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It is notoriously difficult to estimate the abundance of bears in general and most methods 

that are currently available are too consumptive of time and effort. Sloth bears (Melursus 

ursinus) pose very similar challenges to field biologists trying to estimate their abundances.  

I investigated the possibility of estimating abundance of sloth bears using presence-

absence data from repeated samples from camera traps. The simulation results generated from 

the likelihood estimator for small sample sizes showed a positive bias for λ, the mean abundance 

per site.  

To more effectively use data with small sample sizes, a Bayesian approach to the problem 

was developed so that an informative prior could influence the parameter values to a reasonable 

range. A Bayesian Markov Chain Monte Carlo simulation procedure using the Gibbs sampler 

algorithm was developed.  

Data were analyzed using two ideas of bear movement that are incorporated into the 

model. Data were first analyzed with the intention of maintaining the idea of site independence 

to ensure that a bear will not occur in two sites during the sampling period. This restricted the 

data set and the uncertainties in the parameter estimates were found to be very high. To 
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incorporate the missing data, and include more sites into the problem, another assumption was 

introduced in the model that the immigration and emigration rates to and from a site was a 

constant. However, the abundance estimates generated by this procedure were also highly 

variable.  

The key issue that emerged from this study was the exceedingly low animal-specific 

detection probability (between 0.03 and 0.12). This suggested the need for an improved method 

in photographing bears both in terms of increasing spatial replicates and the actual placement of 

camera traps for reliable estimates of abundance. With an improved study design, the suggested 

approach may still seem very plausible to estimate sloth bear abundances.  
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CHAPTER 1 
INTRODUCTION 

Background 

A variety of methods are available for estimating animal abundances (Lancia, Nichols & 

Pollock, 1994), but all involve the issue of estimating detection probabilities for specific kinds of 

count statistics (Buckland, Anderson, Burnham, Laake, Borchers & Thomas, 2001; Seber, 1982; 

Williams, Nichols and Conroy, 2002).  Depending on the species being studied, the techniques 

available for gathering appropriate data, and incorporating the limitations of time, money and 

effort,  only one or just a few of these methods may be suitable. Capture-recapture methods 

require repeated efforts to capture or observe animals (Otis, Burnham, White & Anderson, 1978; 

Pollock, Nichols, Brownie & Hines, 1990) and even observation-based methods such as distance 

sampling (Buckland et al., 2001) or multiple observers (Cook & Jacobson, 1979; Nichols, Hines, 

Sauer, Fallon, Fallon & Heglund, 2000) are viewed as being too time and effort consuming 

(Royle & Nichols, 2003). Despite the logistical constraints, these methods have been widely 

applied to estimation of large mammal abundance.  

Monitoring Sloth Bears 

Sloth bears (Melursus ursinus), like other bears, are solitary animals (Gittleman, 1989), 

mostly nocturnal (Joshi, Smith & Garshelis, 1999) and are not easily sighted. Thus, determining 

their abundance is a major challenge for field biologists. The only rigorous density estimate for 

any population of this species was made by Garshelis, Joshi and Smith (1999)  using mark-

recapture models, based on sightings and re-sightings of bears accompanying radio-collared 

bears in Royal Chitwan National Park, Nepal. They estimated bear density at 27 bears/100 km2 

(excluding dependent young). In the relatively unproductive dry tropical forests of Panna 



 

12 

National Park, India, Yoganand (pers. comm.) used a combination of radio-collared animals and 

familiarity with unmarked but identifiable animals to derive an estimate of 6–8 bears/100 km2.  

While conducting conventional distance sampling surveys along line transects in India, 

Karanth (pers. comm.) recorded few sightings of sloth bears, despite considerable effort, and the 

data collected were inadequate to fit a reliable detection function.  Furthermore, photographic 

mark-recapture sampling (Karanth, Nichols & Kumar, 2004) does not work for sloth bears as 

individuals cannot be identified. Mark-recapture sampling using noninvasive DNA extracted 

from hair or scat samples may be used as an alternative to live trapping, but it is very expensive. 

Additionally, all these methods have technical problems that make them less reliable as well 

(Mills, Citta, Lair, Schwartz & Tallmon, 2000). 

A potential approach to estimating abundance of sloth bears involves changing the focus 

from numbers of animals to numbers of sample units occupied by animals (Royle & Nichols, 

2003). Methods employing this general approach are based on presence-absence data from the 

sampling units. Royle & Nichols (2003) have developed a model based on this focus to estimate 

abundance from repeated presence-absence data or point counts. In chapter 2 of this thesis, I 

investigate the performance of this model with the likelihood-based estimator derived by the 

authors and also derive a Bayesian alternative to parameter estimation to deal with applying the 

model with prior distributions. In chapter 3, I use the Bayesian approach on the Royle and 

Nichols (2003) model to analyze sloth bear data obtained from camera traps in Bandipur-

Nagarahole National Parks.    

Sloth bear diets vary seasonally and geographically across their range from Nepal  

southward through India and Sri Lanka, depending largely on the availability of food and 

hardness of termite mounds (Baskaran, 1990; Baskaran, Sivaganesan & Krishnamoorthy, 1997; 
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Gokula, Sivaganesan & Varadarajan, 1995; Gopal, 1991; Joshi, Garshelis & Smith, 1997; 

Karanth et al., 2004; Laurie & Seidensticker, 1977). I make assumptions based on the resource 

distribution and abundance consequently investigate applicability of the Royle and Nichols 

(2003) model under varying home range possibilities.  

With the absence of a rigorous estimate of sloth bear density in Nagarahole and Bandipur 

National Parks, the results of this study will be a useful first step in developing a monitoring 

program for these animals. Further, this will be the first attempt at using the sampling unit based 

approach towards determining densities or habitat usage rates for bears in general. 
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CHAPTER 2 
PARAMETER ESTIMATION OF THE ROYLE AND NICHOLS (2003) MODEL USING 

BAYESIAN MARKOV CHAIN MONTE CARLO SIMULATION APPROACH WITH THE 
GIBBS SAMPLER ALGORITHM 

Introduction 

Estimating the number of animals of a particular species in forested areas largely revolves 

around addressing two fundamental issues: extrapolation of inferences from a study area and 

detection probability (Lancia et al., 1994; Skalski, 1994; Thompson, 1992; Thompson, White & 

Gowan, 1998; Yoccoz, Nichols & Boulinier, 2001). First, investigators often have to select 

representative areas within a much larger area of interest. However, this fractional area often has 

to be estimated and inferences must be extrapolated to the entire area of interest. This is a 

standard problem in spatial sampling and statistical texts  (Cochran, 1977; Thompson, 1992)  

appropriately deal with this issue by permitting such inferences. In field surveys, it is very rare 

that investigators detect all animals or signs present even in the fractional area considered. 

Instead, data collected reflect some sort of a count statistic that only represents a portion of all 

the available detections present. This issue of ‘detectability’ is the second fundamental issue an 

investigator has to deal with in estimating animal abundance. A variety of methods presented in 

texts (Buckland et al., 2001; Seber, 1982; Williams et al., 2002) and reviews (Lancia et al., 

1994) provide different methods of estimation of detection probabilities for specific kinds of 

count statistics.  

Depending on the species studied, the techniques available for gathering appropriate data, 

and incorporating the limitations of time, money and effort, often only one or just a few of these 

methods are likely to be suitable. For example, capture-recapture methods require repeated 

efforts to capture or observe animals (Otis et al., 1978; Pollock et al., 1990). Even observation 

based methods such as distance sampling (Buckland et al., 2001) and multiple observers (Cook 
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& Jacobson, 1979; Nichols et al., 2000) are viewed by some as highly time and effort 

consuming.  

In many situations, presence-absence (more properly, detection-nondetection) data on 

sampling units may more easily be obtained. Methods using such data have been developed 

independently several times (Azuma, Baldwin & Noon, 1990; Bailey, 1952; Bayley & Peterson, 

2001; Geissler & Fuller, 1987; MacKenzie, Nichols, Lachman, Droege, Royle & Langtimm, 

2002; Nichols & Karanth, 2002) and appear to be useful for a variety of monitoring programs 

(e.g. patch occupancy by spotted owls in western North America, area occupancy of tigers in 

India, wetland occupancy by anurans throughout North America). 

 Royle and Nichols (2003) have constructed a model by linking the probability of detecting 

presence and the abundance at a sampling unit. By using repeated detection-nondetection data 

gathered from occupancy surveys, they suggest a maximum likelihood approach at estimating 

the parameters (that includes abundance). They also emphasize that likelihood-based inference is 

not a small-sample procedure, and this should be considered in any study. In spite of the relative 

ease with which presence-absence data may be gathered, achieving large samples for analysis as 

suggested by Royle and Nichols (2003) for even practical estimates of the parameters might be 

difficult.  

Bayesian approaches at parameter estimation have found themselves to be useful in a 

variety of ecological applications (Dennis, 1996; Dixon & Ellison, 1996; Ellison, 1996; Hilborn 

& Mangel, 1997) and have many strengths and limitations (Dennis, 1996; Ellison, 1996). Field 

biologists often encounter logistic difficulties that curtail them to work with very low sample 

sizes and yet have the need to use such information. Bayesian inferential procedures under 

certain circumstances better makes use of such prior beliefs in parameter estimation.  
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In the context of the Royle and Nichols (2003) model, a trade-off between the number of 

sites and the number of sampling occasions have to be made. However, biologists may also 

enhance the quality of data collection by better field methods and can induce changes on a 

parameter such as the animal-specific detection probability. With existing difficulties in animal 

abundance estimation, Bayesian inferential procedures are likely to be more useful from a 

management standpoint, especially with low sample sizes. In this chapter,  

• I construct a Bayesian Markov Chain Monte Carlo simulation approach using the Gibbs 
sampler (Gelman, Carlin, Stern & Rubin, 1995) to estimate the parameters in the Royle 
and Nichols (2003) model. 

 
• I investigate the problems associated with the likelihood-based inference procedure in this 

model for low sample sizes and suggest the use of a Bayesian approach with an informed 
prior to more appropriately deal with this problem.    

 
Methods 

Royle and Nichols (2003) Model  

 Royle and Nichols (2003) use the occupancy based approach and assume that the 

detection probability of a given species at a particular site is directly dependent on the abundance 

of that species in that site for a given animal-specific detection probability and nothing else. 

Consequently, the heterogeneity in detection probabilities across a system of sites is caused by 

the heterogeneity in abundance across those sites. And, by modeling the variation in abundances 

according to some probability distribution model (e.g., Poisson), they build a model based on 

maximum likelihood to arrive at estimates of abundance in these sites.  

The Royle and Nichols (2003) model is as follows: 

pi = 1-(1-r)Ni  (2-1) 

Here pi is the probability of detecting at least one animal within the site i.        
 r is the probability of an animal being detected in site i. 
 Ni is the actual animal abundance at site i. 
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Parameter Estimation Using the Likelihood-Based Approach 

For the construction of the final likelihood equation, Royle and Nichols (2003) recommend 

imposing a probability model to characterize the underlying distribution of abundances. For 

animals that are distributed at random, a natural candidate for modeling the abundance may be 

the Poisson model (Royle, Nichols and Kery, 2005).  

The final likelihood equation by using the Poisson model for the abundance is as follows: 

!
1 0

..
. ])1[(])1(1[),|( k

kwTkR

k

w
wT

errCrwL iik
i

λλλ
−−∞

=
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R is the number of sites, 
T  is the number of repeated samples, 
w is the detection vector of the total number of detections from each site i, i.e. a vector of  
  all the individual site-specific detections, wi.. 
λ is the expected abundance at each site, also the Poisson mean. 
 
For the convenience of numerically maximizing the Equation 2-2, the upper limit of the 

variable k is set to a very large number K. So for practical estimation of the parameters, Equation 

2-3 is used.  

!1 0

..
. ])1[(])1(1[),|( k

kwTkR K

k

w
wT

errCrwL iik
i

λλλ
−−

=
−∏ ∑ −−=  (2-3) 

Parameter Estimation Using the Bayesian Approach 

The Royle and Nichols (2003) model that uses the Poisson distribution to characterize the 

abundance can be viewed as a hierarchical model of random variables as follows: 

])1(1,[~],,|[ .
iN

ii rTbinomialNrTw −−  (2-4) 

][~]|[ λλ poissonNi
 (2-5) 

]1,0[~ uniformr  (2-6) 
],[~ bagammaλ  (2-7) 

 
Here a and b are the shape and scale parameters associated with the gamma distribution. 

Relationships 2-4 and 2-5 jointly represent the likelihood function, while Relationships 2-6 and 
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2-7 are the prior distributions set for r and λ respectively. Since the gamma prior distribution is 

the conjugate prior for the Poisson distribution (Gelman et al., 1995), it is a very convenient 

distribution that can be used, especially in a Bayesian Markov Chain Monte Carlo simulation. 

I used the Bayesian Markov Chain Monte Carlo simulation approach using the Gibbs 

sampler (Gelman et al., 1995) to determine the posterior distribution of the parameters r, λ and 

Ni. The Gibbs sampler is a particular Markov chain algorithm useful in such multidimensional 

problems based on alternate conditional sampling.  To use the Gibbs sampler, the conditional 

distributions of each parameter have to be derived by treating the other parameters as known 

(full conditionals). The unnormalized joint posterior density function is 

)()()]|(),,|([)|}{,,( . λλλ PrPNgNrTwfwNrP iii
i

ii ∏∝  

The objective is to sample from the joint posterior density function repeatedly and the 

Markov chain that develops represents the joint posterior distribution. However, since this is a 

hierarchical model and all the probabilities are not independent, an alternative is to sequentially 

sample from each full conditional derived for each parameter. This is the whole purpose of the 

Gibbs sampler.  

The full conditionals are derived as follows: 

Full conditional for λ: 

[ ] ⎥
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 (2-8) 

Full conditional for r:  

P(r) = 1,  0<r<1 

In a Monte-Carlo simulation, it is desirable to move in a parameter space that is unrestricted. So 

to develop a full conditional on r, it would be more useful to use a logit transformation on r 
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instead of being bounded by the values between 0 and 1. So the full conditional is developed for 

the parameter η, the variable under the transformation, instead of r,  for computational 

advantages: 
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Where Ni = 0, 1, 2, …. to K, when wi.= 0 and Ni = 1, 2, … to K, when wi.≥1. 
 
The Gibbs sampler algorithm involves sampling random values sequentially from these 

full conditionals. Each sample is drawn from the full conditional of a parameter using the 

updated values of each of the other parameters. When this process is repeated arbitrarily a large 
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number of times, a posterior distribution of the parameter of interest will emerge based on the 

time spent on each point in the parameter space.  

The Gibbs Sampler Algorithm for the Royle and Nichols (2003) Model 

Step 1: Selecting the initial values for r, λ and Ni.  

Iteration 1 

r(1)   : random number chosen from a Uniform (0,1) distribution 
So, η(1) = logit[r(1)] 
λ(1)  : random number chosen from a Gamma (a,b), where a and b are the shape and scale  
        parameters initially selected. 
Ni

(1) : random number chosen from a Poisson[λ(1)], where i = 1, 2, …… R sites. 
 
Step 2: Updating the values of r, λ and Ni. 
 
Iteration j [ranging from 2 to a large number] 

[Ni
(j) | wi., λ(j-1), r(j-1)]   : random number drawn according to Equation 2-10 where 

                                    i = 1, 2, …… R sites  
[λ(j) | {Ni

(j)}]  : random number drawn according to equation (8). The ‘{}’ indicates the   
                        entire vector of site abundances.          

[η(j) | {w}, {Ni
(j)}] : random number drawn according to the proportionality relationship of  

                                Equation 2-9. Consequently )(

)(

1
)(

j

j

e
er j

η

η

+
=

 
Step 2 is repeated a large number of times. Using the Equations 2-8 and 2-10 the updates 

for Ni
(j)

 and λ(j) can be made quite directly in the Gibbs sampler. However, making the updates 

for η(j) requires the use of the Metropolis algorithm (Gelman et al., 1995) with a Gaussian 

proposal distribution since Equation 2-9 is only a proportionality relationship. 

Simulation Design 

Royle and Nichols (2003) have already shown the performance of the model in varying 

large sample situations and have established that the likelihood-based inference works 

reasonably well for inferences about estimates of λ for even low values of r and T when R is 200 

or greater. However, in their simulation design, they have chosen values for the true value of λ 
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ranging from 1 to 5 for which the means and medians of estimates of λ were within reasonable 

limits. In my simulations, I fixed a value of 0.3 for r and 10 for λ as constants and varied the 

number of sites (100, 50, 25, 10) and the number of sampling occasions (3, 5, 10) to evaluate the 

performance of the estimates.       

I wrote the program in R, a free statistical programming environment (Vienna University 

of Economics and Business Administration, 2006). Using “direct search” to numerically 

calculate the values of r and λ to maximize the likelihood Equation 2-7 is very time consuming. 

Instead, I used the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and also used the 

Nelder-Mead algorithm (Press, Teukolsky, Vetterling & Flannery, 1994). I used the logit 

transformation on r to bind the values of r between 0 and 1 during optimization.  

From the likelihood-based estimates, I identified data sets that resulted in estimates quite 

distant from the true value used in the simulation. I used these data sets to obtain posterior 

distributions of the parameters r and λ by running the Gibbs sampler algorithm with two 

informed prior distributions.  This algorithm was also programmed in R. 

Results 

The summary statistics for the estimated parameters r and λ by the likelihood-based 

inference is shown in Table 2-1. The results for all combinations of number of sites and number 

of sampling occasions show a positive bias for the estimates of λ. For sample sizes 100, 50 and 

25 sites, the median value of λ provided a better estimate of the true value of λ as compared to 

the mean. The Nelder-Mead algorithm and BFGS algorithms provided different estimates for the 

mean and standard errors of λ. For example, in the simulation with 50 sites and 5 sampling 

occasions, the Nelder-Mead estimate of λ(mean) was 26.181 ± 24.476 while the BFGS estimate 

was 16.813 ± 10.747.   
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The summary statistics of the posterior distributions of r and λ are shown in Tables 2-2 and 

2-3. Further, the likelihood estimates using the BFGS algorithm were not consistent (i.e. they 

failed to converge to the same estimates every time). The standard deviation of the estimates of r 

and λ increased with the increased variance in the prior gamma distribution set for λ. Figure 2-1 

shows the influence of the prior distributions on the posterior distributions with low sample 

sizes.  

Conclusions and Discussion  

Small sample sizes (when R is less than 100 and T is less than 10) produce flat likelihoods. 

This makes likelihood-based estimation difficult. Computer algorithms like BFGS or Nelder-

Mead rely on smooth likelihood surfaces (Press et al., 1994) and also rely on computers capable 

of high precision for parameter estimation with flat likelihoods. The large standard errors 

produced when using the Nelder-Mead algorithm is indicative of the flat likelihood surface. The  

inconsistency in the results from the BFGS algorithm in parameter estimation is also indicative 

of such a surface. 

From the results in Tables 2-2 and 2-3, it may be inferred that Bayesian priors on λ do play 

an important role in the posterior distribution of the parameters when using the Gibbs sampler 

algorithm. Hence from a biological standpoint, given low sample sizes, the choice of an 

appropriate prior is critical to obtain meaningful estimates of animal abundance.  

Considering that in this model λ is the important parameter from a wildlife management 

perspective and very difficult to estimate from field surveys, information obtained even from 

small sample sizes would be helpful from a long term monitoring perspective. Bayesian 

approaches do facilitate this process of updating parameter estimates on improved prior beliefs.  
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Table 2-1. Simulation results for the likelihood-based inference. The true values of r and λ were 
set at 0.3 and 10 during the simulation. In each case, 1000 data sets were simulated. 

R T r(mean) 
Standard 
error of r λ(mean) 

Standard 
error of λ λ(median) 

Optimization 
method 

100 3 0.264 0.1560 16.737 10.4509 13.810 BFGS 
100 5 0.268 0.1312 15.666 10.4873 10.264 BFGS 
100 10 0.282 0.1013 13.024 7.7381 10.559 BFGS 
50 3 0.251 0.1824 21.003 14.0927 17.780 BFGS 
50 5 0.265 0.1580 16.813 10.2470 11.663 BFGS 
50 10 0.278 0.1381 14.911 9.7201 10.675 BFGS 
25 3 0.263 0.2081 17.799 7.5950 16.335 BFGS 
25 5 0.260 0.1745 19.517 13.7354 14.972 BFGS 
25 10 0.266 0.1690 17.726 11.5440 11.817 BFGS 
10 3 0.405 0.3647 20.141 8.0814 17.191 BFGS 
10 5 0.301 0.2775 19.039 8.3268 21.894 BFGS 
10 10 0.279 0.2406 20.373 12.8811 21.350 BFGS 
50 5 0.253 0.1741 26.181 24.4756  Nelder-Mead 
50 10 0.276 0.1512 18.832 18.5343  Nelder-Mead 
25 10 0.251 0.1826 26.950 24.9698  Nelder-Mead 
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Table 2-2. The results of the Gibbs sampler algorithm. The likelihood estimates for thesame data 
set were obtained using the BFGS algorithm for optimization. Prior shape = 10 
scale=1. Number of iterations in the Gibbs sampler were 60,000 and the first 20,000 
iterations were excluded in calculating the summary statistics. 

R T 
Posterior 
mean of r 

Posterior 
standard 
deviation 
of r 

Posterior 
mean of λ 

Posterior 
standard 
deviation 
of λ 

Likelihood 
estimate of 
r 

Likelihood 
estimate of 
λ 

50 3 0.314 0.096 10.035 2.963 0.929 25.511 
50 10 0.348 0.087 11.045 2.927 0.564 27.647 
25 3 0.264 0.086 9.761 2.997 0.810 14.563 
25 10 0.362 0.098 10.583 2.900 0.694 13.897 

 

Table 2-3. The results of the Gibbs sampler algorithm. The likelihood estimates for the same data 
set were obtained using the BFGS algorithm for optimization. Prior shape = 1 
scale=10. Number of iterations in the Gibbs sampler were 60, 000 and the first 20,000 
iterations were excluded in calculating the summary statistics. 

R T 
Posterior 
mean of r 

Posterior 
standard 
deviation 
of r 

Posterior 
mean of λ 

Posterior 
standard 
deviation 
of λ 

Likelihood 
estimate of r 

Likelihood 
estimate of 
λ 

50 3 0.319 0.150 11.347 5.843 0.929 25.511 
50 10 0.271 0.118 16.654 8.606 0.564 27.647 
25 3 0.285 0.156 11.201 7.150 0.810 14.563 
25 10 0.349 0.169 12.959 6.804 0.694 13.897 
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                                 A                                                                     B 
                                                                                    

 
                                 C                                                                      D 

 
Figure 2-1. Prior and posterior distributions for λ when R=50 and when T=10.  A) Prior 

distribution of λ with shape = 10 and scale = 1.  B) Posterior distribution of λ with 
priors from A.  C) Prior distribution of λ with shape = 1 and scale = 10.  D) Posterior 
distribution of λ with priors from C. 
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CHAPTER 3 
ESTIMATION OF SLOTH BEAR ABUNDANCE USING REPEATED PRESENCE-

ABSENCE DATA IN NAGARAHOLE-BANDIPUR NATIONAL PARKS, INDIA 

Introduction 

The estimation of bear abundance involves many difficulties. Many expensive and labor-

intensive mark-recapture studies, most aided by telemetry, have been conducted on populations 

of American black bears (Ursus americanus), brown bears (Ursus arctos) and polar bears (Ursus 

maritimus) (Garshelis et al., 1999). Such studies are lacking for the other five species of bears 

due to funding and logistical constraints. Furthermore, the density of these species is perceived to 

be relatively low, thus making mark-recapture studies highly impractical.  

The only rigorous density estimate of sloth bears (Melursus ursinus) was derived by 

Garshelis et al. (1999) during their study in Royal Chitwan National Park, Nepal. They used 

information on bears seen in the company of radio-collared bears as a re-sight sample and 

estimated bear density using the relatively simple, modified Peterson estimator (Bailey, 1952). 

During the process of obtaining 3,117 radio-telemetry locations, they sighted 47 bears in the 

vicinity of radio-collared bears, 42 of which had radio-collars on them. Using the modified 

Peterson estimator, Garshelis et al. (1999) arrived at a density estimate ranging from 27 to 72 

bears per 100 km2 depending on the season and habitat. It took investigators more than a year to 

obtain a recapture sample of 47 accompanying bears, an effort that may be feasible only when 

coupled with investigating other questions about sloth bear ecology that requires systematic and 

repeated visits to the forest. 

Sloth bear densities are difficult to obtain by many conventional sampling methods. It is 

not possible to identify sloth bear individuals from photographs obtained in camera traps, so 

using a mark-recapture framework to determine densities, as done with tigers (Karanth & 

Nichols, 1998), is not practical. Further, while conducting distance-sampling surveys along line 
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transects, Karanth (unpublished data) recorded few sightings of sloth bears despite considerable 

effort. A detection function fitted to such limited data is likely to be highly unreliable. Similarly, 

mark-recapture sampling requires large sample sizes and live trapping of sloth bears is not likely 

to generate the requisite number of recaptures. Sampling using noninvasive DNA extracted from 

hair or scat samples may be used as an alternative to live trapping, but it is very expensive. 

Additionally, all these methods presently have technical problems that make them less reliable as 

well (Mills et al., 2000). 

By sampling a site repeatedly for the presence-absence of a species, Royle & Nichols 

(2003) constructed a model that may be used to determine the abundance of a species. This is a 

simple model that makes use of a logical assumption that the detectability of a species is solely 

dependent on the abundance at that site for a given animal-specific detection probability. In this 

chapter, I investigate the applicability of this model for repeated presence-absence data of sloth 

bears obtained using camera traps in Bandipur and Nagarahole National Parks. For reasons 

discussed in chapter 2 of this thesis, I preferred to use the Bayesian approach in estimating sloth 

bear abundance. 

Study Design 

Study Area 

The study area comprises two protected areas, Nagarahole and Bandipur, that are 

geographically separated by the Kabini reservoir (Figure 3-1).  

Nagarahole 

Nagarahole was originally established in 1955 as a Game Reserve of 288 km2. In 1974, it 

was expanded to become the Nagarahole National Park (Area: 644 km2), now officially renamed 

“Rajiv Gandhi National Park, Nagarahole” but commonly referred to as Nagarahole. The reserve 

is located in Kodagu and Mysore districts (76° 00' – 76° 15' E - 11° 15' – 12° 15' N) at altitudes 
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of 700 – 960 m. Nagarahole is contiguous with Bandipur Reserve to the southeast and the 

Wayanad reserve to the southwest. The reserve receives an average annual rainfall between 1000 

– 1500 mm (Karanth & Nichols, 2000). The terrain is gently undulating and drained by several 

perennial streams and three large rivers: Kabini, Taraka and Lakshmanateertha. An irrigation 

dam built in 1974 forms the Kabini reservoir that flanks the southern boundary of the reserve. 

Two types of tropical, mixed deciduous forests are found in the region. The northwestern 

areas of the reserve receive higher rainfall and support moist deciduous forests of the Tectona-

Dillenia- Lagerstroemia series. The dry deciduous forests of the Terminalia-Anogeissus-Tectona 

series occur in the southeastern areas with less than 1000 mm of rainfall. A unique feature of this 

site is the presence of open grassy swamps in moist areas locally called hadlus, where the soil is 

clayey, perennially moist and supports the luxuriant growth of sedges and grasses year round. 

Nagarahole supports an impressive assemblage of herbivorous prey species: elephant 

(Elephus maximus), gaur (Bos gaurus), sambar (Cervus unicolor), chital (Axis axis), muntjac 

(Muntiacus muntjac), chousingha (Tetraceros quadricornis), wild pig (Sus scrofa), hanuman 

langur (Presbytis entellus) and bonnet macaque (Macaca radiata). The tiger (Panthera tigris) , 

leopard (Panthera pardus), Asiatic wild dog (Cuon alpinus), or dhole, and sloth bear are the 

large carnivores. Apart from the impressive mammalian fauna, Nagarahole is rich in avifauna, 

with more than 270 species of birds. The herpetofauna includes a variety of snakes, lizards, 

turtles and frogs. Among the larger reptiles, the marsh crocodile (Crocodylus palustris), monitor 

lizard (Varanus bengalensis) and the rock python (Python molurus) occur in Nagarahole. 

Bandipur 

The Maharaja of Mysore originally established Bandipur as a hunting reserve in 1931. It 

was expanded after 1974 to become the Bandipur National Park and Tiger Reserve (Area: 874 

km2). It is one among the first nine tiger reserves created under Project Tiger. Bandipur is located 
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in Mysore and Chamarajanagar Districts (76° 12' –76° 46' E - 11° 37' – 11° 57' N) at an altitude 

of 680 –1454 m.  

Bandipur is the oldest protected area in Karnataka. It is contiguous with Nagarahole on the 

northwest, Wayanad reserve to the southwest and Mudumalai reserve to the south. The terrain is 

undulating, and the reserve is bounded by the Moyar River to the south and Kabini Reservoir to 

the northwest. Bandipur Reserve receives an annual rainfall of 625 – 1250 mm (Karanth & 

Nichols, 2000). The forests are mostly the mixed dry deciduous series of Terminalia- 

Anogeissus-Tectona type. In the northwestern parts where the rainfall is higher, moist deciduous 

forests of the Tectona-Dillenia-Lagerstroemia series occur. The wildlife of Bandipur is similar to 

that of Nagarahole; however, three additional large mammal species, blackbuck antelope 

(Antelope cervicapra), striped hyena (Hyaena hyaena), and the Indian wolf (Canis lupus), occur 

occasionally on its eastern fringes. The bird life and herpetofauna are similar to Nagarahole. 

Methods 

Field Methods 

I used commercially made TRAILMASTER TR-1550 camera traps (Goodson and 

Associates, Lenexa, Kansas, USA) equipped with active infra-red tripping devices to obtain 

photographs of animals. Two cameras, positioned opposite each other, were set along game trails 

to simultaneously photograph both flanks of an animal that broke the infrared beam. The camera 

traps were housed in locally manufactured theft-resistant metal trap shells and set about 300-350 

cm from the side of a trail with the infrared beam set at a height of 45 cm.  To eliminate mutual 

flash interference, a small delay (approx 0.1 sec) was electronically introduced into the splitting 

device connecting the two cameras. The sensitivity of the tripping device was set to photograph 

large-bodied animals. The date and time a photograph is taken is imprinted on the film and 

recorded on the receiver unit. 
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The camera traps were placed with the primary intention of maximizing tiger captures and 

were set along routes where there was tiger sign (scats, scrapes, scent deposits, tracks) and at the 

intersection of well-used trails. The spacing between camera traps ranged from 1-2 km. All 

points were marked on maps using a GPS unit. The date, time, and location of all animal 

captures were noted (Figure 3-2).  

Data were collected from the two parks from December until May in 2003-2004 and 2004-

2005. Sampling was done at 120 camera-trap locations in Nagarahole and 118 camera-trap 

locations in Bandipur. Since it was logistically impractical to conduct sampling at all these 

camera trap locations simultaneously, the trap points were divided into blocks of 40 trap points 

each. After sampling for 10-15 nights in one block, the camera traps were moved to the next 

block and sampling would continue 10-15 nights. In total, the study area consisted of 6 blocks.  

Logistics, weather and budget constraints limited the number of consecutive nights the cameras 

were deployed at a trap site (Table 3-1).  

Application of the Royle and Nichols (2003) Model 

Definition of sites 

Occupancy surveys that are described in MacKenzie et al. (2002) and Royle & Nichols 

(2003) use sample units as “sites”. Implicitly, it is assumed that each site is independent and no 

animal will move between sites during the survey period. Unless the movement of animals is 

very small compared to the selected cell size, setting up a grid system and using these models for 

adjacent cells will violate the assumption of independence between sites. Thus, using these 

models for a species that ranges widely, like the sloth bear (Garshelis et al., 1999), will generate 

results that require an alternative interpretation. To minimize the size of sites based on different 

possibilities of home range size and to maintain the assumption of independence of abundance 

between sites, I selected sites from the study areas in Bandipur and Nagarahole National Parks 



 

31 

that are geographically separated by more than one expected home-range diameter for the 

analysis.  

A frequently occurring problem associated with using camera traps for converting 

estimated animal abundances to densities is determining the effectively sampled area. The 

problem is typically addressed by adding a buffer around the trapping grid; the width of the 

buffer is addressed by a number of methods (see Wilson & Anderson, 1985). When radio-

telemetry information is not available, the mean maximum distance method (MMDM) (Karanth 

& Nichols, 1998; Wilson & Anderson, 1985) is widely used to add a buffer around the trapping 

grid instead of assuming geographic closure within the trapping grid to reduce bias. However, 

Soisalo & Cavalcanti (2006), in their work on jaguars (Panthera onca), point out the limitations 

of using MMDM, and suggest that density estimates based on MMDM are likely to be biased 

and inflated. With the lack of information on individual bears being trapped in the study, the 

MMDM method cannot be used in this study. The analysis in this study relies on the assumption 

of different home range sizes of sloth bears in the absence of real data. Hence, I assume these 

different assumed home range sizes as the effectively sampled areas for each scenario, without 

actually defining a buffer around the camera trap grid in each site. 

Selection of home range sizes for analysis 

Sloth bears have not been radio-collared in either Nagarahole or Bandipur National Parks. 

So information on home range sizes has to be inferred from other studies in the country. In 

Chitwan, male sloth bears occupied larger home ranges than females (Joshi, Garshelis & Smith, 

1995), which was primarily due to larger wet season ranges. Mean home ranges were 9.4 and 

14.4 km2 for females and males, respectively. Yoganand (unpublished data) observed that sloth 

bears in Panna had much larger annual home ranges (ranging from 25 – 100 km2  - 95% kernel 

estimate)  and varying sizes of seasonal ranges. 
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The diet of the sloth bears consists mostly of social insects and fruits. These are 

predominantly ground-living ants and termites that are common and found in large colonies, and 

sugar-rich fruits of commonly occurring plants that produce large fruit crops (Laurie & 

Seidensticker, 1977; Yoganand, unpublished data). Insects dominated the diet of sloth bears in 

Chitwan, both during fruiting and non-fruiting seasons (Joshi et al., 1997). In Panna, however, 

fruits dominated the diet, except during monsoons when they fed on more insects. From the two 

studies (Garshelis et al., 1999), sloth bears appear to persist in much higher densities in Chitwan 

than in Panna. The hard soil conditions in Panna may make feeding on termites nearly 

impossible during the dry season and may explain why insectivory is curtailed during this 

season. Since sloth bears in Panna show a preference for insects over fruits in the wet season, I 

presume that the protein-rich insect dominated diet is preferred over a fruit-dominated diet, 

which probably explains why sloth bears have smaller home ranges in Chitwan than in Panna. 

In relation to habitat type and rainfall characteristics, Nagarahole and Bandipur appear to 

be more similar to Chitwan than to Panna. Accordingly, with the lack of information on sloth 

bear home range sizes in Nagarahole and Bandipur National Parks, for this study, I considered 4 

home range sizes, 10 km2, 18 km2, 25 km2 and 50 km2 as options for the analysis. The fourth 

home range size, namely, 50 km2, was primarily used to study the behavior of the model and is a 

home range size that may not be realistically expected to occur in Nagarahole or Bandipur 

National Parks, at least not a home range size expected for a brief period of 15 continuous 

sampling nights.  

Constant r 

Territoriality has not been observed with sloth bears (Joshi et al., 1999; Laurie & 

Seidensticker, 1977), hence each camera trap is likely to be within more than one sloth bear’s 
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home range. Further, no measurable covariate information to model r were available, hence an 

assumption of constant r is made in this analysis.  

Capture histories for sloth bears 

Royle & Nichols (2003) suggest building up capture histories by sites based on captures 

and recaptures of the species in concern on repeated visits. Since sloth bears move widely (Joshi 

et al., 1999), it is not likely that a bear captured at a given camera trap location will be caught at 

that same location with the same probability over subsequent camera trap nights. Instead, I 

substitute the temporal replicates as suggested in Royle & Nichols (2003) with spatial replicates. 

By doing this, I assume that all bears have an equal animal-specific detection probability. In this 

arrangement, a camera-trap location is said to have detected bear presence if a bear appears in 

that location on any single trap night over all the sampling nights. A capture matrix incorporating 

such an arrangement is shown in Table 3-2.  

The total number of detections at a site i is wi.. If a bear appeared once at a camera trap 

over the period of the entire sampling period, that camera trap is said to have “detected” a bear 

and marked as ‘1’, as in the matrix (Table 3-2). 

Selection of the mass function to model abundance 

The selected study areas are protected areas and are fairly homogenous in habitat structure. 

I also know from sloth bear detections observed in 2004 and 2005 (Figures 3-3 and 3-4), that 

with the exception of one “hole” in 2005, no other holes or clusters are obvious. With a random 

spatial occurrence of detections of this nature, based on the recommendation of Royle and 

Nichols (2003) I assume a Poisson model to describe abundance. 

Parameters for the prior distribution of λ 

From Equation 2-7 in Chapter 2 

],[~ bagammaλ , where a and b are the shape and scale parameters.  
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By the properties of a gamma distribution,  

Mean = ab 
Variance = ab2   
 
From the home range information of adjacent sloth bears (Joshi et al., 1999), a maximum 

density of 6 male bears and 3 female bears were observed using a common area and each bear 

shared 50% or more of its home range area within the area of other bears. I assume that the 

degree of overlap is independent of home range size, based on the logic that sloth bear home 

ranges overlap due to the energetic costs that are involved in sustaining territoriality and the 

home range size is a function of resource distribution and abundance. Consequently, I assume 

that bear abundance per home range is invariant of home range size. I use this idea in deciding 

the shape and scale parameters for the prior gamma distribution. 

Using the information from (Joshi et al., 1999), I set the mean as 9 for the gamma 

distribution.  However, there is no prior information on the degree of variation in abundance per 

home range. While I tried various priors to evaluate the performance of the model, I include 

results from only two prior distributions, one being more informative than the other.   

Analysis of actual data 

Sloth bear home range size in the Nagarahole-Bandipur region was expected to lie within 

the range of 10-25 km2. To ensure independence between sites and incorporating these home 

range classes of this order, the analysis had to be performed with relatively low sample sizes 

(number of sites). By the simulation results from chapter 2 with low sample sizes, I chose to use 

the Bayesian approach to derive the posterior distributions of λ and r. Four home range classes 

were selected for the analysis (10 km2, 18 km2, 25 km2 and 50 km2). Although I tried various 

combinations of shape and scale parameters for the prior gamma distribution, I present the 

results from two prior distributions: 
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• Shape = 2, scale = 4.5 (relatively uninformative)  
• Shape = 4.5, scale = 2  (relatively informative) 
 

I conducted the analysis under two model settings: 

• By ensuring independence between sites. This resulted in R values of 32, 15, 13 and 8 for 
home range sizes 10 km2, 18 km2, 25 km2 and 50 km2 respectively. An example of such an 
arrangement is shown in Figure 3-5 for the 10 km2 sites.  

• By relaxing the assumption of independence between sites. Here, I assumed that the 
average abundance in each cell remains constant. This resulted in R values of 116, 79, 58 
and 35 for home range sizes 10 km2, 18 km2, 25 km2 and 50 km2 respectively. An example 
of such an arrangement is shown in Figure 3-6 for the 10 km2 sites. 

The Gibbs sampler was run 100,000 times and the first 30,000 iterations were left out in 

the calculations of the statistics, called the “burn-in period”. I checked for auto-correlation and 

thinned the results from the remaining 70,000 draws to ensure that independent and identically 

distributed (iid) draws are made for the calculations of the statistics. The analysis has been run 

on one subjective selection of sites based on assumed home range sizes. This selection is based 

on the criterion that two sites are separated by at least one home-range diameter and does 

spatially cover the area systematically. Hence, I did not consider it worthy of an effort to derive 

estimates of the two parameters with other similar selections with the expectation of similar 

results. 

Results 

Assuming independence between sites. The posterior summary statistics for the results 

by ensuring independence between sites are tabulated (Tables 3-3 and 3-4). For the two prior 

distributions (Figures 3-7 and 3-8) considered, gamma(2, 4.5) has a mean of 9 and a standard 

deviation of 6.364 while gamma(4.5, 2) has a mean of 9 and a standard deviation of 4.243. 

The mean estimates of animal-specific detection probabilities are considerably low 

(between 0.0377 to 0.1055). The posterior standard deviations for the estimates of either r or λ in 

an analysis for a given year did not vary by much. There is a reduction in the variability of the 
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estimates in the posterior standard deviation in comparing it with the prior standard deviation. 

The estimates of posterior means of λ did not differ by much for the different home range 

assumptions.  

Relaxing site independence and instead assuming that the average abundance at     

each site remains a constant. The posterior summary statistics for the results by ensuring 

independence between sites are tabulated (Tables 3-5 and 3-6). The mean estimates of animal-

specific detection probabilities were still low (between 0.038 to 0.122). The posterior means of λ 

in 2005 for the home range sizes of 25 km2 and 50 km2 were lower than the posterior means of λ 

in 2004. However, the mean values of λ were influenced by the prior distributions. 

Conclusions and Discussion 

From these results it is clear that the increase in the number of sites has little effect on the 

variability of the parameter estimates. By increasing the home range sizes, more spatial 

replicates were added to each site for analysis and there was a reduction in the number of 

available sites for analysis. This trade-off is perhaps the largest cause for the less variability in 

the parameter estimates. After relaxing the assumption that animals detected in one site will not 

be detected in another site, and instead making the assumption that the abundance at each site at 

any given point remains a constant irrespective of immigration or emigration to or from the site, 

the estimate of the animal-specific detection probability is still very low.   Placing more traps per 

site and placing them in higher probability locations (e.g., near termite mounds or even placing 

baits to attract bears) may change r to values to provide better estimates of λ. As an alternative, 

other data gathering tools such as sign encounter surveys in some conditions may serve as better 

techniques to improve r. 

The results from Tables 3-3 to 3-6 may not be indicative enough to derive abundance 

estimates. However, in the year 2004, with an assumption of an 18 km2 home range size, the 
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highest animal-specific detection probability (0.122 ± 0.061) was derived and the estimate of λ 

as 4.16 ± 2.74. The mean value of estimate of λ was quite distant from the prior mean. This 

result was derived after using the relatively uninformed prior distribution indicating a more data 

driven posterior distribution for this result.    

My data show that on only few cases (<10%) did a camera trap that detected a bear on 

one sampling night detect a bear subsequently in the remaining nights. So, using temporal 

replicates, as suggested in Royle and Nichols (2003) for sloth bears, is not likely to change the 

results by much. Further, in using temporal replicates instead of spatial replicates the number of 

traps per cell either has to be maintained as a constant (which has not been the case as per this 

study design) or an additional parameter to model r must be introduced to deal with the problem 

of having unequal number of traps placed in different cells.  

Prior to determining abundances of animals, especially animals that move fairly widely 

relative to the size of the site defined, basic information regarding the home range size of the 

animal, daily movement pattern and other behavioral aspects such as feeding behavior and 

habitat utilization in a particular region of interest will provide invaluable information in 

designing a study to monitor their abundance. For a widely distributed species such as the sloth 

bear, it is expected that the above mentioned variables are likely to be quite different in different 

habitats, as already seen in Panna and Chitwan. Both, from the perspective of identifying high 

probability sites for sloth bear captures on the field and by having to deal with the model 

assumptions, information on the above parameters are vital.   

The Bayesian approach will be particularly useful from a long term monitoring 

perspective. If sampling is repeated over multiple years during the same season, the posterior 
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distribution of one year may serve as the prior distribution for the subsequent year making the 

estimates of abundance more accurate progressively.  

Since, sloth bears are not likely to exist in numbers greater than 20 animals per home range 

area, incorporating Royle and Nichols (2003) model into estimating occupancy rate (MacKenzie 

et al., 2002) of sloth bears may be necessary. For a reasonable animal-specific detection 

probability r, between 0.2 and 0.8, a great variation in the site-specific detection probability is 

reflected for a range of abundances between 0 and 30. When the values of abundance are very 

high (>30), the site-specific detection probability is less sensitive to the changes in abundance. I 

recommend the use of the Royle and Nichols (2003) model to address any issue with respect to 

occupancy of sloth bears as compared to the MacKenzie et al. (2002) model which implicitly 

assumes that sites have a constant or nearly constant abundance. 
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Table 3-1. Sampling effort at each camera trap location.  
 Number of sampling occasions per trap site 
Sites Year 2004 Year 2005 
Nagarahole 10 15 
Bandipur 13 15 

 

 
Table 3-2. An example capture matrix for sloth bear detections 
  

 
Camera traps in a site 

Total 
number of 
detections 

Sites 1 2 3 4 5 6 wi. 
Site 1 0 1 0 0 1 0 2 
Site 2 1 1 0 0 0 1 3 
 

 

 

 

 

 

 

 

 



 

 

40

Table 3-3. Posterior summary statistics by ensuring independence between sites with prior distribution for λ~Gamma(2, 4.5) 
Year 2004 Year 2005  

Home 
range 
sizes (in 
km2) 

 
 
Posterior 
mean of r 

 
Posterior 
standard 
deviation of r 

 
 
Posterior 
mean of λ 

Posterior 
standard 
deviation of 
λ 

 
 
Posterior 
mean of r 

 
Posterior 
standard 
deviation of r 

 
 
Posterior 
mean of λ 

Posterior 
standard 
deviation of 
λ 

10 0.1055 0.0681 6.0967 4.2567 0.0748 0.0545 6.1131 4.6529 
18 0.0854 0.0582 5.7517 4.4398 0.0487 0.0356 7.2965 5.0511 
25 0.0830 0.0557 6.2497 4.4459 0.0771 0.0548 5.8449 4.2864 
50 0.0710 0.0461 8.6492 5.2951 0.0476 0.0330 6.8824 4.6002 
 
 
Table 3-4.  Posterior summary statistics by ensuring independence between sites with prior distribution for λ~Gamma(4.5, 2) 

Year 2004 Year 2005  
Home 
range 
sizes (in 
km2) 

 
 
Posterior 
mean of r 

 
Posterior 
standard 
deviation of r 

 
 
Posterior 
mean of λ 

Posterior 
standard 
deviation of 
λ 

 
 
Posterior 
mean of r 

 
Posterior 
standard 
deviation of r 

 
 
Posterior 
mean of λ 

Posterior 
standard 
deviation of 
λ 

10 0.0806 0.0463 7.0333 3.5023 0.0538 0.0330 6.9798 3.6714 
18 0.0603 0.0382 6.9837 3.7051 0.0408 0.0237 7.3616 3.6405 
25 0.0652 0.0381 6.9894 3.7199 0.0537 0.0345 7.1341 3.5928 
50 0.0631 0.0340 8.6509 3.7132 0.0377 0.0222 7.5661 3.6745 
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Table 3-5. Posterior summary statistics (relaxing site independence) with prior distribution for λ~Gamma(2, 4.5) 
Year 2004 Year 2005  

Home 
range 
sizes (in 
km2) 

 
 
Posterior 
mean of r 

 
Posterior 
standard 
deviation of r 

 
 
Posterior 
mean of λ 

Posterior 
standard 
deviation of 
λ 

 
 
Posterior 
mean of r 

 
Posterior 
standard 
deviation of r 

 
 
Posterior 
mean of λ 

Posterior 
standard 
deviation of 
λ 

10 0.10134 0.06130 5.18893 3.65330 0.06243 0.04432 5.92929 4.75334 
18 0.12290 0.06185 4.16892 2.74911 0.04822 0.03282 6.74578 4.23767 
25 0.06889 0.03957 7.37141 4.57556 0.10504 0.04627 2.77987 1.64058 
50 0.05298 0.03016 9.10935 5.33008 0.10094 0.05411 3.27652 2.69101 
 
 
Table 3-6. Posterior summary statistics (relaxing site independence) with prior distribution for λ~Gamma(4.5, 2) 

Year 2004 Year 2005  
Home 
range 
sizes (in 
km2) 

 
 
Posterior 
mean of r 

 
Posterior 
standard 
deviation of r 

 
 
Posterior 
mean of λ 

Posterior 
standard 
deviation of 
λ 

 
 
Posterior 
mean of r 

 
Posterior 
standard 
deviation of r 

 
 
Posterior 
mean of λ 

Posterior 
standard 
deviation of 
λ 

10 0.07188 0.04074 6.48642 3.32368 0.04810 0.03153 6.40936 3.43146 
18 0.08380 0.04603 5.92916 3.15890 0.03891 0.02290 7.57562 3.96615 
25 0.05990 0.02927 7.54454 3.41925 0.07087 0.03607 4.29506 2.35607 
50 0.05120 0.02340 8.42673 3.61803 0.06201 0.03840 5.16315 3.09212 
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Figure 3-1. Map of the study area comprising of the Bandipur and Nagarahole National Parks.  

 
 

 

Figure 3-2. A sloth bear photograph taken from a camera trap. 
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Figure 3-3. Sloth bear detections (year 2004) are shown with black (dark) dots. The other dots 

represent camera traps that did not detect sloth bears. 

 

 
Figure 3-4. Sloth bear detections (year 2005) are shown with black (dark) dots. The other dots 

represent camera traps that did not detect sloth bears. 
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Figure 3-5. A selection of 10 km2 sites using ArcView 3.2 GIS software. The dots within each 

site are the camera traps used for analysis. Similar selections were made for 18 km2, 
25 km2 and 50 km2 sites.  

 

 
Figure 3-6. An example random grid generated using ArcView 3.2 software with cell size of 10 

km2. Here each cell containing camera traps were used in the analysis. Similar grids 
for 18 km2, 25 km2 and 50 km2 cell sizes were generated. 
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Figure 3-7. Gamma(2, 4.5) prior distribution   
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    Figure 3-8. Gamma(4.5, 2) prior distribution 
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CHAPTER 4 
CONCLUSIONS AND DISCUSSION 

Animal abundance is a very important parameter from a wildlife management perspective. 

However, most estimation methods require very large sample sizes to obtain reliable estimates of 

abundance and seldom does such information help for a wildlife manager. The progressively 

subjective nature of Bayesian approaches at abundance estimation can to some extent be more 

informative to the wildlife manager (Stow, Carpenter & Cottingham, 1995). Such approaches do 

facilitate this process of updating parameter estimates on improved prior beliefs and will help 

wildlife managers use such approaches more effectively in monitoring animal populations 

(Hilborn and Mangel, 1997).   

The simulation results from my study show that the Royle and Nichols (2003) can still be a 

valuable tool for determining abundance, specially since it is relatively inexpensive to obtain 

presence-absence data from sites. The data gathered from my study on sloth bears were 

insufficient for good estimates of animal abundance. However, improving the quality of field 

data in terms of improving r will go a long way in making this model more useful for 

determining sloth bear abundance.   
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