chapter 6)

and was supported by the increased consumption of carrion by cats at the treated sites after

fox removal (Chapter 7), and by resource partitioning (Chapter 6).  Interference competition

was indicated by aggressive and avoidance behaviours between foxes and cats (Chapter 6),

and supported by the increased use of grassland habitats by cats at night after fox removal

(Chapter 7).

The potential for interference competition between two coexisting species is high where there

is a large overlap in resource use, and when the benefits of controlling a resource are high

relative to the cost (Case and Gilpin 1974).  The lack of increase in cat abundance in the two

and a half years following fox removal at Burrendong contrasts with that reported in two

published studies in WA where marked increases in cat densities followed fox removal



Chapter 8:  General Discussion  177

(Christensen and Burrows 1995, Short et al. 1995).  This suggests that the interaction between

cats and foxes at Burrendong may have been weaker than in the WA studies.  A number of

possible reasons for that are discussed in Chapter 7.  Interference may not be cost effective for

foxes at Burrendong, where habitats are more structurally complex than in the WA studies, as

cats are able to avoid aggression from foxes (Oksanen et al. 1979).  In addition, foxes were

removed over much larger areas in the WA studies compared to at Burrendong, which may

have reduced the influence of fox incursions.

Interspecific competition is usually asymmetrical, with one species being dominant over the

other (Lawton and Hassell 1981).  At Burrendong, foxes affected several aspects of resource

use by cats.  Foxes were clearly the dominant species given their dominance in aggressive

interactions, the killing of three radiocollared cats and the avoidance behaviour shown by cats

(Chapter 6).  In addition, dietary niches were considerably wider for foxes than for cats,

which preyed mostly on rabbits.  Generalist species often have a competitive advantage when

their broad niche overlaps the narrow niche of a more specialised species (Dibello et al. 1990,

but see Theberge and Wedeles 1989, Johnson and Franklin 1994, Cypher and Spencer 1998).

Further, foxes were around 10 times more numerous than cats at the untreated sites, although

behavioural differences may have influenced abundance indices.  Asymmetry often results

when two species differ dramatically in density (Brown and Munger 1985) due to frequency-

dependent effects.  A species at high densities, even if competitively inferior, can eliminate

competitors simply by its high numbers, particularly if the species is a generalist (Crowell and

Pimm 1976, Rau et al. 1985, Crooks and Van Vuren 1995).  Although a cat removal

experiment is required to confirm asymmetry and to test for reciprocal effects, the clear

dominance of foxes over cats is suggestive of an asymmetrical effect typical in two-species

competitive interactions.

Coexistence between cats and foxes at Burrendong may be possible through diet and habitat

partitioning and by the avoidance of foxes by cats.  Cats may tolerate interference by foxes

because the benefits of gaining access to resource-rich microhabitats outweigh the small cost

of vigilance and flight to nearby refugia.  This interpretation is supported by the mosaic nature

of vegetation in the Burrendong study area, compared with the relatively homogenous open

desert or scrub habitat in fox removal studies in WA (Christensen and Burrows 1995, Short et

al. 1995).

8.2.3.  Hypothesis 3: Intraguild predation by foxes

Intraguild predation (which involves the killing and eating of a prey) was not considered a

major limiting factor for cats at Burrendong as no cat remains were found in any of the fox
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scats or stomachs that were examined (Table 8.1, Chapter 6, Appendix 3).  However, previous

studies have occasionally recorded cat remains in fox scats or stomachs (Coman 1973b,

Brunner et al. 1991, Taylor and Lupica 1998, D. Risbey pers. comm., R. Paltridge pers.

comm.).  Although fox predation on cats may occur rarely it could still be sufficient to

1990).  Nevertheless, the intraguild predation hypothesis received only minimal support at

Burrendong.  Observed aggression between cats and foxes was interpreted as interference as

there was no evidence that foxes actually ate adult cats or kittens.

8.2.4.  Hypothesis 4: Facilitation

Although the presence of foxes may facilitate cats, such as through the opening of the tough

integument of carcasses, the facilitation hypothesis was not supported in this study (Table

8.1).  After fox removal, cats did not decrease in abundance and their behavioural shifts

indicated a negative interaction with foxes, as resource shifts were toward more prey-rich

habitats.  Cat and fox densities were also not correlated positively (Chapter 6) indicating that

cats did not trail foxes in search of food (Carbyn 1982, Paquet 1991).  In the Northern

Hemisphere, although coyotes usually avoid wolves (Fuller and Keith 1981), they sometimes

trail them at a safe distance apparently in search of food (i.e. wolf kills) (Carbyn 1982).

The presence of other scavengers at Burrendong such as wedge-tailed eagles and feral pigs

that are also able to open carcasses, may have dampened any negative effects experienced by

cats in the absence of foxes.  In addition, carrion was not a staple prey for cats at Burrendong

and consequently, even if a facilitative relationship did occur, the removal of foxes should

have had little impact on the survival of cats.

8.2.5.  Other factors

Disease and parasites.  Although parasites of cats and foxes were not examined in this study,

no indication was found for limitation by cat-specific parasites or by foxes through shared

parasites.  Cat abundance did not change after fox removal, and aggression and avoidance

behaviours (Chapter 6), and habitat and dietary shifts by cats were not consistent with the

shared parasite hypothesis.

High kitten mortality.  Disproportionately high mortality rates among subadult cats have been

recorded in a number of studies (e.g. Brothers et al. 1985, Mirmovitch 1995), presumably due

to nutritional stress and disease (Jones 1977, Dards 1978, Oppenheimer 1980, Izawa et al.

1982, Apps 1983, van Aarde 1984, Coman 1991).  At Burrendong, observations of decreases

in litter size over time provided some support for this hypothesis, although only two
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observations were made.  Litter sizes of two individual cats declined from five kittens to two,

and from two kittens to one, within a two-week period.  Whenever a den was located, the

mother moved the kittens within 24 hours, usually 50 to 300 m away.  Although the cause of

the missing kittens was not known, predation by foxes, goannas or wedge-tailed eagles may

have been implicated, particularly during the move to alternative dens.

8.3.  FURTHER RESEARCH

Information on factors causing mortality in kittens would provide useful data in examining

factors that limit feral cat populations.  In addition, further research is required to improve the

effectiveness of current techniques for estimating the abundance of cat populations,

particularly in forested areas (Mahon et al. 1998).  This is essential for monitoring the

effectiveness of control campaigns and determining interactions with other introduced species

and predation impact on native prey populations.  Without a reliable estimate of cat

abundance, it will be difficult to precisely identify factors that limit cat abundance.

To further elucidate the interaction between cats and foxes, fine scale examination of

temporal and spatial patterns is required.  Temporal separation in activity patterns may limit

competition by allowing exploitation of different resources (Schoener 1974), although

behavioural resource depression effects may hinder this (Charnov et al. 1976).  Temporal

separation may also reduce interference competition by decreasing the frequency of direct

encounters (Case and Gilpin 1974).  Evidence for differences in activity patterns between

sympatric cats and foxes has been indicated in some studies, where cats were more diurnally

active than foxes (Das 1993, Artois 1985).  Fine-scale temporal segregation of activity in the

two species is likely to come only from intensive radiotracking studies, or possibly from

direct observations in large enclosures.

Examination of habitat use on a finer scale may also reveal further habitat partitioning

between cats and foxes, which would facilitate coexistence.  In addition, the hypothesis that

foxes limit cats through interspecific competition should be tested over large areas and in a

range of habitat types (simple vs. complex).  In addition to deriving indices of abundance,

examination of resource use before and after fox removal between replicated treated and

untreated sites, as occurred in this study, is essential.  Reinvasions of foxes should then be

allowed after a sufficient period to test for reciprocal effects.  Cat removal experiments would

provide information on whether foxes are adversely affected by the presence of cats, and thus

the magnitude of asymmetry in the cat-fox interaction.
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Furthermore, given the long time over which numerical effects are likely to become manifest,

removal experiments should ideally be carried out over periods of several years to reduce

risks of committing type II errors.  As argued cogently by Caughley and Gunn (1996), such

errors should be avoided particularly in conservation and management-related studies,

because of the deleterious consequences for threatened species or other management targets.
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8.4. IMPLICATIONS FOR MANAGEMENT OF VERTEBRATE PESTS

Although cats did not increase in abundance after fox removal at Burrendong, significant

shifts in resource use by cats provided some evidence for interspecific competition.

Widespread fox removals, using immunocontraception, have been proposed by the Vertebrate

Biocontrol Cooperative Research Centre (VBCRC) (Tyndale-Biscoe 1994).  Subsequent

increases in cat populations, however, may not alleviate predation pressure on native fauna

and may even be more harmful than if no fox removal had occurred (Risbey and Calver

1998).  At Heirisson Prong (HP) in WA, cats did increase in abundance after fox removal, and

densities of small mammals declined to levels lower than those recorded prior to fox control

(Risbey and Calver 1998).

Populations of rabbits, the staple prey for cats where abundant (Chapter 4, Catling 1988), are

also likely to increase following fox removals (Newsome et al. 1989, Short et al. 1995, Banks

et al. 1998).  The ability of foxes to suppress medium density rabbit populations has been

demonstrated experimentally in Australia (Newsome et al. 1989, Banks et al. 1998).

Increased rabbit densities have the potential to facilitate increases in cat densities (Pech et al.

1992) and intensify competitive effects with native fauna (Williams et al. 1995).  High rabbit

densities would also increase the likelihood that remaining foxes could increase their numbers

to pre-predator control levels very quickly (Pech et al. 1992).  Furthermore, if foxes and

rabbits are controlled without cats, then cats may switch to alternative prey such as isolated

populations of native mammals and reptiles (Newsome et al. 1997).

Integrated pest management (Bottrell 1979, Allen et al. 1997) is therefore strongly proposed

where populations of cats, foxes and rabbits are controlled together.  Without the effective

control or removal of all three species, compensatory responses by the remaining species may

not alleviate impacts on native fauna.
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APPENDICES

Appendix 1:  TRAPPABILITY OF FERAL CATS1

INTRODUCTION

Feral cats Felis catus are notoriously difficult to trap.  They do not take baits readily (Risbey

et al. 1997) and bait visitation and ingestion rates are variable and usually low (Paton 1994,

Christensen and Burrows 1995, Short et al. 1997).  Live trapping is essential, however, where

animals are to be radio-collared for studies on spatial movements, habitat use or social

organisation.  It is also one of the main methods used in the control and eradication of feral

cats, particularly in areas where domestic cats are present, or if populations have already been

reduced and individual cats need to be targeted (e.g. Berruti 1986, Bloomer and Bester 1992).

While some studies have used different types of traps for catching feral cats, none have

reported their relative effectiveness (e.g. Veitch 1985, Bloomer and Bester 1992, Lee 1994) or

evaluated factors that influence trap success.  The aim of this study is to evaluate two

different types of traps and 51 different bait and lure combinations for trapping feral cats.

Factors influencing trap success, including season and rabbit abundance, are also examined.

METHODS

Trap types.  Feral cats were trapped using both wire mesh cage traps (40cm by 40cm by

60cm) and Victor Soft Catch leg-hold traps (Nos. 1, 1.5 and 3, Woodstream, Corp., Lititz, Pa.,

USA).  Leg-hold trap jaws were padded with rubber to minimise injury.  Trapping was

conducted in most months of the study in the first year (November 1994 to August 1995), but

primarily in autumn and winter in the second year (November 1995 to August 1996).

Relative success of the two trap types was compared using the G

correction, Sokal and Rohlf 1994).  Trap success was defined as the number of cats trapped

per 100 trap nights, while a trap night was the exposure of one trap for one night.

Trap sites were chosen carefully to minimise capture of non-target species and

included a variety of habitats such as under bushes, beside vehicle tracks, on animal
1  paper in preparation to be submitted to Wildlife Research for publication

runways and at rabbit warrens.  Cage traps were set according to the method outlined in

Veitch (1985) where traps are set squarely on the ground and the doors of traps are bent

upwards to increase the openness of the space.  Traps were checked each morning from first

light, left set and checked again in the afternoon.  Traps were set approximately 200 m apart

and both cage and leg-hold traps were usually operated simultaneously.
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Bait types.  A variety of baits and lures (olfactory and visual) was used in the first year of the

study.  Baits included rabbit, chicken, beef, lamb, kangaroo, ham, bacon, house mouse,

goanna, fish, mussels, dried shrimp and squid, tinned cat food, dry whiskettes, tinned

sardines, rotten eggs and commercially-produced PUSSON baits.  All baits were dead when

used.  About a handful of bait was deposited in each trap.  Baits were only deposited inside

the trap while olfactory lures were sometimes sprayed outside the trap.  Olfactory lures

included synthetic fermented egg (SFE), catnip (dried and spray) and tuna oil.  Visual lures

included aluminium tags attached to string, pink flagging tape, bicycle flashing lights and toy

windmills on sticks.  Baits were not always used in conjunction with lures.  Multiple bait

types were generally used within each trapping period, but only a single bait type was

deposited in each trap.  However, in the second year of the study freshly killed rabbit was the

only bait used.  Where the rabbit bait had dried out after several days of exposure, SFE was

added to increase its olfactory attractiveness.

Demography.  Trapped adult cats were anaesthetised and then radiocollared (Chapter 3).

Measurements were obtained for all cats which included weight, body length, sex, age, and

general condition.  Recaptured cats were sometimes re-weighed if it was possible to do so

without undue stress to the animal.  Body length measurements included head length (nose to

occipital condyle), maximum skull width, body length (occipital condyle to anus), tail length

and neck circumference (Fig. 1a).  Three age classes were determined from body weight:

juveniles, subadults and adults (Brothers et al. 1985).  Juveniles were not fully-grown

(females < 1900g, males < 2200g); subadults were fully-grown but had not bred (females

1900-2500g, males 2200-3400 g); adults were fully grown and usually had bred (females >

2500 g, males > 3400 g).  The approximate ages of juvenile and subadult cats were estimated

from body size.  Adult cats were further divided into young (1-3 years) and old (> 3
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years) from the examination of toothwear (personal observation).  Young adult cats

had white, sharp, pointy teeth, while old cats had yellowing teeth that were mostly

missing or worn to the gum (Fig. 1b).  Adult females were classified as lactating or

not lactating.  Anecdotal observations, while radiotracking, of cats accompanied by

kittens were also recorded.

Rabbit abundance.  Indices of rabbit abundance were derived from monthly spotlight

counts (Chapter 3).  The relationship between rabbit abundance and trap success

across sampling sessions was evaluated using the Pearson product-moment

correlation coefficient.

RESULTS

Trap success.  A total of 77 cats (48 recaptures) was trapped in 6762 trap nights using

both cage (Table 1) and leg-hold traps (Table 2).  A further 18 individual cats were

trapped in leg-hold traps as non-target animals by the VBCRC Fox Sterility Project

(McIlroy and Saunders unpublished data).  No significant difference was found in

the relative trap success between cage and leg-hold traps in 1995 (G = 1.42, d. f. = 1, P

> 0.05) or 1996 (G = 1.19, d. f. = 1, P > 0.05) (Table 3).  Trap success overall was 1.1

cats per 100 trap nights.

Most cats were trapped in late autumn and early winter, especially in June 1995,

when 5.7 cats were trapped in cages per 100 trap nights (Table 1).  The high trap

success in June 1995 coincided with low rabbit numbers during the drought (Fig. 2),

however, no relationship was detected overall (r = 0.14, n = 13, P = 0.63).

Demography.  Of the 47 individual cats trapped, 32 were male and 15 were female.  At

the time of first capture, most cats were adults (n = 35), with 19 classified as young (5

female, 14 male) and 16 as old (6 female, 10 male).  Four cats were juvenile (2 female,

2 male) and eight were subadult (2 female, 6 male).  Mean (± s. e.) body weight for

adult female and male cats was 3.34 ± 0.06 kg and 4.37 ± 0.14 kg, respectively.  Mean

(± s. e.) body length for adult female and male cats was 46.5 ± 0.75 cm and 49.2 ± 0.70

cm, respectively.  The maximum weight recorded was for a male weighing 5.68 kg.

Most cats trapped were black (n = 22), while the remainder were brown tabbies (n =

18), grey tabbies (n = 5) or orange (n = 2).
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Table 1.  Numbers of animals caught in cage traps from November 1994

to August 1996.  (  ) indicates recaptures.

Cat Brushtail
possum

Rabbit Black rat Bird Lace
monitor
lizard

Blue
tongue
lizard

Bearded
dragon

No. trap
nights

1994 Nov 2 (1) 2 0 1 2 16 7 0 530

Dec 2 (2) 0 0 0 0 6 1 0 164

1995 Jan 0 0 0 0 0 1 0 0 64

Feb 2 (1) 0 0 0 0 10 1 0 296

Mar 4(1) 0 0 0 2 6 1 2 515

April 2 0 1 1 0 0 0 0 406

May 6 (4) 1 1 0 2 0 0 0 556

June 26 (16) 3 0 0 4 0 0 0 453

July 4 (3) 0 0 0 0 0 0 0 354

Aug 2 (2) 0 0 0 0 0 0 0 166

Nov 0 0 2 0 0 0 0 0 13

1996 Jan 0 0 0 0 0 4 0 0 54

Feb 0 0 0 0 0 1 0 0 51

Mar 0 0 0 1 0 5 0 0 198

April 0 2 1 4 1 5 0 0 295

May 8 (4) 0 0 5 4 0 0 0 280

June 6 (4) 1 0 3 6 0 0 0 259

July 0 0 0 0 0 0 0 0 76

Aug 1 (1) 1 1 0 0 0 0 0 230

Total 65 (39) 4 4 13 21 54 10 2 5614
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Table 2.  Numbers of animals caught in leg-hold traps from December 1994 to
July 1996.  (  ) indicates recaptures.

Cat Fox Brushtailp
ossum

Rabbit Bird Lace
monitor

No. trap
nights

1994 Dec 0 0 0 0 0 0 44

1995 Feb 0 0 0 0 1 1 110

March 0 0 0 0 1 1 86

April 0 0 2 0 0 0 113

May 5(5) 1 0 1 0 0 226

June 1 0 0 0 2 0 107

July 0 0 0 0 0 0 86

1996 March 0 0 0 0 0 0 69

April 1 (1) 0 0 0 0 0 76

May 0 0 0 0 0 0 74

June 5 (3) 0 0 0 2 0 142

July 0 0 0 0 2 0 15

Total 12 (9) 1 2 1 8 2 1148
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Table 3.  Relative trap success (no. per 100 trap nights) of cage and leg-hold
traps for trapping feral cats from November 1994 to August 1996.  (  ) indicates

recaptures.

No. cats Trap
nights

Trap
success

Trap nights
per cat

Trap nights
per new cat

November 1994
Cage

50 (30) 3958 1.2 79 198

to August 1995 Leg-hold 6 (5) 772 0.8 129 772
Total

56 (35) 4730 1.2 85 225

November 1995 Cage 15 (9) 1656 0.9 110 276

to August 1996 Leg-hold 6 (4) 376 1.5 63 188
Total

21 (13) 2032 1.0 97 254

           Fig. 2.  Relationship between trap success of cats and rabbit abundance between 
           November 1994 and  August 1996.  Indices of rabbit abundance were derived 
           from spotlight counts conducted by the VBCRC Predator-Prey Project.
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Non-target species.  A total of 122 non-target animals was trapped in both cage and

leg-hold traps in 6762 trap nights (1.8 animals per 100 trap nights) (Tables 1 and 2).

These included the red fox (Vulpes vulpes), common brushtail possum (Trichosurus

vulpecula), European rabbit (Oryctolagus cuniculus), black rat (Rattus rattus), birds and

lizards.  Lace monitors (Varanus varius) (n = 56 captures) were the most common

non-target species trapped, particularly during the warmer months (November to

March) in cage traps.  Birds, mostly corvids, were also trapped frequently (n = 29),

particularly in autumn and early winter.  Non-target animals were generally released

unhurt.

Bait types.  A variety of baits and lures (51 combinations) was used in the first year of

the study, but only 5 different bait and lure combinations were successful in catching

cats (Table 4).  Rabbit was the most successful bait (1.6 cats per 100 trap nights) and

was therefore used more extensively than the other baits.  Lures (visual and

olfactory) added to rabbit did not increase trap success (1.2 cats per 100 trap nights).

Table 4.  Variation in trap success (no. cats per 100 trap nights) of five bait types that were
successful in catching cats (n = 50) in cage traps from December 1994 to November 1995.

Bait type No. cats Trap nights Trap success

Rabbit 36 2164 1.6

Chicken 4 269 1.5

Rabbit & lure 7 572 1.2

Whiskettes & lure 1 82 1.2

Fish 2 371 0.5

Cat breeding.  All litters were born between September and March with no breeding

observed at other times.  This was based on estimated birth dates of trapped juvenile

and subadult cats (n = 12), on sightings of kittens (n = 3), on observations of lactation

in trapped cats (n = 2), and on litters born to radiocollared cats (n = 3).  Litters were

located in the base of hollow tree trunks (dead and living) (Fig. 3a) and among

boulders.  Litter sizes ranged from 2-5 kittens (n = 6) (Fig. 3b).  Mortality of kittens

appeared to be high as subsequent locations of litters indicated reductions from

initial litter sizes.
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Trap-related injuries and multiple recaptures.  There were fewer serious injuries

associated with cage traps compared to leg-hold traps.  Injuries suffered in cage traps

were generally minor and involved self-inflicted abrasions to the face.  Two animals

(one fox and one cat) caught in leg-hold traps died or were killed through trap-

related injuries.  The fox broke its leg in a leg-hold trap and was immediately

euthanased, while the cat was repeatedly captured in leg-hold traps within a

relatively short time period (6 times in one month, 10 times in total) and later

was found dead two months later: death was possibly trap-related.

By comparison, cats that were trapped repeatedly in cages did not appear to suffer

any serious injuries.  One cat was re-trapped 13 times in an eight-month period and

remained in good condition.  Two other cats were re-trapped six times (primarily in

cages) and did not suffer trap-related injuries.  Twenty-three individual cats were

never re-trapped, while the remaining 21 cats were re-trapped twice.

DISCUSSION

Overall trap success (no. per 100 trap nights) of feral cats at Burrendong was 1.1 and

ranged from 0 in January 1995 and other months to 5.7 in June 1995.  Trap success

was lower than that reported on islands (7.3; Berruti 1986) and in areas associated

with human settlement (9.2; Liberg 1980, 21; Page and Bennett 1994).  Numerous

factors can influence trap success between regions including cat density, trap type,

season, and proximity to human settlement.  For example, cats are much harder to

trap at low densities (Rauzon 1985), and easier to trap around human settlements,

particularly around rubbish dumps and camping grounds (Lee 1994) than in

unsettled areas.  No published data were available from rural areas to allow

comparisons with this study.

Although the relative effectiveness of different trap types has not previously been

evaluated, some studies have indicated that leg-hold traps are more effective in

catching cats than cages (Lee 1994).  In this study no significant difference in trap

success was found between the two trap types.  Cage traps were preferred, however,

over leg-holds as they were less labour intensive to set and resulted in fewer serious
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hold traps resulted in only two serious injuries in this study, which is consistent with

other studies where no or minimal injuries were sustained by cats (Meek et al. 1995,

Fleming et al. 1998).  Leg-hold traps may be more effective than cage traps for feral

cats that have had minimal exposure to humans.  In contrast, the relative success of

cage traps at Burrendong may have been due to the continual human presence and

the associated stock fences and vehicles, such that a wire cage trap and human odour

may not have been too unfamiliar to the cat.

Trap success varied seasonally, being better in late autumn and early winter, which

probably reflected a period of low food availability for cats.  Although rabbit

abundance remained high during autumn and winter in the second year of this

study, the relative availability of subadult and kitten rabbits was low (Catling 1988,

personal observation).  As cats prefer subadult rabbits to adults (Catling 1988) and

the availability of alternative prey (e.g. reptiles and grasshoppers) was low, this may

have reflected a period of low food availability for cats.  Feral cats elsewhere have

been shown to take significantly more baits when rabbit abundance is lower (Short et

al. 1997).  In Scotland, increased trap success was recorded for wildcats (Felis

silvestris) in autumn and winter (Corbett 1979), and was associated with declines in

food availability and bad weather.  Alternatively, increased trap success in autumn

and winter may have reflected greater energetic needs during the colder months or

increased dispersal by young adult cats (1-3 years), thereby increasing their

range when they are 1-3 years old (Dards 1978, 1983, Liberg 1980).

Cats at Burrendong showed a preference for rabbit as bait, their staple prey (Chapter

4), and were not attracted to novel baits.  Despite the importance of sight in the

visual detection of prey by cats (Turner and Meister 1988), visual lures did not

increase trap success in this study, or bait visitation rates in other studies (Edwards et

al. 1997, Short et al. 1997).  Once the bait is detected, olfactory senses may be more

important.  In support of this, Risbey et al. (1997) found that cats frequently

approached baits but rarely ate them.
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A male bias in the sex ratio of trapped cats has also been reported in other studies

(van Aarde 1978, Konecny 1987, Calhoon and Haspel 1989, Edwards et al. 1997),

which is probably due to sex differences in behaviour, rather than sex-specific

mortality (van Aarde 1978).  For example, male cats occupy larger home ranges than

females (Chapter 5) which would increase their encounter rate with traps.

Furthermore, during the breeding season (September to March) when males are in

search of females, encounter rates with traps may be higher than for females.

Litters at Burrendong were born between September and March, which is consistent

with studies of feral cats elsewhere (e.g. van Aarde 1978, Jones and Coman 1982).

Although litters were only found in hollow trunks and among boulders, they also

may have occurred in rabbit warrens but were undetectable.  Cats share warrens

with rabbits (Calaby 1951, personal observation) quite amicably (Rolls 1969).

RECOMMENDATIONS FOR TRAPPING OF FERAL CATS

It is recommended that trapping be restricted to late autumn and early winter when

food availability is generally low, particularly in high rabbit density areas.  Trapping

during this period would also reduce the capture of non-target reptiles.  Baits used

may not be necessary if the trap is clearly visible or the bait has a strong odour.  Cage

traps should be set squarely on the ground and the doors of traps bent upwards to

increase the openness of the space.  In addition, the trap should be clear of vegetation

so that the cat can walk completely around the trap before entering.
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Appendix 2:  Taxa identified in cat scats

Class, Order, species Common name
Mammalia

Oryctolagus cuniculus Rabbit
Macropus giganteus Eastern Grey Kangaroo
Mus domesticus House Mouse
Ovis aries Sheep
Rattus rattus Black Rat
Bos taurus European cattle
Sus scrofa Pig
Trichosurus vulpecula Common Brushtail Possum
Sminthopsis sp. Dunnart
Petaurus breviceps Sugar glider

Reptilia
Varanus sp.( probably varius) Monitor Lizard
Ctenotus sp.( probably robustus)
Ramphotyphlops sp. Blind snake

Unidentified skink
Unidentied dragon
Unidentified Elapid

Amphibia
Litoria latopalmata
Litoria peronii

Invertebrata 
Orthoptera Grasshoppers and crickets
Coleoptera Beetles
Lepidoptera Moths and butterflies
Blattoidea Cockroaches
Odonata Dragonflies
Arachnida Spiders 
Chilopoda Centipedes
Diptera Flies
Hymenoptera Ants

Vegetation
Grass sp.

Rosa rubiginosa Sweet Briar
Rubus fruticosus Blackberry
Brachychiton populneum Kurrajong
Schinus areira Peppercorn
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Appendix 3:

Temporal synchrony and the influence of moonlight on the diet

of red foxes (Vulpes vulpes) in central-eastern New South Wales1

R. L. Molsher, E. J. Gifford and J. C. McIlroy

Vertebrate Biocontrol Cooperative Research Centre and CSIRO Wildlife and Ecology,

GPO Box 284, Canberra, ACT 2601, Australia.

Abstract

This study describes temporal, spatial and individual variation in the diet of red

foxes (Vulpes vulpes) (n = 255 stomachs) on agricultural land in central-eastern New

South Wales from July 1994 to November 1996.  Rabbits (Oryctolagus cuniculus),

sheep (Ovis aries), eastern grey kangaroos (Macropus giganteus) and invertebrates

were the most important food items overall.  Foxes continued to eat rabbits after the

arrival of Rabbit Calicivirus Disease in the region.  Significant seasonal variations,

and sex and age differences between foxes were found in the consumption of some

food types.  Temporal synchrony was also detected, with several individual foxes

eating similar foods on the same night, which may have been related to

environmental cues.  On full moon nights, foxes ate rabbits and small mammals

significantly less often than on other moon phases.  These findings were consistent

with behavioural resource depression.  The implications of moonlight effects and

individual variation in dietary composition are discussed.

Introduction

The red fox (Vulpes vulpes) was successfully introduced into Australia in the 1870s

(Rolls 1969) and is now regarded as a significant pest to agriculture (lambs) (Saunders et al.

1995) and native fauna (Kinnear et al. 1988, Dickman et al. 1993, Priddel and Wheeler 1994).

Results from 26 dietary studies in Australia confirm that the red fox is an opportunistic

predator and scavenger with a diverse diet (see reviews in Banks 1997 and Newsome et al.

1997).  Regional and seasonal variation in fox diet has been documented widely in Australia

(Croft and Hone 1978, Green and Osborne

Running Head: Temporal synchrony and moonlight effects on fox diet
1  paper submitted for publication in Wildlife Research
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1981, Triggs et al. 1984, Lunney et al. 1996) and elsewhere (Cavallini and Lovari 1991).

Few studies, however, have examined variation within fox populations on a fine local scale,

such as between classes of individuals (e.g. age, sex) (Catling 1988, Lugton 1993, Palmer

1995, Cavallini and Volpi 1996) and none has examined diet on a fine temporal scale.

It is not known whether individual foxes vary in their prey consumption on the same

night, or whether foraging behaviour is synchronised (temporal synchrony), perhaps as a

response to environmental variables that affect prey activity.  Climatic factors are important in

influencing the diet of foxes (Calisti et al. 1990, Cavallini and Lovari 1991, Lovari et al.

1994, Palmer 1995).  In central Italy, temperature and photoperiod were correlated

significantly with insects and fruits in the diet (Calisti et al. 1990, Cavallini and Lovari 1991,

Lovari et al. 1994), while in Queensland, Australia, rainfall directly influenced invertebrate

consumption (Palmer 1995).  Although the consumption of mammalian prey was not

influenced by these abiotic factors, the role of moonlight on the prey taken by foxes, or other

predators, has not been investigated previously.

Moonlight has been shown to influence the activity patterns and habitat use of various

nocturnal mammal species, such as lagomorphs (Gilbert and Boutin 1991), opossums (Julien-

Laferriere 1997), badgers (Cresswell and Harris 1988) and rodents (Dickman 1992).  On

moonlit nights, these species reduce their activity levels or use of open areas and increase

their use of closed habitats.  These behavioural adaptations have been interpreted as anti-

predator responses to increased predation risk (Clarke 1983, Kotler et al. 1988).  Reduced

activity levels of prey on moonlit nights may influence the foraging behaviour of an

opportunistic predator.

In this study we describe the diet of the red fox in agricultural land in central- eastern

New South Wales and address four main questions:

1) Does dietary composition vary with season?

2) Does dietary composition differ between age and/or sex classes?

3) Do foxes show synchronisation in foraging behaviour?

4) Does moonlight affect the prey types taken by foxes?

Methods

Study area

This study was conducted within a 50 km radius of the foreshores of Lake

Burrendong (320 0

July 1994 to November 1996.  Foxes were collected from the immediate foreshore area in
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1994 and from 24 rural properties adjacent to the foreshores in 1995 and 1996.  Distances

between sites ranged from 2 to 95 km.  Grazing by sheep (Ovis aries) and cattle (Bos taurus)

was the major land use for the entire area.  Sheep on the foreshores, however, were mostly

wethers, while ewes were more common on the rural properties.  Lambing on the rural

properties was observed in spring in both 1995 and 1996.  The foreshore site also differed

from the neighbouring rural properties in that rabbits (Oryctolagus cuniculus) were more

abundant, and the regular shooting (culling) of eastern grey kangaroos (Macropus giganteus)

provided abundant carrion.

The climate is characterised by mild to cool winters (2-150 C) and warm to hot

summers (14-330C) with an average annual rainfall of 614 mm.  Both 1994 and 1995 were

considered drought years as the cumulative deviation of monthly rainfall was generally below

the long-term monthly average (46 years) (after Foley 1957).  In 1996, conditions improved

with above average rainfall recorded throughout the year (Bureau of Meteorology).

Stomach collection

Foxes were collected by cyanide baiting in 1995, and shooting from a vehicle (0.222-

calibre rifle) with the aid of a spotlight in 1994 and 1996.  Shooting began approximately 1.5

hours after sunset and continued for up to six hours per night.  Both cyanide baiting and

shooting took place on or near roads and tracks.  Consecutive foxes were generally shot at

least 500 m apart.  Each fox was aged by sectioning teeth and counting annuli (Harris 1978),

except for nine foxes whose teeth were damaged during collection.  Foxes were separated into

(Catling 1988).

Prey identification

Prey remains in stomachs were sorted macroscopically into food groups.  Mammalian

prey remains were identified to species from microscopic analysis of hairs using cross section

and whole mount techniques (Brunner and Coman 1974).  The approximate age of ingested

rabbits was determined by comparing sizes of recovered body parts (e.g. ears and feet) to a

reference collection of entire known-age rabbits taken from the study area.  Rabbits < 500 g

(< 50 days) were classified as small kittens, 500 ≤ 800 g (50 ≤ 80days) as large kittens, and >

800 g (> 80 days) as adults (after Catling 1988, I. Parer, personal communication).  Adult and

subadult status for ingested common brushtail possums (Trichosurus vulpecula) and house

mice (Mus domesticus) were estimated by comparing body part sizes to known-age reference

specimens.  Possums with a tibial length < 100 mm (Tyndale-Biscoe 1955) and house mice <

72 mm head-body length (Newsome 1969) were considered subadult.  The presence of
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blowfly larvae in a stomach was used to classify the contents as carrion.  Eastern grey

kangaroos, sheep, cattle, pigs (Sus scrofa) and goats (Capra hircus) were also classified as

carrion, given their large size, despite the absence of blowfly larvae.  Carrion remains were

not aged because identifiable body parts were generally not found.  Non-mammalian food

items were identified to species level, where possible, by comparison to reference books

(Simpson and Day 1989, Cogger 1994, Zborowski and Storey 1995) and reference

collections.

Data analysis

The percentage volume of each food item per stomach was estimated visually (Croft

and Hone 1978), and the mean percentage volume and percentage occurrence calculated for

each monthly sample of stomachs.  Percentage volume was defined as the proportion of the

total volume of a stomach that was occupied by a particular food item, while percentage

occurrence was defined as the proportion of stomachs in a sample that contained a particular

food item (Reynolds and Aebischer 1991).  As some stomachs contained more than one item,

the sum of percentage occurrences could exceed 100%.  The visual estimate of percentage

volume was considered reliable, as it did not differ significantly from other more laborious

quantitative methods for assessing diet (Molsher et al. 1999).  Both percentage volume and

occurrence methods were used in assessing diet to reduce the limitations imposed by each

single method (Reynolds and Aebischer 1991).  All prey identifications were conducted by

the same person (R. Molsher) to reduce inconsistencies between observers.

Sampling was conducted over three seasons; summer (December to February), winter

(June to August) and spring (September to November).  No samples were collected in

autumn.  Seasonal variation in the percentage volume of each prey group was examined using

a non-orthogonal two-way ANOVA (season by year).  Summer was excluded from the

analysis because of the low sample size (n = 9).  The percentage volumes were arcsine-

transformed for normality (Zar 1984), and each prey group tested separately to avoid

problems associated with the lack of independence between prey groups.

Age and sex differences between foxes in the percentage volume of each prey group

were evaluated using a non-orthogonal two-way ANOVA (sex by age).  The percentage

volumes were arcsine-transformed and each prey group was tested separately.  Age and sex

differences in dietary composition were examined for winter and spring separately to

distinguish possible interactions with season that may have been related to breeding.  In

addition, age and sex differences between foxes in the frequency of sheep consumption were
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period, and for winter and spring separately.

To examine moonlight effects on dietary composition, stomachs were allocated to one

of four moon phases (full moon, last quarter, new moon, first quarter), according to the

closest phase to collection date.  These phases were assumed to represent different light

conditions.  Moonlight effects on the diet of foxes may have been underestimated, as cloud

cover was not examined.  Stomachs collected in 1994 from the foreshore sites were excluded

from the moonlight analyses, as they were considered unrepresentative of the entire sample.

Rabbits at this site were not controlled and in very high numbers, compared to those on the

rural properties, and may have obscured predator responses to changes in prey activity.  In

addition, only one stomach was collected on a full moon night in 1994.  G-tests were used to

evaluate differences between the four moon phases in the frequency of each prey group in the

diet.  Each prey group was tested separately.  Analyses were conducted for the entire period

(1995 to 1996) and for winter and spring separately.  In addition, variation in the percentage

volume of each prey group between moon phases was evaluated using a non-orthogonal two-

way ANOVA (season by moon phase).  The percentage volumes were arcsine-transformed

and each prey group was tested separately.

Results

Overall Diet

A total of 263 foxes (134 females and 129 males) were collected from July 1994 to

November 1996.  The stomachs from two foxes were damaged during collection and six were

empty.  In 255 fox stomachs examined, 10 species of mammal, 11 species of bird, 8 species

of reptile, 2 species of amphibian, 25 species of invertebrate and 3 plant species were

identified (Appendix 1).

Mammals were the most important food group for foxes by volume (63.5%), but were

not found in all stomachs (93%) (Table 1).  Carrion, mostly eastern grey kangaroo and sheep,

was the most important food group both by volume (38.2%) and occurrence (73.8%).

Invertebrates, rabbits and vegetation were next most important by volume, whereas small

comprised fish, frogs, a tortoise and an octopus (presumably scavenged from domestic

Specific food items
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Eastern grey kangaroos were the major type of carrion eaten at the foreshore site,

while sheep were more important subsequently for foxes collected from rural properties (Fig.

1).  Peaks in sheep consumption were detected in early spring in 1995 and 1996, but not in

when goats dominated in the diet (Fig. 1).

Rabbits were more important in the diet at the foreshore site in 1994, compared to the

rural properties in 1995 and 1996 (Fig. 2).  Of the 41 stomachs where rabbit remains were

aged, most were adults (66%), while large and small kittens both occurred in 17% of

stomachs.  Foxes continued to eat rabbits after the arrival of Rabbit Calicivirus Disease

(RCD) in June 1996 (Saunders et al. 1999).

Invertebrates were important in the diet by both occurrence (72.9%) and volume

(21.1%) (Table 1) and occurred in stomachs in all sample months (Fig. 2).  Vegetation was

eaten frequently (68.2%), but was not a major component of the diet by volume (9.6%) (Table

1).  Small mammals (house mice, black rats Rattus rattus, and a dunnart Sminthopsis sp.)

were minor components of the diet, occurring in 15.2% of stomachs and comprising 5.1% of

the diet by volume.  House mice were the most common small mammal species eaten (n = 33

stomachs), while black rats were next most common (n = 5) (Table 1).  Of the 12 stomachs

where house mice were aged, 10 contained subadult mice with up to three whole subadult

mice occurring in individual stomachs.  Common brushtail possums were a minor component

of the diet with occurrence in only 5 stomachs (Table 1).  One possum was classified as adult,

one subadult, and three of unknown age.  Possums were eaten only in three months of the

year throughout the study: August, September and October.  Birds comprised a minor

component of the diet by volume (3.4%) (Table 1) with the common starling (Sturnus

vulgaris) the most frequently eaten species.

Few foxes ate reptiles (Table 1) but a single stomach often contained a variety of

species.  For example, a stomach collected in October 1995 contained the remains of eight

legless skinks (Anomalopus leuckartii), one blind snake (Ramphotyphlops proximus) and one

dragon (Agamidae).  A. leuckartii (n = 11 stomachs) and R. proximus (n = 5 stomachs) were

the most common species eaten.  Most reptiles (87.5%) were detected in stomachs collected

in October and November, while A. leuckartii was eaten only during these months.  A.

leuckartii were eaten mostly by vixens (82%), and by young adults (9 months - 2 years, 55%),

rather than by cubs (<9 months, 9%) or old adult foxes (> 2 years, 36%).
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Table 1.     Food items in fox stomachs collected from central-eastern NSW  
                     from July 1994 to November 1996 (n = 255)
                     * classified as carrion

Food item number of % % 
occurrences occurrence volume

Mammal
* Eastern Grey Kangaroo 96 37.6 16.4

European Rabbit 87 34.1 19.7
* Sheep 78 30.6 18.6

House Mouse 33 12.9 3.7
* Indeterminate carrion 6 2.4 1.3

Common Brushtail Possum 5 2.0 0.5
Black Rat 5 2.0 1.0

* Goat 4 1.6 1.1
* European cattle 2 0.8 0.3
* Pig 2 0.8 0.5

Dunnart sp. 1 0.3 0.4
Total mammal 319 93.0 63.5

Bird 41 16.1 3.4
Reptile 24 9.4 2.0
Invertebrate 186 72.9 21.1
Vegetation 174 68.2 9.6
Aquatic 8 3.1 0.5
Miscellaneous 5 2.0 0.7
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Fig. 1.  Relative importance (% volume) of different types of carrion in the diet of  foxes
 (n  = 255).  Where RCD = Rabbit Calicivirus Disease and (   ) indicates number of stomachs. 
Stomachs were collected from the foreshore site in 1994 and adjacent rural properties in
1995 and 1996
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Fig. 2.  Monthly variation in fox diet (n = 255 stomachs).  Where RCD = Rabbit Calicivirus 
Disease and (   ) indicates number of stomachs.  Stomachs were collected from the foreshore
site in 1994 and adjacent rural properties in 1995 and 1996
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Seasonal variation

In winter, rabbits (F = 5.37, d. f. = 1, 240, P = 0.021) and vegetation (F = 10.11, d. f.

= 1, 240, P = 0.002) were more important in the diet by volume, than in spring.  In spring,

invertebrates (F = 7.22, d. f. = 1, 240, P = 0.008) and reptiles (F = 9.50, d. f. = 1, 240, P =

0.002) were more important in the diet than in winter.  In summer, foxes tended to feed

mostly on invertebrates and no small mammals or birds were detected in the diet, but this

sample was small.  No significant difference was found between years in the consumption of

any of the prey groups and no season by year interactions were detected (P > 0.05).

Invertebrate taxa tended to vary seasonally, with grasshoppers and Christmas beetles

the main taxa eaten in summer, and beetles, centipedes, armyworms and cockroaches in

spring.  Few invertebrates, mostly armyworms, were eaten in winter.  In most months,

vegetation comprised just a few strands of grass, except in winter, when sweet briar (Rosa

rubiginosa) and kurrajong (Brachychiton populneum) seeds were an important dietary

component.  During this time, up to 273 sweet briar and 104 kurrajong seeds were recorded in

individual stomachs.

Sex and age differences in diet

Carrion was more important by volume for male foxes compared to vixens in winter

(F = 5.29, d. f. = 1, 96, P = 0.024) but not in spring (P > 0.05) when vixens ate more

invertebrates than males (F = 4.54, d. f. = 1, 133, P = 0.035).  By occurrence, sheep were

eaten significantly more often by male foxes (38%) than by vixens (25%) overall (G = 4.72,

d. f. = 1, P < 0.05) but no differences were found when the seasons were tested separately (P

> 0.05).

Young adult foxes (9 months-2 years) ate more carrion by volume than old adults (>

2 years) in winter (F = 7.55, d. f. = 1, 96, P = 0.007).  No cubs (< 9 months) were present in

winter.  In spring, cubs ate more reptiles (F = 5.83, d. f. = 2, 133, P = 0.004) and less carrion

(F = 2.60, d. f. = 2, 133, P = 0.07) than the other age groups, while young adults ate less

rabbits (F = 3.11, d. f. = 2, 133, P = 0.048) (Fig. 3).  Cubs also tended to eat more

invertebrates than the other age groups in spring but the difference was not significant (P >

0.05) (Fig. 3).  All known age rabbits eaten by cubs were kittens.  The frequency of sheep

consumption did not differ between age groups (P > 0.05).

Significant sex by age interactions was also detected.  Reptiles were more important

in the diet by volume of male cubs and old adult females in spring (F = 5.78, d. f. = 2, 133, P
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= 0.004) compared to the other age-sex combinations.  In winter, carrion was more important

in the diet of young adult males (F = 4.07, d. f. = 1, 96, P = 0.046).

Temporal synchrony

Individual foxes tended to eat similar foods on the same night (Fig. 4).  On 61% of

nights (excluding nights where < 3 foxes collected), over half the foxes ate the same dominant

food group (25 nights, 113 foxes).  For example, eastern grey kangaroos were the main food

group by volume for 60% of foxes on July 5, 1995 and 80% of foxes on September 5, 1996

(Figs. 4a and f).  Similarly, rabbits were the major food for 64% of foxes on August 4, 1995

and 80% of foxes on 24 November 1995 (Figs. 4b and d).  Invertebrates were the most

important food source on 30 August 1995 (80%), 6 December 1995 (100%) and 18

September, 1996 (67%) (Figs. 4c, e and g).

rabbit
carrion
invertebrate
vegetation
small mammal
bird
reptile

Fig. 3.  Age differences in the dietary composition of foxes in spring from 1994 to 1996 
 (n  = 140 stomachs).  Where cub = less than 9 mths, young adult = 9 mths to 2 years, and old 
adult = more than 2 years,  and (  ) indicates number of stomachs.          
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Species eaten within each food group were also similar between individual foxes on

the same night.  For example, centipedes and armyworms were the two main invertebrate taxa

eaten by all foxes on August 30, 1995 and September 18, 1996 (Figs. 4c and g).  Similarly,

beetles and cockroaches were the main taxa eaten on November 24, 1995 and beetles and

grasshoppers on 6 December 1995 (Fig. 4d and e).  In addition, the age of mammalian prey

that were eaten tended to be similar among foxes collected on the same night.  For example,

all rabbits eaten on 24 November 1995 were small kittens (Fig. 4d).

Influence of moonlight on diet

Overall, rabbits (G = 7.36, d. f. = 3, P < 0.10) and small mammals (G = 8.10, d. f. =

3, P < 0.05) were eaten less often on full moon nights than on the other moon phases (Fig. 5).

By volume, carrion was less common in the diet on new moon nights (F = 4.22, d. f. = 3, 190,

P = 0.006).  No significant moonlight effects were found for the consumption of the

remaining food groups (P > 0.05).

In spring, foxes tended to eat rabbits (G = 7.49, d. f. = 3, P < 0.10) more often on

new moon nights and invertebrates (G = 15.96, d. f. = 3, P < 0.05) less often on full moon

nights, than on the other moon phases.  Small mammals also tended to be eaten less often on

full moon nights in spring (G = 4.81, d. f. = 3, P > 0.05).  No moonlight effects were detected

for any of the prey groups in winter (P > 0.05).

Discussion

Overall diet

Fig.5.  Fox diet in relation to moon phase at the rural properties from July 1995 to November 
1996 (n  = 210 stomachs).  Where (  ) indicates number of stomachs

0

50

100

150

200

250

300

350

full moon last 1/4 new moon first 1/4

%
 o

cc
ur

re
nc

e (25)
(35)

(43) (107)



Appendices  246

The diet of foxes in central-eastern New South Wales was dominated by mammals,

particularly carrion and rabbits.  This concurs with previous studies that have found mammals

to be the major prey where abundant in Australia (Brunner et al. 1976, Triggs et al. 1984,

Woolley et al. 1985, Wallis and Brunner 1987, Baker and Degabriele 1987, Brown and

Triggs 1990, Brunner et al. 1991), as elsewhere (Lindstrom 1994).  Invertebrates were

important supplementary prey, while birds, reptiles and vegetation were generally minor

components of the diet.

Specific food items

Carrion (mostly eastern grey kangaroos and sheep) was the most important food

group (occurrence 73.8%, volume 38.2%) for foxes in this study, which presumably reflected

its high availability.  Other carrion (cattle, pigs and goats) was of minor importance, except in

June 1996, when goats dominated the diet of four foxes.  These foxes were collected from

near a paddock where farmed feral goats were kidding (E. Gifford personal observation).

As in previous studies, eastern grey kangaroo remains were assumed to be carrion

(Martensz 1971, Coman 1973, Ryan and Croft 1974, Bayly 1978, Croft and Hone 1978,

Catling 1988, Lunney et al. 1990, Lugton 1993, Palmer 1995), because of their large size, but

predation on juveniles may have also occurred.  Foxes are known to be significant predators

of smaller adult macropods (e.g. Kinnear et al. 1988) and there is increasing evidence to

suggest that predation on the juveniles of larger macropods is also prevalent (Hornsby 1982,

Robertshaw and Harden 1989, Arnold et al. 1991, Banks 1997).  Consequently, the

importance of carrion in the diet may have been overestimated in this study as the prevalence

of predation on juvenile large mammals was not known.  Even when the age of mammalian

remains was known, the limitations inherent in dietary studies precluded any distinction

between scavenging and predation.  For example, the presence of juvenile flesh in the

stomach does not necessarily indicate that the animal was killed by that fox, while the

presence of blowfly larvae does not necessarily indicate scavenging, as the animal may have

been cached prior to eating.

Seasonal peaks in sheep consumption in spring during lambing may also have

reflected predation on lambs, rather than scavenging at carcasses.  Elsewhere, increases in

sheep consumption by foxes have also coincided with greatest lambing activity (McIntosh

1963, Croft and Hone 1978).  However, while foxes are known to kill lambs (Lugton 1993),

fresh lamb is found infrequently in fox stomachs (McIntosh 1963, Coman 1973, Croft and

Hone 1978, Lugton 1993), and the importance of fox predation on lambs is unclear.  It is not
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common among mature males (Lugton 1993).  While male foxes ate sheep significantly more

often than females overall in this study, no sex differences were detected in spring during

lambing.

Rabbits were the single most important mammalian prey species for foxes overall

(occurrence 34.1%, volume 19.7%).  They were particularly prevalent in the diet at the

foreshore site, which probably reflected their greater availability.  After the arrival of RCD,

foxes continued to feed on rabbits despite a decline of over 90% in numbers (Saunders et al.

1999).  This lack of diet shift in the four months post-RCD may be because rabbit abundance

remained sufficiently high for foxes to be efficient in catching them.  Consequently, shifts to

alternative prey would not have been necessary.

Seasonal and individual variation

Seasonal variation in diet was large as is found in most other dietary studies of the fox

(see review in Newsome et al. 1997, Cavallini and Volpi 1996), and has been shown to reflect

changes in food availability (Green and Osborne 1981, Catling 1988).  In this study,

invertebrates and reptiles were more important in the diet in spring, than in winter, when their

availability was higher (Molsher et al. 1999).  In summer, the diet comprised mostly

invertebrates, which also reflected their increased availability during this time (Molsher et al.

1999).  In winter, foxes ate significantly more rabbits and vegetation as the abundance of

reptiles and grasshoppers declined and sweet briar and kurrajong fruits increased (Molsher et

al. 1999, R. Molsher unpublished data).

While seasonal variation in diet is often assumed to be related purely to fluctuations

in prey abundance, individual variation (e.g. age and sex) is also clearly important in dietary

composition.  In this study, vixens ate significantly more invertebrates than males in spring,

while male foxes ate more carrion than vixens in winter.  Given the small sexual size

dimorphism in red foxes, these season by sex differences may be related to breeding

(Cavallini and Volpi 1996).  Winter is the main breeding season for foxes in Australia, and

most cubs are born during August and September (Saunders et al. 1995).  The high protein

content of invertebrates (McIlroy 1993) may be required for vixens during lactation and

growth of young in spring, especially if alternative prey is not readily available.  Similarly,

male foxes are more likely to be transient in winter when they leave their territories in search

of mating opportunities (Saunders et al. 1995).  The higher consumption of carrion by males

during this time may indicate that they are less adept at catching other prey, such as rabbits,

which may require local knowledge.  Similarly, the greater consumption of carrion by young

adult males in winter may reflect reduced foraging success in unfamiliar territories.
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Cubs (< 9 months) ate significantly more reptiles and less carrion than young adult (9

months-2 years) or old adult foxes (> 2 years) in this study in spring.  Previous studies have

not found age-related differences in reptile consumption but seasons were not distinguished

(Catling 1988, Lugton 1993) and spring not examined specifically (Palmer 1995, Banks

1997), when predation on reptiles was highest.  This greater consumption of reptiles by cubs

probably reflects their easier catchability and inexperience in catching alternative prey, such

as adult rabbits (Macdonald 1989, Dickman 1988).  Similarly, the higher incidence of rabbit

kittens compared to adults in the diet of cubs may reflect their easier catchability.  Foxes

frequently use rabbit warrens as dens for the birth and caring of cubs (Saunders et al. 1995)

and rabbit kittens (particularly nestlings) may provide an important food source for cubs

during the rabbit breeding season in spring (Gilbert et al. 1987).

A similar lower consumption of carrion by cubs, compared to adults, has been

predicts that larger prey are brought back for young in the den by a single-prey loader, while

smaller prey are consumed on the spot (Schoener 1979, Orians and Pearson 1979).  Although

this has found support for red foxes in the Northern Hemisphere (Lindstrom 1994), cubs in

this study ate smaller prey than did adults.  This may be because large prey in the Northern

Hemisphere includes rabbit-sized prey while in this study, large prey were kangaroo and

sheep carcasses that would be difficult to carry back to the den.  Although the sex and age-

related differences in diet reported here are consistent with other studies (Catling 1988,

Lugton 1993, Cavallini and Volpi 1996), individual variation in diet between seasons has not

been examined previously.

Temporal synchrony and the influence of moonlight

Temporal synchrony within the population was detected with individual foxes eating

similar foods on the same night.  This is unlikely to reflect group feeding at carcasses as

consecutive foxes were shot at least 500m from each other.  Synchronisation in the foraging

behaviour of foxes has not been examined previously but may reflect a generalised response

to environmental cues that influence prey activity.  The importance of invertebrates and

vegetation in the diet of foxes has previously been correlated with rainfall, photoperiod and

temperature (Calisti et al. 1990, Cavallini and Lovari 1991, Lovari et al. 1994, Palmer 1995).

In this study, moonlight was correlated significantly with the consumption of mammalian

prey.
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The reduced consumption of rabbits and small mammals on moonlit nights in this

causes prey to reduce activity in risky areas, thereby making them more difficult to capture

(Charnov et al. 1976, Kotler et al. 1992).  On moonlit nights, hunting success of a range of

predators may increase (Clarke 1983, Kotler et al. 1988) and prey activity is reduced (e.g.

Gilbert and Boutin 1991).  Reduced activity in rabbits and small mammals on moonlit nights

may then result in increased consumption of alternative prey that are less influenced by

illumination levels, such as invertebrates and carrion.

Although prey may be more active on darker nights, individual predation risk is

reduced, as they are less detectable to visual predators.  When food is limited, however, the

advantages of foraging on moonlit nights may outweigh the disadvantages of increased

predation risk (Lockard and Owings 1974, Wolfe and Summmerlin 1989).  This may account

for the lack of moonlight effects on dietary composition recorded in winter in this study.

Resource depression, however, predicts that prey selection on a fine temporal scale

should be asynchronous, as prey reduce their activity when disturbed thereby reducing

capture efficiency for subsequent predators.  The lack of asynchrony recorded in this study

may reflect the large area over which foxes were collected such that the hunting of a predator

in one area would not be expected to influence the behaviour of prey elsewhere.  Similarly,

territoriality in foxes (Voigt and Macdonald 1984, Doncaster and Macdonald 1991) may also

reduce resource depression effects.

Further experimentation is required to test the hypothesis that synchronisation in

foraging by foxes is due to moonlight effects on prey activity.  These studies need to show

that moonlight affects activity levels of the prey species, and that predators from different

sites have access to a similar range of prey.

Implications for future studies

The diet of foxes was significantly influenced by many sources of variation (season,

sex, age, moonlight) in this study, and this may have management implications.  Poison

baiting is one of the main methods used in the control of foxes in Australia (Saunders et al.

1995).  Future fertility control techniques will also depend upon baits for delivery of

contraceptive vaccines (Bradley et al. 1998).  Variation in the consumption of prey, however,

may influence bait uptake rates and result in an age-sex bias in the population.  For example,

while baiting in winter, prior to the birth of cubs, has cost and animal welfare advantages, our

results suggest that baiting only during this time may target young adult males.  In addition,
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baiting may be more effective on moonlit nights when foxes are more likely to eat carrion,

and predation on rabbits and small mammals is reduced.
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Appendix. Species identified in fox stomachs (n  = 255) collected from 
                 central-eastern NSW from July 1994 to November 1996.

Class, Order, species Common name
Mammalia

Macropus giganteus Eastern Grey Kangaroo
Trichosurus vulpecula Common Brushtail Possum
Sminthopsis  sp. Dunnart
Bos taurus European Cattle
Sus scrofa Pig
Ovis aries Sheep
Capra hircus Goat
Oryctolagus cuniculus Rabbit
Rattus rattus Black Rat
Mus domesticus House Mouse

Aves
Anas  sp. Duck or teal
Corcorax melanorhamphos White-winged Chough
Coturnix australis Brown Quail
Malurus cyaneus Superb Fairy-wren
Megalurus gramineus Little Grassbird
Petroica goodenovii Red-capped Robin
Platycercus eximius Eastern Rosella
Podargus strigoides Tawny Frogmouth
Smicrornis brevirostris Weebill
Strepera graculina Pied Currawong
Sturnus vulgaris Common Starling

Reptilia
Anomalopus leuckartii
Ctenotus robustus Striped skink
Ctenotus sp.
Egernia striolata Tree skink
Underwoodisaurus milii Thick- Tailed Gecko
Agamidae indet.
Ramphotyphlops proximus Blind snake
Ramphotyphlops sp.
Chelodina longicollis Long-Necked Tortoise
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Amphibia
Limnodynastes tasmaniensis

Arachnida
Araneida Spider

Chilopoda
Scolopendromorpha Centipede

Insecta
Blattodea probably Calolampra irrorata Cockroach
Coleoptera Christmas beetle, ground beetle,

scarab beetle, dung beetle
Adelium angulicolle Darkling beetle
Chauliognathus lugubris Plague soldier beetle

Dermaptera Labidura truncata Common brown earwig
Diptera Flies
Hemiptera Grass bug

Dysdercus sp. Cotton stainer
Hymenoptera Ants
Lepidoptera Armyworm, cutworm, moth
Neuroptera Green lacewing
Odonata Dragonfly
Orthoptera Acrida conica Grasshopper

Chortoicetes terminifera Australian plague locust
Oedaleus australis Grasshopper
Oecanthus sp. Tree cricket
Phaulacridium vittatum "Wingless" grasshopper
Tettigoniidae Katydid

Vegetation
Grass sp.

Brachychiton populneum Kurrajong tree
Rosa rubiginosa Sweet Briar


