
University of Alberta 

ANALYSIS OF PREDATION DATA FROM MOOSE-WOLF SYSTEMS 

JASON PAUL MARSHAL 0 
A thesis submitted to the Faculty of Graduate Studies and Research in partial 

llfilment of the requirements for the degree of Master of Science 

Environmental Biology and Ecology 

Department of Biological Sciences 

Edmonton, Alberta 

Spring 1997 



National Library 1*1 of Canada 
Biblioth&que nationale 
du Canada 

Acquisitions and Acquisitions et 
Bibliographic Se~*ces services bibliographiques 
395 Wellington Street 395. rue Wellington 
-ON KlAON4 OaawaON K I A W  
Canada Canada 

The author has granted a non- 
exclusive licence allowing the 
National Liibrary of Canada to 
reproduce, 1- distniute or sell 
copies of hismer thesis by any means 
and in any foan or format, making 
this thesis available to interested 
persom. 

The author retains omership of the 
copyright m hismer thesis. Neither 
the thesis nor substantial extracts 
fiom it may be printed or otherwise 
reproduced with the author's 
permission. 

L'auteur a accorde m e  licence non 

Biblioth* nationale du Canada de 
repfoduire, preter, disttriiuer ou 
vendre des copies de sa th&e de 

forme qye ce soit pour mettre des 
exemplaires de cette th&e B la 
disposition des personnes intkessbs. 

L'auteur conserve la propriete du 
droit d'auteur qui protkge sa &be. Ni 
la thbe ni des adraits subsGmtiels de 
celle-ci ne doivent &re imprimCs ou 
auSrementreproduits sans son 



ABSTRACT 

I examine some assumptions researchers make about the nature of wolf numerical 

and functionid responses to moose, and about the impact of wolf predation on moose 

populations. To address these assumptions, I assessed the fit of linear models to 

hctionai and numetical response data fiom woif-moose systems. These predation data 

were described better by linear models than by hyperbolic models based on predator-prey 

theory. Linear hctional and numerical response models produced a total predation 

model indicating that wolves might drive low-density populations to extinction. 

However, simulations using these Linear models suggested that persistence of moose at 

low densities was possible if the population was divided into subpopulations, with some 

having high growth rates and densities, and wolves concentrating on only the high-density 

parts. These high-density subpopulations persist by remaining above densities where 

predation could cause extinction. The subpopulation idea is corroborated by low-density 

estimates reported in moose population surveys that are weighted averages of high- and 

low-density areas, where a majority of the survey is composed of low-density 

subpopulations that might experience Little wolf predation. 

If fbrther research in wolf-moose ecology produces data showing that wolf 

fimctional responses follow a more conventional, theory-based shape, the next step is 

distinguishing between type II and type III functional responses. This ability is important 

because the shape of the functional response will indicate whether wolf predation on 

ungulate populations will have the potential to regulate those populations. I simulated 

data based on actual wolf-moose predation data to evaluate how easily a type II hctional 

response can be distinguished fiom a type III functional response, and determined the 



sample size necessary to attain a power of 80%. My ability to distinguish between 

fhctional response types was poor, due to the low sample sizes and high variance that 

usually accompany large marnmal predation studies. Because of this low power, 

researchers should consider alternatives to h c t i o d  response studies when hying to 

determine the effect of wolves on moose dynamics. 
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CEAPTER 1. INTRODUCTION 

In populations from which a sustained harvest of ungulates is a goal, an 

understanding of their predators and how they affect ungulate dynamics is important. If 

predation is an important influence, then predators will &ect growth rates of ungulate 

populations, their densities, and ultimately the amount of harvest that can be sustained. 

To improve the understanding and management of systems containing wolves 

(Canis lupus) and ungulates, researchers have recently begun to use predator-prey theory 

to explain their dynamics and interactions (Boutin 1992, Gasaway et al. 1992, Dale et al. 

1994, Messier 1994). Much of this theory inciudes using functional response (change in 

rate of prey killed per wolf with prey density) and numerical response (change in wolf 

abundance with prey density) models to explain the predatory behaviour of wolf 

populations at different densities of ungulates. These responses for wolves are generally 

described by hyperbolic or sigmoid models (Dale et al. 1994, Messier 1994) that, when 

combined, produce a total predation response model. 

This total response indicates whether wolf predation on ungulates is density- 

dependent (proportion killed increases with prey density), and if predation will have the 

potential to regulate ungulates at a low-density equilibrium. According to predator-prey 

theory, densityodependent predation occurs at low densities of prey if: 1) the functional and 

numerical response of predators are both hyperbolic, each having a rapid increase from 

zero at low prey densities; or, 2) the functional response is a sigmoid shape (Messier 1993). 

Because of their importance, researchers have been attempting to determine the shapes of 

hctional and numerical response of wolves to understand the dynamics of wolves and 



their prey, and to have a better idea of how wolves and ungulates wiU respond to 

management actions, particularly ungulate h e s t  and wolf removal. However, data to 

support these model shapes and the dynamics that result are fkr from conclusive (SincIair 

1989, Skogland 199 1, Boutin 1992, Van Ballenberghe and Ballard 1994). 

A further suggestion from predator-prey theory invoLves the importance of sigmoid 

fhctional responses. If a fimctional response has a sigmoid shape, then total predation by 

wolves will be density-dependent regardless of the form of the numerical response (Oaten 

and Murdoch 1975). However, finding this functional response shape will probably be very 

diflicult because of the inherent variability ancf small sample sizes that accompany large 

mammal studies. Tbis means that using alternatives that do not rely on detecting small 

changes in a hctional response curve would provide a more reliable method of 

determining if a functional response is sigmoid, or if predation is density-dependent. If the 

latter can be established by itself, then there would no longer be a need to directly measure 

functional response of wolves. 

This thesis focuses on predator-prey systems involving wolves and moose (Alces 

olces). I analysed a previously-published data set containing wolf functional and numerical 

response information (Messier 1994). In chapter 2, I re-analysed this firactiond and 

numerical response data to see if simpler (hear) models fit given wolf-moose predation 

data. In chapter 3 , I  used these linear models in a population simulation to investigate the 

circumstances where linear modek could produce persistence in a woKmoose system. In 

chapter 4, I conducted a power analysis on the functional response data to investigate the 

probability of detecting a sigmoid f'unctional response in wolf-moose predation data given 



that one truly exists. 
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CHAPTER 2. DOES PREDATOR-PREY THEORY DESCRIBE THE DYNAMICS 

OF WOLVES AND MOOSE?' 

While the direct causes of mortality in moose have been well documented (Messier 

1994), there still exists a debate as to which factors ultimately drive the dynamics of moose 

populations in their environment (Skogland 1991, Boutin 1992, Van Ballenberghe and 

Ballard 1994). Several factors could limit moose populations including wolf predation 

(Fuller and Keith 1980, Keith 1983, Bergerud et al. 1983, Messier 1985, Messier and CrGte 

1985, Fuller 1989, Messier 199 1, Gasaway et al. 1992, Messier 1994), bear predation 

(BalIard et al. 1981, Franzmann and Schwartz 1986, Boertje et al. 1988, Larsen et al. 1989, 

Schwartz and Fraormann 1989, Ballard and Miller 1990, BaUard et al. 199 1, Ballard l992), 

habitat quality (Messier and Cr6te 1984. Albright and Keith 1987, Cr&e 1989, Messier 

199 1) weather severity (Gasaway et al. 1983, Mech et al. 1987, Bdard et al. 199 I), and 

harvest (Gasaway et al. 1983). Those commonly described as density-dependent are wolf 

predation and competition for food. 

Researchers commonly analyse wolf predation using functional and numerical 

responses. The functional response of a predator reflects how individuals change their kill 

rates with changing prey densities (Solomon 1949, Hohg 1959). There are two 

functionai responses described for wolves: type U and type III (Dale et d. 1994, Messier 

1994). Type II responses (Figure 2-1) follow a gradually decelerating hyperbolic fhction 

that eventually plateaus at high prey densities, presumably due to satiation of the predator 

'A version of this chapter has been submitted for publication in Ecology, December 1996 (Marshal and 
Boutin). 



Type Ill : 

Availability of Prey 

Figure 2-1. Model shapes for type Il and type III hctional responses. 
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(HoUing 1 959). Type 11 responses are usually described for systems where there is only 

one prey species available to a predator in a homogeneous environment. A type m 

response (Figure 2-1) follows a sigmoid curve, with a rapidly decelerating and plateauing 

portion at high prey densities. The accelerating slope over low to intermediate prey 

densities could be caused by an increase in predator efficiency as prey become more 

available, by prey re-a as prey become rare and difficult to find, or by switching ftom 

one prey source to another that is increasing and becoming more available (Messier 1993 ). 

Numerical responses by predators also contribute to total predation rate. Many 

researchers believe that this response for wolves follows a curve similar to the type I1 

functional response (Messier 1994). The numbers of predators increase rapidly at low prey 

densities, but become limited at high densities by social constraints. Others represent this 

response as a linear model that increases continually over prey and wolf densities (Keith 

1983, Fuller 1989). Functional and numerical responses combine to determine total 

predation pressure by wolves (Messier 1993, 1 994). 

The shapes of these responses are important to the effects of wolf predation on 

moose populations. If these responses are modelled according to predator-prey theory, 

they each have a rapidly increasing region at low to intermediate densities of prey, and then 

become constant at high prey density. When responses are combined, the resulting total 

predation response also has a region of positive slope indicating a rapid increase in 

predation as moose density increases. If predation rate increases with moose density so 

that predation becomes greater than production of the moose population, wolf predation 

can regulate moose populations at low density (Figure 2-2). Without this region of 



.yO'~olf Predation 

Stable Equilibrium Point 1 

Moose Density 

Figure 2-2. Predation model showing wolf predation rate (proportion of the moose 
population killed by wolves) and moose growth rate (proportion added through 
recruitment). These model shapes result in regulation of moose at a density coinciding 
with the stable equilibrium point. 
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positive slope and rapidly increasing predation rate, there is no low-density equiiibrium, and 

regulation at this density does not occur. This density-dependent total predation model. 

(Messier 1994) depends entirely on the shapes of the numerical and functional responses. 

Messier (1994) fitted a hyperbolic model to functional and numerical response data 

of wolves preying on moose, and found that the model provided a reasonable statistical fitt. 

In this chapter, I re-analysed these data to see if an elternate model (hear) could provide 

an equal or better fit to the data. My rationale for doing so is as follows. Hyperbolic 

models exist as predator-prey theory, and as such, should be tested by empirical data. The 

appropriate test of the model is not whether it provides a good statistical fit to the data but 

rather that it provides a better fit than do alternate models. I show that linear models 

actually provide a better fit to the data than do hyperbolic models. When these linear 

functional and numerical responses are used to produce total predation rates, I found that 

there was no density-dependent predation over a wide range of moose densities. 

METaODS 

The source of my information was moose densities, wolf densities, and wolf kill 

rates presented in Table 2 of Messier (1 994). The linear models are of the standard form y 

= a + bx, where x is the density of moose (individuals/kmt), and y is either the kill rate by 

wolves (functional response, moose/waW100 days), or the density of wolves (numerical 

response, individuals/1000 km2). Messier (1994) uses two models based on a modified 

Michaelis-Menton equation to produce a hyperbolic curve. For the fbnctional response he 

uses y = ax/@ + x), where a is the asymptote of the line, and b is the value of x when y = 

a12, indicating how quickly the line rises to the asymptote or the efficiency of the response. 
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For the numerical response, he uses y = a(x - c)/(b + x - c), where a and b are as above, 

and c is a parameter to allow the intercept to move away &om the origin. 

I evaluated the quality of fit by the number of parameter estimates that were 

significantly different (a = 0.05) fkom zero for each model and by the proportion of 

variation in the data that each model could explain (fi. In addition, I used some regression 

diagnostics to address the assumptions of least-squares regression, the method used to fit 

both the linear and hyperboiic models. These assumptions are that the residuals are 

normally distributed with mean zero around the model, and that the error variance remains 

constant over all values of the independent variable. I used normal probability plots and 

histograms to evaluate the normality of the standardized residuals around the models, and 

used plots of the standardized residuals against moose density to look for departures of the 

standardized residuals fiom the shape of the model and changes in variance with changes in 

the independent variable. 

RESULTS 

Functional Response 

The Linear model was y = 1.13 + 0 . 9 0 ~  (? = 0.48, df = 12, P < 0 -0 1; Figure 2-3 a). 

I compared this to a hyperbolic model (Figure 2-3 b). The linear model explained variation 

in the data better, as seen by the improvement in 9, and by the fact that both parameters for 

the linear model were significant, whereas only parameter a (indicating the asymptote of 

the hyperbola) for the hyperbolic model was significant (Table 2-1). 

A comparison of h e a r  and hyperbolic models indicated that the residuals for the 



Figure 2-3. Functional response data for wolves preying on moose. A) Linear model 
fitted through these data (y  = 1.13 + 0 . 9 0 ~  # = 0.48, df = 12, P c 0.0 1). B) Hyperbolic 
model fitted through these data Ly = 3 .O8x/(O.34 + x); ? = 0.43, df = 121. Data are from 
Table 2 of Messier (1994). . 



Table 2-1. Comparison of statistics for linear and hyperbolic models for fimctional and numericai response 
data from Messier (1994). 

Respo~l~e Model df 9 Parameters1 

Functional Linear 12 0.48 u Sig2 

b Sig.' 

Hyperbolic I2 0.43 a Sig? 

Numerical Linear 30 

Hyperbolic 29 

b Sig.' 

c N X 3  
* Sig. - significantly Merent than zero at a = 0.05: N.S. - not significant. 
' Stadstical difference based on Student's T. 

Statistical Merence based on asymptotic 95% confidence intervals. 
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linear model were more normally distributed around the model, as seen by the closer linear 

relationship on the normal probability plot (Pearson's correlation coefficient r, = 0.99 

versus 0.95; Figure 2-4a), and by the more symmetrical distribution of residuals in a 

histogram (Figure 2-4b). A plot of the residuals against moose density (Figure 2 4 )  

should have shown no pattern or trend over the independent variable. For values above 0.5 

moose/km2, the residuals firom the linear model fell more closely to zero, and were more 

symmetrical around zero as moose density increased. Residuals fiom the hyperbolic model 

fell farther from zero and were less symmetrical. For both the linear and the hyperbolic 

models. there was a much larger spread in the residuals at densities between 0 and 0.5 

moose/krn2 (Figure 2 4 )  than along any other part ofthe model. This indicated error 

variance increased with decreasing moose density, and this increase could not be accounted 

for by a change in model shape. 

Numerical Response 

The resulting Linear relationship through log-transformed data [log,a = 1.45 + 

0.69(logI,,r); Figure 24a] was tighter than the hyperbolic relationship through the original. 

non-transformed values (3 = 0.70, df = 30, P < 0.01, Table 2-1, Figures 2-5c and dl. In 

addition, only 1 of 3 parameter estimates in the hyperbolic model were si@cant 

(parameter a, the asymptote; Table 2-1). Messier (1994) presented the data on a plot with 

a logarithmic axis for wolf density but not for moose density (Figure 2-Sc); however, when 

fitting the models he used non-transformed values. The range of values for both moose and 

wolf densities is over an order of magnitude, and the variance increases with moose and 

wolf density. For these reasons, I log-transformed both sets ofvalues. The log-log 
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Figure 2 4 .  Regression diagnostics for linear and hyperbolic fhctiooal response models. 
A) N o d  probability plot showing observed standardized residuals versus expected 
standardized residuals under normality; if the obsemed residuals are normally distributed 
then they fd on the diagoaal line. B) Histogram showing distribution of standardized 
residuals, overlaid by a normal distribution curve. C) Plot of standardized residuals versus 
moose density; residuals should show no discemable pattern or trend with moose density. 



Figure 2-5. Numerical Response data for wolves preying on moose. A) Linear model 
fitted through log-transformed data (log,# = 1.45 + 0.691og,,,x; 9 = 0.70, df = 30, P c 
0.01). B) Data and model from (A) without transformation. C) Hyperbolic model fitted 
through non-transformed data = 59.37(x - 0.03)/(0.72 + x); 9 = 0.63, df = 291, with the 
wolf-density axis in log-scale [modified fiom Figure 4 of Messier (l994)]. D) Data and 
model fiom (C), with both axes in linear scale. Data are fkom Table 2 of Messier (1 994). 
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relationship, when converted back to linear scale, is in Figure 2-Sb. 

When comparing models I found that the linear numerical response had more 

normally distributed residuals (r, = 0.99 versus 0.87; Figure 2-6a). A histogram ofthe 

residuals (Figure 2-6b) showed that both models produced symmetrical distriiutions, 

although residuals fkom the hyperbolic model appeared to have a leptokurtic distribution, 

with more residuals falling closer to zero than they should for normality (kurtosis = 9.1 1, 

SE = 0.80, P < 0.01). When plotting residuals against moose density, both models showed 

symmetry in the residuals, but the hyperbolic model showed an increase in error variance 

with an increase in moose density. Because log-transformation corrected this, the linear 

model through transformed data had the appropriate patternless, symmetrical spread 

around zero. 

In both cases. linear models had a considerably better fit than hyperbolic models. 

Each linear model had a higher ? value than hyperbolic models, and for the hyperbolic 

models, at least one ofthe estimated parameters was not significantly a e r e n t  than zero. 

Regression diagnostics also suggested that the linear models agreed more closely with the 

assumptions of least-squares model fitting. Linear models appeared to be more statistically 

appropriate for describing these data sets. 

A concern in this re-analysis was the influence of a very high kill rate value at 2.49 

moose/krn2. This appeared to be an extreme value and including it could pull a line fitted 

by least-squares toward the outlying observation and result in a misleading model fit (Neter 

et al. 1990). Therefore, I omitted that value and re-fit the linear and hyperbolic models. 

Both models explained a small amount of variation (linear: 9 = 0.23, hyperbolic: ? = 0.34). 



-3 -2 -1 0 1 2 3 5 - 2 - 1 0  1 2 3 4  5 
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Figure 2-6. Regression diagnostics for linear and hyperbolic numerical response models. 
A) Normal probability plot showing obsennd standardized residuals versus expected 
standardized residuals under normality; if the observed residuals are normally distributed 
then they fall on the diagonal line. B) Histogram showing distribution of standardized 
residuals, overlaid by a normal distribution curve. C) Plot of standardized residuals versus 
moose density; residuals should show no discemable pattern or trend with moose density. 
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For the new bear model, both parameter estimates were significantly different from zero 

(a: P = 0.05, b: P < 0.0 1). For the new hyperbolic model only one parameter estimate was 

significantly Merent than zero (95% asymptotic confidence intervals a: 1 -47 to 3 .6S,b: - 
0.1 1 to 0.54). Based on this analysis, neither model appeared to fit well to the hctional 

response data set, as shown by low 9 values or by parameter estimates that were not 

significantly dierent than zero. Because this data point appears important to both models, 

and because there were no a priori reasons to exclude this point, I chose to use the original 

model for the remainder of the re-analysis. However, this suggests that any analysis that 

relies heavily on a single data point could easily result in spurious conclusions. 

Do these new models allow for a predation effect that is consistent with 

observations of wolves and moose in the real world? To address this, I determined the 

total annual predation by multiplying the fhctional response by the numerical response, as 

determined by linear models, aad then multiplying again by 3.65 (predation was over a 100- 

day interval during the winter). Then I divided by moose density to calculate predation 

rate. The resulting total predation model was plotted over moose population growth rate 

to look for regions of net growth. The resulting graph (Figure 2-7a) indicated that 

predation rate was very high at low densities, decreased at intermediate densities, and then 

began to increase again at higher densities. When the fbite rate of increase of moose at 

low densities was 1 -25 (25% per year), net growth of moose occurred between 0.15 

m o o s e h 2  (an unstable equilibrium point) and 1.15 moose/km2 (a stable eqdibrium 

point). However, at intrinsic rates of increase lower than 1 -20, this net growth vanished. 



Figure 2-7. A) Low-density extinction model based on linear models of functional and 
numerical response data Predation rate is the solid line, and growth rate of moose is the 
dashed line. B) Effects of changing growth rate on net moose population growth. 
Changes in growth could result &om changes in habitat quality, weather severity, bear 
predation, or harvest. C) Effect of changing wolf predation rate on net moose population 
growth. Changes in predation could result from changes in snow depth, and consequently 
ability to capture prey. For 4 B, and C, net growth is represented by area above the 
predation Line and below the growth line. 



DISCUSSION 

Because of the very high predation rates at low moose densities, I called this the 

low-density extinction (LDE) model. This model was based on a statistical analysis of wolf 

predation data, and not on the theoretical shapes of numerical and hctional responses for 

wolves. Considering the improvement in fit that the fbnctional and numerical response data 

showed to linear models, predation data provide better support for the LDE model than for 

the density-dependent model. Existing data do not conclusively support densityodependent 

predation models of wolf predation over other possibilities. 

According to this model, predation rate is very high at low moose densities, drops 

with an increase in moose density, and then increases again as density continues to rise. 

This relationship is opposite to the predation model suggested by Messier (1994), but it is 

similar to the predation curve generated for wolves preying on caribou ( h g z f e r  furmdus) 

in Alaska @ale et al. 1994). Dale et al. (1994) and Messier (1994) are the ody two 

studies that measured wolf predation over a wide range of prey densities. Dale et al. 

(1 994) concluded an anti-regulatory predation model was most appropriate, and my re- 

analysis of Messier's (1994) predation data support their conclusion. 

What does the LDE model suggest for dynamics of wolves and moose in natural 

systems? The first outcome is that there is a wide range of moose densities where there is a 

net increase in the moose population (0.15-1.15 moose/km~. Second, only at the high end 

of this range will wolves begin to show density-dependent predation on moose, but this 

density dependence is very weak. Through most of the range of densities where net moose 

growth occurs, wolf predation removes a constant proportion of moose 60m the 
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popdation. 

What happens if moose populations have densities lower than 0.15 moose/km2, or 

growth rates below 20%per year? There are several environmental factors that could 

change the height of the predation and growth lines, and change the net growth of moose 

from year to year (Figure 2-7b and 2-7c). During good years, when there is tittle snow, 

abundant food, and low bear predation, moose growth rate would remain high. Also, the 

elevation of the predation curve might decrease because environmental factors hinder a 

wolf's ability to capture moose [e-g., Messier's (1994) correction for snow-free periods 

that decreases the total predation response]. [a bad years with high snowfall, severe 

weather, low food availability, or high bear predation, the moose growth line could 

decrease to 10020% per year (Gasaway et al. 1992, Messier 1994, Larsen and Ward 1995). 

During these years, growth rate is lower than predation rate, and moose populations 

decrease. Over several years, the density appears to fluctuate between higher and lower 

densities caused by several non-equilibrium factors. If one year is particularly bad, there 

are several bad years in succession, or harvest is too high, then moose populations could 

drop to a density where anti-regulatory predation of wolves could cause an extinction. 

Of the existing models explaining ~ o ~ m o o s e  dynamics, the model presented above 

is most similar to the recurrent fluctuations model (Van Ballenberghe 1987), or the 

predator limitation hypothesis (Boutin 1992). According to both models, moose 

populations fluctuate over time around a mean density, but do not tend to an equilibrium 

density. Such a model has been described for highly manipulated systems (Gasaway et al. 

1983), where growth rates and densities of moose are primarily limited by wolf predation., 
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but where interactions between moose populations and severe weather events, habitat 

quality, bear predation, and harvest cause varying densities of moose over time. In 

addition, time lags could occur between wolves and moose (Keith 1983). These time lags 

plus the effecur of habitat, weather, and harvest could result in these recurrent fluctuations. 

Are there biological explanations for bear functional and numerical relationships? 

According to theory, the fhctional response is zero at zero prey density and plateaus at 

some high availability of food. Although I cannot argue that wolves could eat moose when 

there are none around, kill rates could jump very quickly to some amount even if there are 

very low densities of moose. In truth, such a hctional response would intersect the 

origin, but statistically this could never be detected because the lowest measured values 

would be at some value greater than zero. A true positive intercept and a immediate 

increase from zero to a positive value would not greatly alter the dynamics of the system. 

The result of a positive intercept would be anti-regulation of moose, while an immediate 

increase &om zero would produce an extremely low-density equilibrium caused by a very 

rapid increase in predation rates. Regardless, I believe the data cannot be used to 

determine the shape of the fbnctional response at low densities. Figures 2-4a and 2-41 

show that there is far too much variance below 0.5 moose/kmz to be able to adequately 

conclude that the filnctional response shows any specific behaviour, whether it be type II, 

type 111, or linear. 

Boutin (1 995) gives examples of how fluplus killing and partial consumption of 

small mammal prey by predators codd result in a bctional response that fails to plateau. 

These behaviours have also been described in wolves (Peterson 1977, Keith 1983). If 
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moose are very abundant and easily available, wolves would benefit more by consuming 

only the most digestible parts of a kill and then killing another moose before completely 

consuming all ofthe edible biomass fiom the first carcass. Tbis means that even though 

wolves might become satiated according to the biomass they consume, they are obtaining 

that biomass from many more moose than tbey would at low availabilities of moose. As a 

result, kill rates of moose continue to increase even at high densities. This is not to suggest 

wolves would never reach a point where they can no longer increase their kill rates, only 

that those densities of moose might not occur in a natural system. 

According to theory, numerical responses for wolves are primarily determined by 

prey availability, and wolf territorial behaviour limits growth rates of wolf populations 

(Zimen 1976, Packard and Mech 1980, Keith 1983, Messier 1985, Peterson and Page 

1988). At very high wolfdensities, these limits could result in an upper bound in wolf 

densities. This upper bound is represented as an asymptote in a numerical response model 

at high availabilities of prey (Messier 1994). I see several arguments suggesting this upper 

asymptote might not occur, at least at densities of moose observed in natural systems. 

Several studies examining wolf pack dynamics reported an increase in intra-pack 

aggression at high wolfdensities (Peterson and Page 1988, Thurber and Peterson 1993). 

Each of these studies acknowledge that food supply plays the ultimate role in determining 

wolf densities. However, I suggest that it is not wolf density or food per se that produces 

the aggressive behaviours within packs, but decreases in per capita food availability that 

cause these behaviours. Intra-pack aggression could manifest where absolute food 

availability remains constant while wolf densities increase, or where food availability 
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decreases while wolf densities remain constant. Peterson and Page (1 988) report high 

levels of intraspecific aggression on Isle Royale and attributed this to high wolf densities 

and a lack of opportunities to disperse. However, during the time that these behaviours 

occurred, moose densities had decreased. I believe that this decrease, not the high densities 

of wolves themselves, is the direct cause of aggression. Likewise, Messier (1 985) reported 

high rates ofwolf deaths due to strife in an area with low moose density as compared to an 

area with higher moose density nearby. However, Messier (1985) also reported a decrease 

in moose density in this same low moose density area (0.25 to 0.21 moose/krn2). While the 

density change is not of the same magnitude as the moose density changes of Isle Royale 

during a moose crash, perhaps the change in food was enough to see more aggressive 

behaviours in the low-density area. 

Thurber and Peterson (1 993) reported an inverse relationship between wolf density 

and percent lone wolves in the population on Isle Royale. Wolf population density 

decreased as a result of a moose crash- The decrease in moose caused an increase in intra- 

pack aggression, and in turn caused greater egress of transients fkom established packs, and 

an increase in lone wolves in the population W~th these relationships in mind, I propose 

that if wolves are bounded at an upper density, as shown by a plateauing numerical 

response, then Thurber and Peterson (1993) should have found the opposite relationship, 

that percent lone wolves should increase with wolfdensity, because of higher aggression at 

high wolf densities. I expect that if available prey had continued to rise, and if the amount 

of food available per wolf did not decrease, wolf density would have also continued to rise 

without an increase in the percent of lone wolves. There are other published relationships 
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that show no suggestion of a behaviourally-imposed upper density of wolves. Keith (1 983) 

and Fuller (1989) each produce relationships showing a linear increase in wolf density with 

an increase in available prey. 

CONCLUSION 

I began this re-analysis by usiog parsimony in choosing models to explain the data, 

and by trying not to rely upon assumptions about the underlying relationships: that 

functional or numerical responses are hyperbolic or sigmoid, or that wolf predation on 

moose is density-dependent. I found linear models showed a better statistical fit than 

curvilinear theoretical models. Given these finding, I concluded that wolf-moose predation 

data were not adequate to support one theory of population dynamics to the exclusion of 

other possible theories. This means more studies must be conducted in an appropriate 

experimental manner to provide additional iaformation until more definite conclusions can 

be reached. It also means wildlife managers must carefully consider the implications of 

several possible theories when making management decisions iavolving moose populations. 
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CHAPTER 3. PERSISTENCE OF MOOSE AT LOW DENSITIES WITHOUT 

DENSITY-DEPENDENT WOLF PREDATION 

chapter 2, I presented a model of woUc-moose dynamics showing strong anti- 

regulatory predation and having the potential to cause extinctions at low densities of moose 

[the low-density extinction (LDE) model; Figure 2-7a]. I funher explain that variation in 

moose densities over time could be the result of annual changes in the moose growth and 

wolf predation curves. At times wolf predation might be high and the moose growth might 

be low because of deeper snow improving capture rates by wolves, and also because of 

higher bear predation, greater difficulty in foraging, mortality during severe winters, or 

harvest. These, in tuns could decrease moose densities. Alternatively, during miid winters 

with shallow snow, wolf predation drops, while growth rates of moose increase, resulting 

in a net increase in moose densities. The sum of these dynamics is a moose population that 

fluctuates around a mean density (Van Ballenberghe 1987), but never reaches a regulated 

stable equilibrium. 

One question that arises is what happens after a particularly severe winter, or 

during several consecutive severe winters? Moose densities could be driven low enough so 

that the anti-regulatory portion of LDE predation causes extinction of moose. Wolf-moose 

systems in Northern Canada and Alaska contiwe to persist, even with low productivity, 

low growth rates, and low moose densities. The purpose of this chapter, therefore, is to 

investigate the LDE model using population simulations drawing information on moose and 

wolf population dynamics from the Literature, to look for the condition that would allow an 
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LDE model to occur in nature, and to evaluate whether these conditions are realistic. 

Messier (1994) presents a summary of existing wolf-moose predation data spanning 

a wide range of densities. From this summary, he produces numerical and functional 

response models and uses these to determine how wolf predation on moose changed as 

moose density changes. The response models Messier (1994) uses are both hyperbolic 

(type II). The resulting predation model has an increasing (density-dependent) predation 

rate over low to intermediate densities, and a decreasing (depensatory) predation rate over 

intermediate to high densities of moose. This total predation model, when compared to 

moose population growth rate, results in moose populations that are regulated by wolf 

predation to a low-density equilibrium when population growth rates in the absence of wolf 

predation are 1520% per year, and results in a high density equilibrium primarily regulated 

by competition for food when population growth rates are >20% per year. 

In chapter 2,I  argued that the functional and numerical response models fit by 

Messier (1994) are based on theoretical expectations of what these responses should look 

like, not on which models would be best supported by the data used in the analysis. I 

presented linear functional and numerical response models, and used these to produce a 

total predation model with high predation rates at low densities of moose, and predation 

rates low enough at intermediate densities to allow for a net moose population growth at 

low moose densities, given that the densities were > 0.15 moose/km2, and the population 

growth rates were > 20% per year (Figure 2-7a). Otherwise, wolf predation would cause a 

net decrease in moose density, perhaps to the point where the anti-regulatory predation at 

low densities would cause extinction of the moose population. 
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One problem that the LDE model does not allow for is the very low densities and 

population growth rates of moose in northern systems. Here, I extend the LDE model by 

suggesting that a spatial structure to moose populations and concentration of wolf 

predation on only part ofthe total popuiation could produce persistence of moose at low 

densities. This is based on the premise that low moose densities reported in the literature 

are amally averages of higher and lower density areas within a study area, and that if the 

high-density areas are high enough and wolves concentrate on these areas, then that will 

allow moose to persist over time. 

THE MODEL 

I designed this simulation after patterns found in stratified moose surveys, where 

there are small areas with many moose (high-density strata) and large areas with few moose 

(low-density strata), and the resulting density estimate is an average of several widely 

differing strata I based the starting values in our simulation on moose survey results &om 

several areas in the Yukon (Jingfors 1988, Ward and Larsen 1994, Larsen and Ward 1995). 

The total study areas in these reports were 27444936 km2, and the high-density strata 

were 5.10% of the total study area. Moose density in the high-density strata were 0.5 1- 

0.97 moose/km2 where wolves were not actively managed. The remaining low- and 

medium-density strata were 0.054.37 moose/km2. Most moose surveys have 3 and 

sometimes 4 strata in their sampling designs. Rather than simulate 3 or 4 moose 

subpopulations, I used information from high-density strata to model a high-density 

subpopulation (HDS), and information from the remaining strata to model a low-density 

subpopulation (LDS). 
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The simulated study area was a total of 3000 km2. The initial number of moose in 

the HDS was 100, and they were in an area of200 km2 (7% ofthe total area) resulting in a 

starting density of 0.5 rnoose/km2. In the low-density area, 200 moose were in 2800 km2 

(93% of total area) resulting in a density of0.07 moose/km2. The average density over the 

entire study area was 0.10 moose/kmZ. Growth of each subpopulation was based on the 

logistic population model, calculated by 

growth=rN(I - N l K ) ,  

where r is the population growth rate, N is the number of moose, and K is the food- 

imposed upper h i t  of moose that the habitat can support. Population growth was 

calculated with separate parameters for the HDS and the LDS. The parameter r was a 

random variable with a normal distribution, from which I chose a new growth rate each 

year to represent changes in growth rate due to factors other than predation by wolves, 

such as changes in habitat quality, effects of severe winters, and changes in bear predation. 

For the HDS, the distribution had a mean of 0.25 and standard deviation of 0.10. FryxelI et 

al. (1988) and Messier (1994) judged that moose populations in ideal conditions would 

increase at a rate of 25% per year. The LDS had a mean of 0.00 and standard deviation of 

0.10. The low average growth rates represent the effects of poor environmental conditions 

due to sub-optimal habitats md food availability, and the resulting increased susceptibility 

of individuals to mortality factors. The assumption is that moose in poor habitats are kept 

at a constant, low density because of these factors and will not increase without 

immigration. The standard deviation was based on a sample of the literature that reported 

growth rates for moose (Table 3-1) during wolf removal experiments in several study 
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areas. The mean growth rate, however, was not based on this sample of the literature. 

Several ofthe studies either had inadequate wolfremoval (leaving too many wolves, not 

removing wolves for enough time), or moose populations continued to decline even after 

wolf removal, suggesting exceptional circumstances resulting in high moose mortality. 

The upper limit (K )  was 800 moose (4.0 rnoose/km? for the HDS, and 400 moose 

(0.14 moose/km~ for the LDS. The HDS value was based on the findings of Schwartz and 

Franrmann (1989) who studied a moose population that increased in response to a large- 

scale fire disturbance on the Kenai Peninsula, Alaska Densities rose to 3.7 moose;/kmZ 

because of the availability of high-quality forage and habitat. 1 chose to use this as a model 

of high-quality habitat pockets in a heterogeneous landscape. I assumed that the LDS 

upper limit was very low and that the densities of moose would not in general increase. 

That is, I assumed that in poor-quality habitats, moose populations were already at their 

maximum density. 

Migration out of each moose subpopulation was calculated as 

emigratioa = EN, 

where E is the emigration rate, and N is the number of moose of the source subpopulation. 

Migration rate between the two subpopulations was a fiction of population density. I 

based these rates on relationships determined for moose at Rochester, Alberta (see Figure 3 

in RoUey and Keith 1980). These authors calculated an expected A based on survival 



Table 3-1- A m e y  of moose population finite rates of growth () h m  several moose predation studies. 

study 1 Density (moose/km3' Cause of increase 

Ballard et al- 199 1 1.07 0.688 to 0.848 (3) wolf and bear removal 

1.01 0.877 to 0.892 (3) wolf and bear removal 

1-06 0.710 to 0.844 (3) wolf and bear removal 

Larsen and Ward 1995 

1.25 moose harvestb 

1-18 1.5 wolf removal 

0-96 0.15 L to 0.145 (1) wolf and bear removal 

0.97 0.145to0.141(1) wolfandbearremoval 

0.96 0.232 to 0.223 (1) wolf and bear removal 

1.17 0.223 to 0.219 (1) wolf and bear removal 

1.03 0.249 to 0.274 (3) wolf and bear removal 

0.86 0.443 to 0.328 (2) wolf and bear removal 

1-12 0.299' wolf removal 

1-1 1 0.339' wolf removal 

1.16 0.339d wolf removal 

Schwartz and Frarr~nann 1989 1.24 0.3 to 3.3 (1 I )  high quality habitat 

1-02 3.3 to 3.7 (5) high quality habitat 

Ward and Larsen 1993 1-07 0-5 13 wolf remod 

1.03 0.717 wolf removal 

Mean 1.08 

Presented moose densities for a measured I fiom cited paper. Where a range is displayed. we 
determined A fiam moose densities using the equation ftom '. Number in parentheses are the years 
between estimates. 

Growth rate determined from harvest rates. A harvest of greater than 25% of the population 
caused a decline in this moose population. 

Cited p w t h  rate calculated as : r = (lo& estimate 2 - log, estimate 1) + years between estimates, 
and = e' (Gasaway et al. 1986). 

Growth rate calculated as: 1 = (1 - M) + (1 - R), where M is the adult mortality rate and R is the 
recruitment rate (yearlings + yearlings and adults) (Bergerud and Elliot 1986). 
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and fecundity, and compared that to an obsmred I .  The differences between them they 

attributed to migration. I took the observed A-values and subtracted them from 1.12 (the 

calculated k for a population with a stable age structure) to determine changes in net 

migration rate over time (Table 3-2). I also used a relationsbip of moose density over time 

(Table 3-2) and used these two relationships to determine net &&ration rate changes as a 

function of moose density. The relationship was E = 0.084 - 0.253~ (9 = 0.82, df = 10, P 

< 0.0 I), where x was the density of moose (rnoose/km? (Figure 3-1). For the HDS, x was 

the density of moose remaining after moose were removed by wolf predation. Because 

RoUey and Keith (1980) did not study surrounding populations to determine their 

influences on migration into Rochester, I used this relationship to estimate rate of 

movement out of a subpopulation. Movement into a subpopulation depended on the 

density of the source subpopulation. 

Wolf predation only removed moose from the HDS. Predation was based on the 

LDE model and simulated wolves selecting moose only in high-density areas. The 

functional response was FR = 0 . 9 0 ~  + 1-13, where FR was the kill rate of wolves on moose 

(moose/woW100 days), and x is the density of moose in the HDS (moose/km2). The 

numerical response was Log,JR = 0.69Log,s + 1.45, where MZ was the density of 

wolves (wolves/ 1000 km2), and x was as for the fbnctional response. To determine the 

number of wolves in the 200-km2 high-density area, W = MZ x 200 1 1000. Total annual 

predation on the HDS was FR W x 3.65 (moose killedyear), and this number of moose 

was removed fkom the HDS each year. 

I evaluated the importance of having two subpopulations by comparing the model 



Table 3-2. Rate of increase intormation for the Rochester moose population fiom wbich we estimated net 
migration rates as a fiwction of population density- 

W t Y  Calculated rate Obsemed rate Immigration. 

Year (mooseflan~ of innease of increaseC rated 

1978 0.75 1.12 1.03 -0.09 

' Density values were estimated by eye fhm Figure 3 in RolIey and Keith (1980). 
Rates of increase for 1965.1967. and 1968 were based on the fecundity and survival values for a 

stable age distriiution. not on the reported calculated rate of increase (see Figure 3 in Rolley and Keith 
1980). 

" Observed rate of increase values estimated by eye k m  Figure 3 in RoUey and Keith (1980). 
Immigration rate = observed rate of increase - calculated rate of increase. 



Figure 3- 1. Net moose migration rates into Rochester, Alberta as a function of population 
density (y = 0.084 - 0.253~; 9 = 0.82, df = 10, P < 0.01). 
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described above to a simulation with only the HDS portion modelled. The two-population 

scenario provides two possibilities: 1) persistence occurs because high-density 

subpopulations have high enough densities and growth rates that they always stay out of 

the anti-regulatory region of the LDE predation model; the fact that density estimates of 

these systems are low is an artifact of there being large areas of low-density moose, and for 

this reason an average will always be low; the low-density parts do not directly affect the 

dynamics of the high-density parts, or the overall dynamics of the system; 2) persistence 

occurs only because there is a low-density area that acts as a rehge that protects moose 

from predation, and it provides moose that sustain the high-density parts and the overall 

dynamics of the system. If the first hypothesis is true, then removing the LDS part of the 

model should not affect the dynamics of the HDS. Ifthe second is true, then removing the 

LDS will result in a model that always ends in extiaction. 

RESULTS 

The system that included the LDS produced a time-series that remained relatively 

constant. Mean long-term densities (SD) for the HDS, LDS, and the weighted average 

were 0.49 (0.04), 0.21 (0.03), and 0.23 (0.03) moose/km2 respectively. Although these 

densities are generally realistic, I believed that the weighted average was too high to 

represent a true northern low-density system (< 0.2 moose/km2). I fine-tuned the model by 

adjusting the intercept. This changed the migration rates between subpopulations by 

increasing the rate of movement out ofthe LDS. This resulted in a LDS net migration rate 

equation of E = 0.253~. This change would decrease the LDS density while increasing the 

HDS density (Figure 3-2). After this adjustment, the resulting mean 



I 

AVG : 

Figure 3-2. Simulated time series of moose density over 500 years. HDS is the high- 
density subpopulation in good habitat, LDS is the low-density subpopulation in poor 
habitat, and AVG is the weighted average based on m a  comprising the HDS and LDS 
habitats. 
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densities (SD) for the HDS, LDS and weighted average was 0.76 (0.05), 0.12 (0.0 I), and 

0.16 (0.0 1) moosekmZT respectively, and the 6nal densities were 0.76,O. 17, and 0.13 

moose/kmz for the HDS, LDS and weighted average, respectively (Figure 3-2). 1 based all 

further analysis on this adjusted model. 

This system remained relatively constant over time. The HDS quickly increased 

fbm 0.50 moose/km2 until it reached 0.75 moose/km2, when it began to fluctuate around 

that density. I repeated this simulation 50 times and none of the runs ended in an extinction 

over the 500-year interval. The density for the HDS and LDS remained with in the bounds 

for high and low-density strata (0.5 1-0.97 moose/km2 for high and 0.05-0.3 7 moose/km2 

for low). I believe that the simulated densities of 0.76 and 0.12 moose/km2 compare well 

with the measured densities. 

When I removed the LDS portion of the simulation, the parts that remained were 

the HDS moose subpopulations, growth of those subpopulations, and removal in the form 

of wolf predation following the LDE predation model. The HDS density increased from 

0.5 to 0.75 moose/km2~ as in the two-subpopulation model, and was capable of persisting 

over time without the LDS part of the system. 

DISCUSSION 

The two-subpopulation simulation provides the possibility that moose can persist 

over time at low densities while experiencing wolf predation that is not density-dependent. 

The simulation suggests that persistence is possible if 1) the moose population is spatially 

divided into subpopulations; 2) some of the subpopulations exist in high-quality habitat, 

have higher productivity, and have higher potential growth rates; and 3) wolves 



44 

concentrate their predation on only the high-density, high-quality part of the subpopulation. 

Removing the LDS part of the simulation indicated that persistence depends for the most 

part on the HDS, and the LDS does not necessarily act as a refbge. 

There is little information available on the migration of moose. RoNey and Keith 

(1 980) present the only reaI relationship of density-dependent migration. However, this 

was not directly measured, but inferred from population growth rate, fecundity, and 

survival information. One problem with using this migration relationship in the simulation 

as I have is that it provides net rates of movement, the rate of leaving a subpopulation 

subtracted from the rate of entering that subpopulation. In the simulation I have used this 

as a gross rate for each subpopulation, the rate of leaving only. This means that I probably 

have an underestimate of the true rate of leaving a subpopulation, and it suggests that true 

movement of moose between subpopulations might occur more rapidly than it does in the 

simulation. With this in mind, I feel confident about adjustkg the LDS emigration rate to 

increase rate of movement from the LDS to the HDS. This is probably a closer 

representation of the gross rather than the net migration rate, and in a biological sense 

could represent selecting areas of better habitat. 

The manner in which I modelled migration might suggest that moose choose 

between habitats of Mering quality. High-quality habitats provide forage and cover that 

benefit moose. Because moose concentrate in these areas, there is higher intraspecific 

competition for food and space, and higher risk of wolf predation because wolves 

concentrate their hunting efforts where there is a higher availability of prey. The trade-off 

is poor habitat with poor forage and cover, making moose more susceptible to disease, 
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starvation, and stress from severe weather, but less susceptible to predation by wolves. 

This trade-off could take two forms. Either a moose chooses one habitat entirely over the 

other, or it chooses how much time to spend in a good versus a poor habitat. Ideally, there 

would be a proportion of time spent in each habitat that optimizes the benefits of good 

habitat but minimizes predation risk Those moose that are forced through competition to 

spend more than the optimal amount of time in poor habitats could become more 

susceptiible to predation for the time that they do spend in the high-quality habitat. 

I believe that describing moose populations as tending to aggregate in small areas is 

reasonable. Moose select favourable habitats where they find adequate forage and cover. 

Since habitats themselves are heterogeneous, moose responding to that heterogeneity 

should then end up in clumps. Evidence for this response can be seen in standard stratified 

moose survey data For areas in the Yukon that have low moose densities, such as the 

Mayo survey area (Ward and Larsen 1994), moose density estimates for the entire area is 

0.12 moose/km2. However, the estimate for the high-density stratum alone is 0.5 1 

mooseikm2. If densities and dynamics change considerably over the landscape, then 

modelling dynamics according to large-scale average density might not be appropriate. 

Supporting evidence for wolves responding to locally high densities of moose 

comes fiom various sources. For example, Huggard (1993) found that wolves move 

quickly between areas where prey are predictably available, thereby increasing their 

efficiency in encountering prey. Kills that occur in other than these predictable areas 

Huggard (1 993) considers random kills of prey encountered as wolves moved between 

predictable prey areas. While Huggard's (1993) study was of wolves in Banff National 
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Park hunting primarily elk ( C e m s  ekphs) ,  these hdings suggest similar behaviour could 

occur when moose are the prey. Wolves could concentrate on hunting where they have. 

learned that moose an at higher densities and more readily available, rather than search 

their entire territory- 

Hayes (1995) studied wolf predation on moose in the Yukon, and measured kill 

rate values that were much higher than those predicted by the hyperbolic functional 

response model presented earlier in this paper (theory predicts 1.3 to 1.7 moose/woM100 

days for densities of 0.25 to 0.43 moose/km2, while Yukon kill rates were 2.2 to 3.4 for the 

same densities). He concludes that wolves might concentrate their predation effort and 

even cause local extinctions that are not observable given current moose survey methods. 

The findings of Huggard (1993) and Hayes (1995) suggest that wolves are always 

experiencing prey densities that are higher than the average density for a large area, 

because they concentrate their effon where prey is most available. This means that rather 

than relating kill rates and predation rates to density over a wide area, as those found in 

moose surveys, it might be more appropriate to relate these rates to the local densities of 

prey that wolves directly experience. At the patch scale, wolf predation might be more 

clearly found to be density-dependent or even regulatory. Heads and Lawton (1983) found 

that they only could detect density-dependent mortality on holly leaf miners (Phyomyza 

ilicis) caused by a larval parasitoid (Chrysocchmisgemma) when they used a sample unit 

size that was smaller than lm2, with the smaller sized sample units showing stronger 

density dependence. From this they define a patch as an area at a scale where the grouping 

of prey shows density-dependent predator-caused mortality. 
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Wolves that intentionally travel to areas with high densities of prey, kill rates that 

are much higher than those predicted by theory, and problems in other species with patch- 

size and scale-dependent predation aU point to the possibility that the dynamics of wolf 

predation actually operate at a much smaller scale than at the aerial wey-sized areas 

presented in most wolf predation studies. At these smaller scales, densityaependent 

predation may be clearly evident. Because research often occurs at the "study area" scale, 

such relationships are not so clearly seen. 

CONCLUSION 

The simuiation presented here suggests that in systems with moose and wolves, 

moose need not experience density-dependent predation to persist at low densities over 

many years. If moose populations are spatidy divided into groups, some of those groups 

are high and low density, and wolves concentrate their predation effort on the high-density 

parts of the population, then an anti-reguiato~y total predation model can still result in 

long-term persistence of moose. These ideas suggest that M e r  wolf-moose predation 

research should concentrate at smaller scales to look at how moose and wolves respond to 

their immediate surroundings. 
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CHAPTER 4. POWER ANALYSIS OF WOLF-MOOSE FUNCTIONAL 

RESPONSES 

This chapter discusses the ability of researchers to distinguish between different 

shapes of filnctional response in the predator-prey dynamics of w~~ungula te  systems. 

Here, I make the argument that while bctional responses are important for M y  

understanding how wolves respond to ungulates, and consequently what their predatory 

effects are on ungulate populations, the ability of researchers to empirically distinguish 

among potential hctional response models is severely limited due to poor statistical 

power. Because of this problem, alternative methods need to be considered when trying to 

determine the effects of predation on ungulate populations. 

Functional responses have been argued to be a very important part of the 

interaction between wolves and their prey (Messier and Crete 1985, Theberge 1990, Dale 

et al. 1994, Messier 1994). A bnctional response that can cause stability in a woF 

ungulate system will allow for persistence of ungulate populations over time (Oaten and 

Murdoch 1975). According to conventional predator-prey theory, persistence occurs if 

predation is density-dependent, meaning that proportion of the ungulate population killed 

increases as ungulate density increases. If this condition exists, predation will have the 

potential to regulate an ungulate population to an equilibrium density. 

Wolf predation can be divided into fimctional and numerical responses (Solomon 

1949, Holling 1959, Dale et al. 1994, Messier 1994). The functional response deals with 

how an individual wolf changes the rate that it kills prey as prey availability changes. The 
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other describes how wolves change their numbers in response to prey availability. 

Functional responses for wolves are usually described as type II or type III responses @ale 

et al. 1994, Messier 1994). The type II curve is a continually decelerating hyperbolic curve 

(Figure 4-1). As prey becomes more available at low densities, a predator quickly 

increases its kill rate of that prey. As prey continues to increase, the predator starts to 

become limited by handling time and the functional response plateaus. The type JII 

response (Figure 4-1) operates in a similar way; however. at low densities a predator kills 

prey at an increasing rate before the kill rate begins to plateau because of predator 

satiation. This results in a curve with a sigmoid shape. 

Researchers have been trying to distinguish between type II and type III functional 

responses in wolf-ungulate systems because the shape of the functional response that 

wolves show has important implications to the dynamics of the ungulates on which they 

prey. A type tII functional response implies stability in wolf-ungulate systems, where 

stronger sigmoid shapes promote greater stability. If the numerical response is density- 

independent or lagging (conditions that promote instability in ~ o ~ u n g u l a t e  systems), a 

type III response will still produce a density-dependent, regulatory predator response, 

because of a decreasing predation rate at very low densities @ale et al. 1994). 

In the past, most studies looking at filnctional responses of predators relied on 

visual inspection to evaluate the functional response type (Murdoch and Oaten 1975, 

Hassel et al. 1977). Others tried to establish the inadequacy of a particular model shape by 

fitting that model statistically and seeing a non-significant fit (Hassel et al. 1977). One 

problem with this approach is that in highly variable systems, such as wolf-moose systems, 



Figure 4- 1. Functional response of wolves to moose. Equation is y = 3 .36xC 1 (0.46 + 
xC), with C taking the values 1 -0, 1.5, 2.0,2.5, and 3 -0. C = 1.0 produces a type 11 
hnctional response. C > 1.0 produces a type III hctional response. 
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researchers can easily find a non-significant fit, even ifthe underlying distribution can be 

described by the model (Livdahl and Stiven 1983). 

Dale et al. (1 994) and Messier (1 994) andysed wolf firnctional responses for 

evidence of prey-switching resulting in a type III response. These studies rejected this 

possibility because: I )  they judged their data to follow a type II curve, based on the 

distribution of data points, or 2) the type II and III models fit equally well, but the type LI 

model was chosen because of parsimony (Trexler et d. 1988). In both of these cases, 

neither researcher considered how likely they would detect a type III curve if. it really 

existed with the sample size and variance that they observed. In the case of Dale et al. 

(1994), they looked for a type 111 curve by plotting proportion killed per wolf by caribou 

density, where a region of positive slope would indicate a type XII w e .  Although this 

analysis was more convincing than using number killed per wolf, it stiU relied on visual 

inspection of data points, and not on a statistical method. 

METHODS 

Researchers often attempts to estimate some of the parameters of a population 

under study. The estimates obtained have some measure of certainty in their closeness to 

the true values, but these are only probabilities. The closeness of an estimate to a true 

value cannot be evaluated absolutely without the complete enumeration of that population, 

and this is usually impossible. One way that can allow a researcher to evaluate how close 

an estimate is to a true population value, and consequently how well a particular statistical 

method estimates those parameters, is to use simulated data. I used a method of data 

simulation similar to that of Trexler et al. (1988) to evaluate the power of distinguishing 
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between shapes of firactional response curves for moose-wolf systems. 

The hctional response model I used for this was the modified Michaelis-Menton 

equationy = A s  / (B + fi, where A is the asymptote of the functional response, B is the 

values of x when y = A  I 2 (how quickly the line rises to the asymptote, or the efficiency of 

the response), C determines the shape of the w e  at low density (for hyperbolic, C = 1 ; 

for sigmoid, C > I), x is the density of moose (iidividuals/km~, and y is the kill rate 

(moose/woW100 days). I used SAS statistical software (SAS Inst. Lnc. 1989) to simulate 

data and then malyse them. The computer-generated data set came £?om a known model 

with a predetermined variance (the source model), and I used non-linear regression (Proc 

NLIN, SAS Inst. Inc. 1989) to fit a curve to that data set using the same general model, 

but with the parameters to be estimated. This SAS procedure has several methods for 

fitting a line to nonlinear data. I chose the simplest of these, DUD, a derivative-free 

method. Because Proc NLIN is an iterative least-squares method, it requires initial values 

for the parameters to be estimated. For the initial values I set A = 3.0, B = 0.5, and when 

fitting the sigmoid model. C = 1.5. For the hyperbolic model, C was not included. These 

initial values should be as close as possible to the final estimates, because initial values that 

are too fu f?om the true values converge on other estimates, which are often orders of 

magnitude fiom the true values. For empirical studies, these initial values would be 

estimated visually fkom plots of functional response data. 

The source model for the data was a modified Michaelis-Menton equation with the 

parameters A = 3.36, and B = 0.46 (Messier 1994). I began by setting C = 1.5. I set the 

mean square error value to 0.30. I calculated the functional response in the same way as 
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Messier (1994) did for the same set of points and found the data around the model had a 

MSE of 0.49. 1 chose to be conservative by setting this value lower. I randomly chose 

several moose densities fiom a uniform distribution ranging fiom 0 to 2 moose/kmt using 

the SAS hc t ion  RANUNI (SAS Inst. Inc. 1989), and then calculated the appropriate kill 

rate according to the source model. Next, I added an error to the calculated kill rate using 

the RANNOR fimction (SAS Inst. Inc. 1989) based on the MSE value of 0.30, which 

scattered the points around the source model. 

With this source model established, I generated 1000 data sets and fit a type 11 and 

a type III model to each data set. I used Fisher's F-test for fidl and reduced models to 

determine if a type III model fitted each simulated data set better than a type II model. I 

then summarized the proportion of times that I could statistically distinguish between type 

I1 and type III curves at a = 0.05. For each group of 1000 simulations I varied the number 

of points generated fiom 10 to a sample size necessary to distinguish between a hyperbolic 

and sigmoid curve 80% of the time. I called this the necessary sample size. I repeated the 

analysis with C = 2.0,2.5, and 3.0 to see how necessary sample size changed with the 

degree of curvature of the sigmoid model. 

RESULTS 

My ability to distinguish between type II and type III functional responses was low. 

With a amatwe of C = 1.5, the necessary sample size was over 300 (Figure 4-2). At 300 

points, the probability of making the correct conclusion was 0.75. As the amount of 

curvature increased, necessary sample size decreased. For C = 2.0, necessary sample size 

was n = 109; for C= 2.5, n = 55; and for C = 3.0, n = 38. For ail cases except C = 1.5, the 
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Figure 4-2. Effect of sample sizes on proportion of times that I correctly distinguished 
between a type I1 and a type III functional response. 
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proportion of correct conclusions increased rapidly with sample size and then plateaued. 

At n = 300, all cases except C = 1.5 had a proportion of at least 0.99. 

DISCUSSION 

In general, the power analysis shows that, given sample sizes and variance ofwolf- 

moose predation studies, the power of distinguishing a type 11 hctional response from a 

type III functional response using nonlinear least-squares regression is very low. Unless I 

had very large samples or extreme curvature, rarely was I able to distinguish between the 

two functional response olpes. Even for C = 3.0, a vety strongly sigmoid model I needed 

almost 40 data points, which is a vecy large sample for most wolf predation studies. 

Statistical power is defined as 1-P, where P is the probability of rejecting the null 

hypothesis when it is true. Then power is the probability of rejecting the null hypothesis (in 

this case, that both models fit a data set equally well) when the alternate is true, or the 

probability of concluding that the sigmoid model fits better when the data came from a 

sigmoid model. This power depends on several things including the amount of variance in 

the system, the sample size and the amount of difference in the alternative hypothesis. For 

small samples, high variance and small differences, power is very low. Low power seems 

to be a problem in wolf moose studies that cannot be easily remedied. Because sample 

sizes are often based on agency budgets, and not wasurements of variability, increasing 

sample sizes may not be an option in many situations, particularly if sample size must be in 

the hundreds. Unfortunately, the other two aspects of power, variability and the 

differences between values in the tested hypothesis, cannot be changed for they are part of 

the nature of the system under study. 



Sample She Difficulties 

h e a  and large mammal predation researchers have very different standards by 

which they use replication in their studies. Trexler et al. (1988) presents a summary of 

several laboratory insect predation studies where they run many independent trials at the 

same availability of prey. At any particular availability of prey there were as many as 20 

different predators allowed to forage among the same densities of prey to produce 20 

independent measurements of kill rate at a single prey density. However, these studies 

occur in an environment where researchers have strict con~ol  over the predator and the 

availability of prey. For wolf-moose studies, replication involves measuring kill rates of 

several packs at a single moose density in a single study area and treating each pack as an 

independent observation of kill rate; replication is of wolves or packs, but not of densities 

of prey. Obviously, this reflects the difliculty and cost of replicating studies of wolf 

predation in different areas with the same moose density. However, using replicate packs 

might not be statistically correct because of the influence a pack may have on its 

neighbours. Each pack is not an independent sample. For the data in Table 2 of Messier 

(1 994), each point is an average kill rate based on several packs, and included two kill rate 

measurements at one moose density, but only one kill rate for the other reported moose 

densities. Dale et al. (1994) had a single kill rate for a particular density, and used 3 4  wolf 

packs over three years in one study area. Messier (1 994) and Dale et al. (1994) have the 

only two papers that have several measurements of wolf kill rate over a range of prey 

densities, but they illustrate the differences between insect and mammal predation studies, 

and the inherent difficulties with statistical power that large-mama1 researchers face. 
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Variance Dmculties 

Juliana and Williams (1987) found that for insect predation studies, using the 

average of the kill rate for any density of prey and the individual observatious produce 

similar point estimates for the parameters in M o d  response equations. However, 

using average kill rates produces underestimates of the standard errors around the 

parameter estimates, and so gives an investigator the false perception of precision that is 

higher than it probably really is. As a result, hypothesis tests concerning the value of 

parameters are more likely to conclude a difference when there is no difference (Juiiano and 

Williams 1987). This could be a potential problem with Messier's (1994) analysis of 

functional responses, since the B (response efficiency) parameter is not significantly 

dif5erent than zero. This makes the validity of the significant parameters suspect, and so 

the model might not appropriately fit the data (chapter 2). This would also indicate that my 

use of0.30 as MSE in my simulations was a very conservative value. Considering the 

measured MSE f?om Messier (1994) was 0.49 and that this was based on average kill rates, 

the true variability in the system is actually much higher. This means that my estimates of 

power are very hopefid and probably much higher than the true power. 

Because of the possible problems with variation outlined above, I evaluated the 

variation in MI rates fiom the original pack data in wolf-moose systems to explore which 

alternatives might be most feasible when trying to measure hctional response in wolves. I 

went to the original studies fiom which Messier (1994) gathered predation data, and also 

added kill rates from studies completed since 1994. The studies that presented detailed kill 

information for each pack usually presented the size of the pack under study, the number of 
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days that the pack was studied during the winter, and the number of moose and other prey 

that the pack killed. From this information, I computed a kill rate in units of 

moose/woW100 days. Even with the problems of independence between packs, I chose to 

stay with the pack-year as the sample unit, because it is common to wolfpredation studies. 

Packs that were studied in the same area were considered independent observations, and 

the same pack that was studied more than one year was considered more than one 

independent observations. This was to provide a ''best-case scenario" with respect to 

possible sample sizes. 

Using these kill rates. I fitted a type II functional response model to evaluate the 

variance (MSE) around the line. but not to estimate parameters for that line. Because of 

the high variance in kill rates, the pattern in no way resembled the hyperbolic shape of the 

type I1 response. The MSE was 6.97 (with pairs included as packs) or 1.5 1 (without 

pairs). This compares to 0.49 for when using the averages for each study that Messier 

presents. I also compared ranges of kill rates to the averages used by Messier (1994). The 

lowest and highest kill rates were 0.18 and 12-50 moose/woW 100 days (with pairs) or 0.68 

and 6.73 moose/wolf1100 days (without pairs). By comparison, ranges of kill rates for the 

averaged data was 0.37 to 3 -75 moose/woW100 days. If my summary indicates a 

"reatistic" variance, as compared to the "hopeful' variance of my simulation or the 

averages used by Messier (1 994), then it seems clear that detecting slight changes between 

model shapes, even with the help of additional sample size, is extremely unlikely. Using 

averages for each study appears to be the only way to reduce the variance enough to get 

any idea of shape of the hnctional response of wolves on moose. This idea of shape can be 
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at best a general idea, for the ability to detect detailed shape changes with density will be 

lost in the variance- 

However, one m g  pattern that the pack kill rate data show is higher variances 

at low densities of moose. This pattem appears to be opposite to what is found in insect 

functional response studies, where the variance inmases with availability of prey rather 

than decreases as in wolf-moose studies. Insect filnaional response studies usually 

evaluate their variance using the coefficient of variation (CV), calculated at each availability 

of prey at which the researchers measured kill rate. Trexler et al. (1988) reviewed several 

laboratory insect predation studies and found that CVs around a mean kill rate at a 

particular prey availability ranged fiom 18% to 165% with the lower CVs usually 

accompanying the estimates at lower prey availabilities. Comparison to Messier's (1994) 

functional response data was difficult, because there were only single values of kill rate at 

most densities of moose (there were two at 0.23 moose/km2), rather than several values at 

a single prey density in the insect studies. This meant that I could not determine a CV at a 

single density of prey. To attempt a comparison, however, I divided Messier's (1994) data 

set into kill rates above and below 0.5 moose/km2, and determined a mean kill rate md 

standard deviation for each. The resulting CVs where 59% below 0.5 moose/km2, and 

3 1% above. Of note here is that the higher CV occurred at low moose density, a pattern, 

as stated earlier, that is opposite of that found in insect predation studies. This is imponant 

because, even though the CV for the wolf-predation data is not that large, as compared to 

the range of CVs for insect studies, at low densities there is a considerable difference (56% 

versus 18%), and low-density is where the critical region is for distinguishing type II from 
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type III fitoctional responses. Trexler et al. (1988) could not objectively pick between type 

II and type III curves as providing the best fit when comparing fits of various models (both 

hyperbolic and sigmoid) to various insect functional response data sets found in the 

literature. Trexler et al. (1 988) also simulated several data sets with 90-1 10 data points 

collected at 9-1 1 different densities of prey, and with a constant CV of 20°/o. With these 

simulated data Trexler et al. (1988) could only distinguish between type II and type III 

fimctional responses if the kill rates were intermediate to high (with the plateau for 

intermediated kill rates being about 10 prey killed per trial). These results are not easily 

comparable with wolf-moose systems; however, these insect studies occur in controlled 

laboratory conditions, have relatively low variance, and the researchers still have difficulty 

objectively determining if hnctiond responses are type 11 or type Ill. Given this, it seems 

unlikely that a statistical discrimination between type II and type ID fbnctional responses 

could occur in highly variable natural-system studies involving wolves and moose. Because 

of the limitations of determining hctional responses in large predators, alternatives need 

to be considered. 

Alternatives to Measuring Functional Response 

Proportion versus Number of Prey.--Rather than looking at a change in the number 

of prey killed per predator and using a non-linear, least-squares technique, Trexler et al. 

(1988) suggest an alternative approach for analysing functional response data. This 

involves looking at the change in the proportion of prey killed out of the total popuiation 

available. The shapes of these a w e s  for type II and type III fhctional responses are much 

easier to distinguish (Figures 4-3c and 4-3d) than when using numbers of prey (Figures 4- 
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3a and 4-3b). This technique uses logistic regression rather than least-squares regression 

and will identify an increase in proportion killed per predator (Trexler et al. 1988). This. 

method works by using prey availability as the dependent variable and the response is either 

a capture or a non-capture o f a  prey individual. The function then predicts probability of 

capture of prey individuals given an availability of prey. This approach was originally 

conceived for laboratory predation experiments, where all individuals in a prey population 

can be watched. Because this is not possible for moose populations, a solution is to use 

radio-collar mortality data to determine instances of capture or non-capture. 

Radio-collar mortality in moose could also be used to assess predation changes with 

changing moose densities. Boutin (1995) suggests this approach for studying small 

mammal dynamics where prey population densities can change a great deal over only a few 

years. However. Boutin's (1995) approach is to study total predation rate changes with 

density of prey, not bctional response changes alone. Ifwolves could be kept constant 

while studying predation rate (as during a removal experiment), then any changes in 

predation rate on collared moose that occur with moose density could be attributed to the 

fbnctional response. If density of wolves cannot be kept constant, then looking at 

predation rate using radio-collared moose would still show how predation rate changes 

with moose density. 

Radio-collar studies to look for density-dependent predation could be used in 

manipulative experiments involving wolves and moose (see Figure 1 in Boutin 1992). I 



Type II 

Moose Density 

Figure 4-3. Identifying finctionai responses using proportion of prey killed rather than 
number killed. 
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propose two manipulations. The first is to remove wolves while studying radio-collared 

moose and compare predation rates on moose directly before wolf removal to predation 

rates afker removal has stopped and wolves have returned to their naturauy-regulated 

densities. If moose densities have increased during wolf control, then density-dependent 

predation will be indicated by an increase in mortality rate due to wolf predation f?om 

periods before to after wolf control. 

The second manipulation is the reduction of moose in areas where they are at 

intermediate densities (Boutin 1992). If predation is density-dependent, two things should 

happen: 1) mortality due to wolf predation should decrease as moose density decreases; 2) 

when moose are no longer reduced, they should increase to their original pre-reduction 

density. Reductions of this sort could occur with harvest management, having areas with 

higher or lower moose hawest (Messier and Crete 1985) while carefdly measuring moose 

densities and mortality. Although these manipulations would not address fhctiond 

response directly, they would still provide a picture of the nature of wolf predation on 

moose populations. If wildlife biologists began to look at predation using mortality rates, 

then analysis of wolf fUnctiond responses would no longer be necessary. Density 

dependence could be measured directly by monality on the prey rather than indirectiy 

through behaviour of the predators. 

Scar Amfysis.-Some researchers have used predator scats to evaluate fictional 

responses [see Boutin (1995) for examples in small mammal studies]. Such an approach 

could also be taken with wolf scats with certain limitations. Scat analysis could be used to 

get a general idea of the shape of the knctional response (type [I or m), but not what the 
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actual kill rates are at changing densities (Boutin 1995). To explore this possibility, I 

gathered scat data from studies that presented moose densities (x) and contents of scat as 

percent occurrence of moose in the scat Cy). I began by treating packs and years as 

independent samples. The resulting hyperbolic model ly = 6 1 . 2 ~  1 (0.1 1 + x), Figure 4 4 1  

explained 53% of the variation, and both the A and B parameters were significantly 

different (a = 0.05) than zero. A sigmoid model explained 54% of the variation, but the B 

and C parameters where not significantly ditrent than zero. 

Because of concern about independence between points from the same study, I 

repeated the analysis using only average percent occurrence of moose for a study over 

packs and years for the same moose density. [a this analysis, the hyperbolic model ly = 

6 6 . 7 ~  / (0.20 + x), Figure 44b] explained 65% of the variation, and both the A and B 

parameters were significantly different (a = 0.05) than zero. For the type III model. none 

of the parameters where different than zero. 

Given the limitations of using scat analysis, it still seems to provide some picture of 

the hctional response of wolves to moose. A sigmoid shape was not detected even with 

values fiom studies where moose were not the primary prey (Huggard 1993. Larter et al. 

1994). Given the resuhs of my power analysis, I would not expect a sigmoid shape to be 

detectable without a much larger sample size. But gathering enough data to analyse the 

possibility of a type III response using scat analysis is considerably less expensive than 

following radio-collared wolves and recording kills. For scat analysis to show a sigmoid 

shape, studies must include densities of moose that are extremely low to see the sigmoid 

portion ofthe response. If this sigmoid shape is due to switching, scats must be collected 



Figure 4-4. Hyperbolic bctional response model fitted to percent occurrence of moose 
in wolf scat. A) Model using all percent occurrence values as reported in the literature. 
Equation is y = 61 -2 1 (0.1 1 + x). B) Model using averages witbin a study across packs 
and years for the same density of moose. Equation is y = 66.7~ 1 (0.20 + x). 



where moose are at low densities, and where they are not primary prey. 

So far I have considered the importance of functional responses only at low to 

intermediate densities, where the sigmoid portion of a type llI response occurs. There is 

also the question of measuring firnctional responses at high densities, and the power 

associated with detecting a response that asymptotes. Researchers might assume that a 

plateau in kill rates is apparent at the higher ranges of densities for a prey species, but as 

with selecting a hyperbolic or sigmoid model at low densities, they do not test this 

assumption, or consider what sample size is needed to be able to establish with any 

certain@ that an asymptote occurs. Given a certain sample size and variance, what is the 

probability of distinguishing a firnctional response that asymptotes from a response that 

continues to increase? This will depend on the rate at which kill rates continue to increase, 

or the difrerence between an asymptoting curve and a continually increasing curve. 

However, given the results of this paper. I believe that at high densities, just as at low 

densities, high variance in the system will make it necessary to collect far more data to be 

certain that a functional response asymptotes than can be reasonably collected in a large 

mammal predation study. According to theory, kill rates should plateau as predators 

become satiated, but Boutin (1995) gives examples of how the hnctional response may 

continue to increase even at the upper limits of prey abundance because of surplus killing 

and partial consumption. If kill rates continue to increase, then it may have implications 

about how predation operates at high densities, as is suggested by the two-state or multiple 

equilibrium model (Sinclair 1989). Continudy increasing kill rates might preclude the 

possibility of a high-density stable equilibrium. 
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CONCLUSION 

Type III fimctional responses allow for density-dependent predation by a predator, 

even when the numerical response is density-independent Because of the high variances 

and low sample sizes of wolf predation studies, a sigmoid functional response is unlikely to 

be found empirically. This means that biologists studying wolf predation, should consider 

aitematives to m e a s u ~ g  fbnaiond responses when evaluating predation effects on a prey 

population. The most promising of these alternatives involves measuring mortality to wolf 

predation using radio-collared moose over various densities. 
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CECAPTER 5. CONCLUSION 

Large mammal systems in general are highly variable and very costly systems from 

which to gain hbormation. Only recently have enough data been gathered about wolf 

predation on moose to provide any idea of the dynamics occurring in that system. 

However, much of this knowledge has come fiom other predator-prey systems of which 

researchers have a fkr better understanding: insect predation, host-parasitoid, and small 

mammal systems. Making generalizations across systems could cause problems if the 

primary factors that influence dynamics are different fiom system to system. That means 

that researchers studying large mammal systems must be particularly rigorous when trying 

to determine the dynamics, and they must be care11 about the assumptions they make in 

the absence of information about the system. This is particularly important in systems 

where an ungulate species is to be managed for sustainable harvest. 

A re-analysis of numerical and fimctional response data fiom Messier (1994) 

showed that hear  models and data transformation allowed for a better statistical fit of wolf 

predation data than did theory-based hyperbolic models. When I combined these models 

into a total predation model, I found that predation rate was anti-regulatory, being 

inversely density-dependent at low densities of moose, and then showing weak direct 

density-dependence at intermediate to high densities of moose. This finding was opposite 

to the findings of Messier (1994), where predation was density-dependent at low densities 

and then inversely density-dependent at intermediate to high densities. As a result, the 

model I produced showed no low-density equilibrium. Rather, it suggested that moose 

populations that decrease to low enough densities could be driven to extinction. 
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This possibility of extinction could only occur if moose populations are considered 

as homogenous units that are evenly spread over a study area. Evidence tiom moose 

s w e y  reports suggests that moose tend to aggregate in favourable habitats, and so have 

higher local densities of moose than surrounding, less favourable areas. Further evidence 

from wolf predation studies suggests that wolves detect these locally abundant pockets of 

moose and spend a majority of their time foraging in them (Huggard 1993). A simulation 

model based on theses two ideas and the linear fbnctional and numerical responses 

indicates that persistence of moose at low densities is possible without density-dependent 

predation if: moose populations are divided into subpopulations. some have high growth 

rates and densities, and wolves concentrate their predation on only the high density 

subpopulations. Persistence then occurs because the high-density regions are at densities 

or have growth rates higher than that are affected by anti-regulatory wolf predation. In 

addition, the low densities reported in moose surveys are averages of large, low-deosity 

areas, and small, high-density areas. 

Although my re-analysis does not support a functional response that intersects zero, 

this still must be the case, for the simple fact that wolves cannot kill prey when they are 

absent. If, however, data can be collected to show more of a conventional hyperbolic 

functional response, researchers must next be able to look at another level of resolution: is 

the fbnctional response hyperbolic (type U) or sigmoid (type III)? Using simulated data 

sets, I found that making this distinction in iarge-mammal predation studies will be very 

Wcul t  due to low statistical power, through small sample sues or high variability in the 

system. This means that alternatives that have a greater distinguishing ability (using 
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proportion killed rather than number Wed per worn, or that avoid the functional response 

altogether (using radio-collared moose) should be pursued in funher studies of wolGmoose 

dynamics. 

The sum of these re-analyses indicates that there are many assumptions that 

researchers studying wolves and moose take for granted. Often these assumptions must be 

made because of the lack of available information, and the cost involved in gathering that 

information. However, making assumptions can bias conclusions about a system's 

dynamics. As I have shown here, the models of population dynamics, and the management 

decisions based on those dynamics, can change considerably depending on which 

assumptions a researcher chooses to maint a h  
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Appendi,~ A information used for variance in kill rates based on pack size- 

Smdy Moose/kmz Pack Size Moose kiUed/woWlOO days 

Bailard et al, 1987 0.33 9 3 -23 

Bjorge and Gunson 1989 

Fuller and Keith 1980 

Hayes 1995 



Appendix A (continued)- Information used for variance in kill rates based on pack size, 

study Moose/km2 Pack Size  Moose kilied(woW100 days 

2 11-1 1 

Hayes and Baer 1986 0.42 5.5 1-74 

Hayes et al. 1991 0.26 7 2.3 



Appendix A (continued), Intormadon used for variance in kill rates based on pack size. 

s w  M m z  Pack Sire Moose killed/woW 100 days 

5 3.53 

Peterson 1 977 

Peterson et al. 1984 



Appendix 8. Information used for hctional response adysis using wolf scats. 

stady Mwse/km2 Percent occurma of moose in scat 

Fuller and Keith 1980 0.23 49,35,32,21.28.61,52,50.75 

Average 

Hayes et al, 1991 0.26 

Huggard 1993, Paquet 1993 0.01 1' 17.0,7.3,6.0 

Average 10-1 

Larter et al, 1994 0.25 12-5 

Average 29.1 

Messier and C&e 1985 0.23 

0.37 

Peterson 1977 1.56 

Average 49.4 

Peterson et al. 1984 0.8 67 

Thurber and Peterson 1993 1-16 48.7 

1.88 68.1 
Density determined by best estimate of moose in Spray wolf pack's temtory (12. Huggard 1993) 

divided by terntow size (1058 kmz, Paquet 1993). 




