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“The bears are yet too numerous; they are a strong creature and prey on fruits of the
country.” William Bartram commenting on the abundance of black bears during his trip
through Florida (1773-74).
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CONSERVATION GENETICS OF THE FLORIDA BLACK BEAR
By
Jeremy Douglas Dixon
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Chair: Madan K. Oli
Major Department: Natural Resources and Environment

Habitat loss and fragmentation can influence the genetic structure of biological
populations. I studied the genetic consequences of historical and contemporary patterns
of habitat fragmentation in nine Florida black bear (Ursus americanus floridanus)
populations. A total of 305 bears from nine populations was genotyped for 12
microsatellite loci to characterize genetic variation and structure. None of the nine
populations deviated from Hardy-Weinberg equilibrium. Genetic variation, quantified by
mean expected heterozygosity (Hg), ranged from 0.27—0.71, and was substantially lower
in smaller populations. Low levels of gene flow (global Fst = 0.227; global Rgr = 0.249)
and high values of the likelihood ratio genetic distance (average D g = 16.255) suggest
that fragmentation of once-contiguous habitat has resulted in genetically distinct
populations. There was no isolation-by-distance relationship among Florida black bear
populations. Barriers such as roads, cities, and residential areas limit the dispersal
capabilities of black bears in Florida, thereby reducing the probability of gene flow
among populations. Regional corridors or translocation of bears may be needed to

restore historical levels of genetic variation.
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Corridors have been suggested to mitigate the adverse effects of habitat
fragmentation, by restoring or maintaining connectivity among once-contiguous
populations. However, the role of corridors for large carnivores has rarely been
evaluated objectively. I used non-invasive sampling, microsatellite analysis, and
population-assignment tests to evaluate the effectiveness of a regional corridor
(Osceola-Ocala corridor) in connecting two Florida black bear populations. I sampled 31
bears (28 males, 3 females) within the corridor. Because bear dispersal is male-biased,
the gender disparity suggests that the Osceola-Ocala corridor functions as a conduit for
dispersal and other seasonal movements. Of the 31 bears sampled in the Osceola-Ocala
corridor, 28 had genotypes that were assigned to the Ocala population. I found a mostly
unidirectional pattern of movement from Ocala, with a limited mixing of Ocala-assigned
individuals with Osceola-assigned individuals in one area of the corridor. I also
documented the presence of bears in Osceola assigned to Ocala, and the presence of bears
in Osceola that may be Osceola-Ocala hybrids. My results indicate that the
Osceola-Ocala corridor provides a conduit for gene flow between these populations.
However, residential and industrial development and highways may reduce movements
of bears within the Osceola-Ocala corridor. The methods used here may provide a means
of evaluating corridor effectiveness, and identifying gaps in connectivity. Regional
corridors should be reestablished or maintained where such connectivity occurred in the
recent past, to increase the viability of populations, and maintain metapopulation

structure.
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CHAPTER 1
INTRODUCTION

Habitat fragmentation and loss is one of the greatest threats to the conservation of
biodiversity in the world (Harris 1984; Meffe & Carroll 1997). The effect of habitat
fragmentation on animal populations can have several demographic and genetic
consequences. The reduction of population size and connectivity can create conditions
where genetic variation is lost at a rapid rate. The loss of genetic variation within
populations may lead to inbreeding depression, a reduction in evolutionary potential, and
greater extinction probability (Frankham et al. 2002).

The most serious threat to the continued existence of the Florida black bear (Ursus
americanus floridanus) is fragmentation and loss of habitat (Wesley 1991; Hellgren &
Maehr 1993; Hellgren & Vaughan 1994). Habitat fragmentation and loss is driven by
human population growth. An estimated 16.3 million people lived in Florida in 2001.
This number is projected to increase to more than 20 million by 2015 (US Census 2000).
Roads, and agricultural, commercial and residential developments continue to encroach
on (and further degrade) remaining black bear habitat. The distribution of the Florida
black bear has been reduced by 83% from its historic distribution (Wooding 1993).
Currently, Florida black bears occur in several populations, mostly restricted within the
state of Florida (Appendix A) (Pelton & Van Manen 1997).

The reduction of size and connectivity of populations has caused concern regarding
the genetic health of Florida black bears. Most extant Florida black bear populations are

small compared to historic size, and are relatively isolated. Theory suggests that small,



isolated populations are at a higher risk of extinction than large, well-connected
populations (Frankham 1995; Meffe & Carroll 1997; Ebert et al. 2002; Frankham et al.
2002). Because Florida black bear populations are fragmented from their original
relatively contiguous distribution, the level of gene flow among populations may be
important in maintaining levels of genetic variation and evolutionary potential of Florida
black bears.

Although aspects of the population genetics of the Florida black bear have been
investigated previously (Warrilow et al. 2001; Dobey 2002; Edwards 2002) using
microsatellite analyses (Appendix B), these studies did not provide estimates of gene
flow among populations, or provide data on the genetic consequences of habitat
fragmentation and loss on Florida black bear populations. Little is known about the level
of genetic variation within (or gene flow among) populations of the Florida black bear.

It has been suggested that fragmented populations are best managed as a
metapopulation, where local populations are functionally connected with corridors that
facilitate movement. The large home ranges and long-distance dispersal capabilities of
black bears have been used as a rationale for implementation of corridors among
populations (Hellgren & Vaughan 1994; Bowker & Jacobson 1995; Hoctor et al. 2000).
The Osceola-Ocala corridor has been suggested as the best option in connecting any two
of the populations of Florida black bear. However, the efficacy of this corridor or other
corridors for large carnivores is relatively unknown.

Objectives

The objectives of my study were to investigate genetic variation and gene flow
among Florida black bear populations, and to objectively evaluate the functionality of the

Osceola-Ocala corridor in facilitating demographic and genetic connectivity. Chapter 2



discusses the effects of population size on within-population genetic variability, estimates
levels of gene flow among populations, and examines relationships among measures of
genetic differentiation and geographic distances between pairs of populations. Chapter 3
discusses the effectiveness of a regional corridor in connecting two Florida black bear
populations using non-invasive genetic sampling and recently developed
population-assignment tests.

Taken together, these chapters provide much-needed data on the genetic variation
within (and gene flow among) populations of the Florida black bear; and an objective
evaluation of the functionality of the Osceola-Ocala corridor. These data are expected to
be important for the formulation and implementation of a management plan to ensure

long-term persistence of Florida black bear populations.



CHAPTER 2
GENETIC CONSEQUENCES OF HABITAT FRAGMENTATION AND LOSS

Introduction

Fragmentation and loss of habitat is one of the most serious problems facing the
conservation of biodiversity worldwide (Harris 1984; Meffe & Carroll 1997). Habitat
fragmentation can increase mortality rates (Jules 1998), reduce abundance (Flather &
Bevers 2002), alter movement patterns (Brooker & Brooker 2002), and disrupt the social
structure of populations (Ims & Andreassen 1999; Cale 2003); and may reduce the
probability of persistence (Harrison & Bruna 1999; Davies et al. 2001). Additionally,
habitat fragmentation can influence genetic structure and persistence of populations in
several ways. First, isolation and reduction of populations can decrease genetic variation
(Hudson et al. 2000; Kuehn et al. 2003), which may reduce the ability of individuals to
adapt to a changing environment, cause inbreeding depression (Ebert et al. 2002), reduce
survival and reproduction (Frankham 1995; Reed & Frankham 2003), and increase the
probability of extinction (Saccheri et al. 1998; Westemeier et al. 1998). Secondly, habitat
fragmentation can create dispersal barriers, which can deter gene flow (Hitchings &
Beebee 1997; Gerlach & Musolf 2000) or otherwise alter genetic structure of the
population (Hale et al. 2001). Thus, efforts to conserve plant and animal populations
should take into account the genetic consequences of habitat fragmentation.

Large mammalian carnivores are particularly vulnerable to habitat loss and
fragmentation because of their relatively low numbers, large home ranges, and

interactions with humans (Noss et al. 1996; Crooks 2002). The Florida panther (Puma



concolor coryi) and giant panda (4iluropoda melanoleuca) are examples of large
carnivores that were reduced to small numbers largely because of impacts of habitat
fragmentation and loss (Roelke et al. 1993; Lu et al. 2001). Another large carnivore that
has been negatively impacted by habitat fragmentation is the Florida black bear (Ursus
americanus floridanus) (Hellgren & Maehr 1993).

The Florida black bear historically roamed throughout the peninsula of Florida and
southern portions of Georgia, Alabama, and Mississippi (Brady & Maehr 1985). From
the 1800s to the 1970s, numbers of Florida black bears were significantly reduced by loss
and fragmentation of habitat, and unregulated hunting (Cory 1896; Hendry et al. 1982).
Only an estimated 300 to 500 bears were left in the state of Florida in the 1970s
(McDaniel 1974; Brady & Maehr 1985). Consequently, the Florida Game and
Freshwater Fish Commission classified the Florida black bear as a threatened species in
most Florida counties, in 1974 (Wooding 1993). Destruction and fragmentation of
once-contiguous habitat has reduced the distribution of Florida black bears to nine areas:
Eglin (EG), Apalachicola (AP), Aucilla (AU), Osceola (OS), Ocala (OC), St. Johns (SJ),
Chassahowitzka (CH), Glades/Highlands (GH), and Big Cypress (BC) (Fig. 1).
Fragmentation of populations can reduce genetic variation (Sherwin & Moritz 2000) and
increase the probability of extinction (Saccheri et al. 1998; Westemeier et al. 1998), but
the genetic consequences of the historical and contemporary patterns of habitat
fragmentation on Florida black bear populations are unknown. Using microsatellite
analyses, my goal was to investigate the genetic consequences of habitat fragmentation
on Florida black bear populations. My specific objectives were to estimate

within-population genetic variation, and investigate the level of genetic differentiation



among Florida black bear populations. Theory predicts a positive correlation between
genetic variation and population size (Frankham 1996), and between genetic
differentiation and geographic distance among populations (Slatkin 1993). Thus, I tested
these predictions by examining the relationship between measures of genetic variation
and recent estimates of population size, and between measures of genetic differentiation

and geographic distances among populations.
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Figure 1. Distribution of black bears in Florida: Eglin (EG), Apalachicola (AP), Aucilla
(AU), Osceola (OS), Ocala (OC), St. Johns (SJ), Chassahowitzka (CH),
Highlands/Glades (HG), and Big Cypress (BC). The distribution map was
compiled by the Florida Fish and Wildlife Conservation Commission.

Methods
Sample Collection
Hair and tissue samples from individual bears were collected from each of the nine
Florida black bear populations during 1989-2003. Most samples were collected from
field studies, some using non-invasive techniques (Woods et al. 1999); but samples also
were collected from translocated animals, and from bears killed on roadways. Hair and

tissue samples were sent to Wildlife Genetics International (Nelson, British Columbia,



Canada) (www.wildlifegenetics.ca/) for microsatellite analysis. DNA was extracted
using QIAGEN’s DNeasy Tissue kits (Valencia, California), as per QTAGEN's
instructions (http://www.qiagen.com/ literature/genomlit.asp); and microsatellite loci
were amplified using polymearse chain reaction (PCR). Each individual was genotyped
for 12 microsatellite loci (G1A, G10B, G10C, G1D, GI10L, G10M, G10P, G10X, G10H,
MUS50, MUS59, and G10J). Laboratory methods used in my study are described in detail
by Paetkau et al. (1995, 1998a, 1998b, 1999) and Paetkau & Strobeck (1994).

Statistical Analyses

Departures from Hardy-Weinberg equilibrium (HWE) were tested using the HWE
probability test in Genepop 3.4 (Raymond & Rousset 1995). Exact p-values were
computed using the complete enumeration method for loci with fewer than four alleles
(Louis & Dempster 1987), and the Markov chain method (dememorization 1,000; batches
100; iterations per batch 1,000) for loci with more than four alleles (Guo & Thompson
1992). Using this same program, linkage-disequilibrium tests were used to test for
nonrandom associations among alleles of different loci, using the Markov chain method.

Within each bear population, genetic variation was measured as the observed
average heterozygosity (Hp), expected average heterozygosity (Hg), and the average
number of alleles per locus (4). Spearman’s rank correlation was used to test for the
correlation between genetic variation and estimated population size. To characterize
nonrandom mating within populations, Fis was calculated according to Weir &
Cockerham (1984) in Genepop 3.4 (Raymond & Rousset 1995). Global estimates (across
all populations) of Fis, Fit (characterizes nonrandom mating within populations and
genetic differentiation among populations), and Fsr (characterizes genetic differentiation

among populations) were also calculated using these methods.
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Genetic differentiation among populations was estimated using Genepop 3.4
(Raymond & Rousset 1995) with pairwise Fst (Weir & Cockerham 1984) and pairwise
Rsr (Michalakis & Excoffier 1996). The Rgr was estimated because microsatellites are
thought to conform to the stepwise-mutational model better than to the infinite-alleles
model on which Fgr is based (Slatkin 1995). The significance of population
differentiation was tested using the genic differentiation test in Genepop 3.4 (Raymond &
Rousset 1995). The likelihood ratio genetic distance, Dy r (Paetkau et al. 1995) was
estimated for each pair of populations using the Doh assignment calculator from the
website, http://www2.biology.ualberta.ca/jbrzusto/ Doh.php. This genetic distance is
based on the ratio of genotype likelihoods between pairs of populations. The software
program Phylip 3.5¢ (Felsenstein 1993) and the subprogram FITCH (Fitch & Margolia
1967) were used to generate an unrooted phylogenetic tree, with branch lengths
corresponding to Dy g values.

Geographic distances among populations were estimated as the shortest land
distance between population centroids using least-cost path analysis in ArcGIS 8.1.2
(McCoy & Johnston 2000). Centroids were estimated as the harmonic mean of the
sample collection locations in each study site. The subprogram ISOLDE in Genepop 3.4
(Raymond & Rousset 1995) was used to test for a relationship between geographic
distances, and Fsr, Rgt, and Dig values. Statistical significance of these relationships
was tested using a Mantel (1967) test with 10,000 permutations.

Results

A total of 305 individual bears was genotyped for 12 microsatellite loci in nine
Florida black bear populations (Table 1). There were no significant departures from

HWE for any locus or population (p > 0.05). The linkage disequilibrium test indicated


http://www2.biology.ualberta.ca/jbrzusto/Doh.php

that only 15% of loci pairings had significant nonrandom associations (p < 0.05). Loci
used in this analysis were found to be independent (D. Paetkau, pers. comm.). Thus, any
significant linkage observed among loci pairs may be a result of nonrandom mating,
sampling bias, recent admixture, or genetic drift (Frankham et al. 2002).

The population with the highest mean number of alleles per locus (4) was Osceola
(mean £ 1SE; 6.667 + 0.225); whereas Chassahowitzka had the lowest value
(2.250 + 0.179). Observed average heterozygosity (Hp) ranged from 0.287 + 0.058 in
Chassahowitzka to 0.705 + 0.030 in Osceola. Similarly, expected average heterozygosity
(Hg) ranged from 0.271 + 0.054 in Chassahowitzka to 0.713 + 0.027 in Osceola
(Table 1). Estimated population sizes ranged from 20 in Chassahowitzka to 830 in
Osceola (Kasbohm & Bentzein 1998; Machr et al. 2001; Florida Fish and Wildlife
Conservation Commission (FWC), unpublished data). All three measures of genetic
variation were positively correlated with estimated population size (4: ry = 0.845,

p=0.004; Hp: 1s=0.778, p = 0.014; Hg: 1, =0.728, p = 0.026) (Fig. 2).

Table 1. Measures of genetic variation (mean + 1 SE) at 12 microsatellite loci in nine
Florida black bear populations (sample sizes are in parentheses). Measures of
genetic variation are: observed average heterozygosity (Hp), expected average
heterozygosity (Hg), and mean alleles per locus (4). Values of Fis (a measure
of nonrandom mating within populations) + 1 SE are also given.

Population Ho Hg A Fig

Apalachicola (38) 0.686 + 0.036 0.706 +0.031 5.92+0.358 0.027 +0.025
Aucilla (9) 0.556 +£0.063 0.616+0.054 3.83+0.322 0.097 + 0.062
Big Cypress (41) 0.642 +0.036 0.650+0.026 5.50+0.435 0.013+0.034
Chassahowitzka (29) 0.287+0.058 0.271 +0.054 2.25+0.179 -0.057 +0.028
Eglin (40) 0.613+0.071 0.537+0.062 4.08+0.379 -0.141 +0.024
Highlands/Glades (27)  0.327 +0.049 0.385+0.051 2.75+0.250 0.149 + 0.059
Ocala (40) 0.579+0.045 0.610+0.045 4.75+0.305 0.051 +£0.024
Osceola (41) 0.705+0.030 0.713+0.027 6.67+0.225 0.010 + 0.033
St. Johns (40) 0.650 + 0.048 0.663 +0.041 5.58+0.379 0.020 + 0.028
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Figure 2. Relationship between estimated population size (N) and measures of genetic
variation (mean = 1 SE) in nine Florida black bear populations. A) N and
Observed average heterozygosity (Hop), B) N and Expected average
heterozygosity (Hg), and C) N and Average alleles per locus (4). Curves were
fitted using a sigmoid 4-parameter regression in Sigmaplot.
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Fisranged from -0.141 + 0.024 in Eglin to 0.149 + 0.059 in Highlands/Glades
(Table 1). These results give evidence of random mating within these populations. The
global estimate of Fis was 0.010 and the global estimate of Fir was 0.235. The relatively
high Fir values encompass relatively insubstantial effects of mating between close
relatives within populations; and also the extensive effects of restricted gene flow among
the populations (Hartl & Clark 1997).

Global Fsr, the measure of population subdivision across all populations, was
0.227. Estimates of Fgr ranged from 0.009 to 0.574 and Rgr ranged from 0.010 to 0.629.
The pairwise comparisons between Ocala and St. Johns had highest levels of gene flow
whereas Highlands/Glades and Chassahowitzka had the lowest levels of gene flow
(Table 2). All tests of genic differentiation among populations were highly significant
(p <0.001).

Table 2. Pairwise Fsr (below diagonal) and Rgr (above diagonal) estimates for nine

Florida black bear populations (standard errors are in parentheses).
Populations are: Apalachicola (AP), Aucilla (AU), Big Cypress (BC),
Chassahowitzka (CH), Eglin (EG), Highlands/Glades (HG), Ocala (OC),
Osceola (OS), and St. Johns (SJ). Fig. 1 contains the geographic locations of
these populations.

AP

AU

BC

CH

EG

HG

OoC

oS

SJ

AP

0.1223
(+0.019)
0.1379
(+0.026)
0.3609
(+0.041)
0.1653
(+0.029)
0.2972
(+0.038)
0.1617
(+0.030)
0.1167
(+0.022)
SJ | 0.1419
(+0.033)

AU
BC
CH
EG
HG
oC
oS

0.0546
(+0.034)

0.2010
(+0.018)
0.4449
(+0.061)
0.1961
(+0.026)
0.3841
(+0.064)
0.1960
(+0.036)
0.1463
(+0.023)
0.1790
(+0.042)

0.1356
(+0.034)
0.2073
(+0.053)

0.3748
(+0.046)
0.2348
(+0.032)
0.2431
(+0.038)
0.1360
(+0.029)
0.1277
(+0.032)
0.1212
(+0.018)

0.3427
(+0.067)
0.5953
(+0.101)
0.3342
(+0.074)

0.4846
(+0.065)
0.5737
(+0.064)
0.3906
(+0.067)
0.3483
(+0.049)
0.3585
(+0.052)

0.1572
(+0.063)
0.1946
(+0.066)
0.3026
(+0.073)
0.5472
(+0.087)

0.4000
(+0.068)
0.2299
(+0.034)
0.1792
(+0.032)
0.2240
(+0.035)

0.4197
(+0.046)
0.4966
(+0.097)
0.2435
(+0.062)
0.6292
(+0.075)
0.5176
(+0.088)

0.2707
(+0.035)
0.3050
(+0.036)
0.2232
(+0.036)

0.2017
(+0.050)
0.2348
(+0.065)
0.1053
(+0.050)
0.3723
(+0.087)
0.2847
(+0.071)
0.2269
(+0.056)

0.1062
(+0.029)
0.0099
(+0.005)

0.0727
(+0.044)
0.1388
(+0.054)
0.1422
(+0.051)
0.3443
(+0.078)
0.1477
(+0.055)
0.3787
(+0.050)
0.0842
(+0.014)

0.0942
(+0.028)

0.2225
(+0.049)
0.2714
(+0.062)
0.0848
(+0.037)
0.3449
(+0.061)
0.3207
(+0.073)
0.1576
(+0.049)
0.0101
(+0.029)
0.1351
(+0.042)
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An unrooted phylogenetic tree based on Dy values suggested that the Ocala and
St. Johns populations were closely related, whereas Chassahowitzka, Highlands/Glades,
and Eglin were the most divergent of all the populations (Fig. 3). There was no
significant relationship between geographic distance and measures of genetic

differentiation [Fst (p = 0.211), Rgr (p = 0.104), or Dir (p = 0.073)].

CH

HG

Figure 3. An unrooted phylogenetic tree depicting the genetic relationships among
Florida black bear populations. Branch lengths correspond to the likelihood
ratio genetic distance, Dy r. Populations are: Eglin (EG), Apalachicola (AP),
Aucilla (AU), Osceola (OS), Ocala (OC), St. Johns (SJ), Chassahowitzka
(CH), Highlands/Glades (HG), and Big Cypress (BC).
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Discussion
Genetic Variation

Habitat fragmentation can reduce genetic variation, which can adversely influence
fitness [e.g., the Florida panther (Roelke et al. 1993) and lion (Panthera leo)], increase
susceptibility to disease [e.g., cheetah (Acinonyx jubatus) (O'Brien et al. 1994)], and
decrease population viability (Sherwin & Moritz 2000). Habitat fragmentation and
hunting are thought to be responsible for losses in genetic variation in wolverines (Gulo
gulo) (Kyle & Strobeck 2001), lynx (Lynx lynx) (Spong & Hellborg 2002), mountain
lions (Puma concolor) (Ernest et al. 2003), Ethiopian wolves (Canis simenesis) (Gottelli
et al. 1994) and brown bears (U. arctos) (Miller & Waits 2003). Large carnivores may be
much more susceptible than other taxa to losses in genetic variation due to habitat
fragmentation because of their large home ranges and low population densities (Paetkau
& Strobeck 1994).

The measures of genetic variation reported for most Florida black bear populations
were within the range of other populations of bears using 8 of the same microsatellite loci
(Waits et al. 2000) . However, genetic variation in Chassahowitzka and
Highlands/Glades are among the lowest reported for any bear population (Appendix C,
Table 4). The three measures of genetic variation for Florida black bear populations were
positively correlated with population size. Chassahowitzka was characterized by a small
population size, and accordingly, this population had the lowest level of genetic diversity.
Osceola was characterized by a large population size because of its connection with the
Okefenokee National Wildlife Refuge, and had the highest levels of genetic diversity.

Presumably, the effects of genetic drift on loss of genetic variation are much greater in
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Chassahowitzka and Highlands/Glades because of small population sizes, whereas the
effects of genetic drift are not as substantial in the larger populations.

One of the only bear populations that have a reported genetic variation lower than
Chassahowitzka is that of brown bears on Kodiak Island, Alaska. Kodiak bears have
remained isolated from the mainland brown bear populations for >10,000 years (Paetkau
et al. 1998b). The Chassahowitzka and Highlands/Glades populations are thought to
have remained isolated from other Florida black bear populations for a longer period than
any other Florida black bear populations. The isolation of these populations is
remarkable because it has resulted in the substantial loss of genetic variation that has
occurred in presumably < 100 years.

The declines in local abundance and genetic variability of Chassahowitzka and
Highlands/Glades bear populations raise the possibility that inbreeding depression could
reduce fitness, survival, and evolutionary potential (Reed & Frankham 2003), and that
these populations may face an increased risk of local extinction (Frankham 1995; Ebert et
al. 2002). Although not within these populations, some characteristic signs of inbreeding
depression were observed in Florida black bears in the western panhandle of Florida
(Dunbar et al. 1996) and southern Alabama (Kasbohm & Bentzien 1998). However, low
Fis values and lack of deviations from Hardy-Weinberg Equilibrium suggest that random
mating is operating within studied populations of the Florida black bear.

Genetic Structure

The tests of genetic differentiation, Fst, Rst, and Dy indicated that there was
extensive differentiation among Florida black bear populations. This differentiation was
most evident with pairwise comparisons of Chassahowitzka, Highlands/Glades, or Eglin

with any other population. The high rate of genetic drift within these populations most
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likely contributed to the extensive genetic differentiation among populations. The level
of genetic differentiation between Florida black bear populations was substantially
greater than between other large carnivore populations (e.g., bears: (Paetkau et al. 1997),
the Asian black bear [U. thibetanus]: (Saitoh et al. 2001), mountain lions: (Ernest et al.
2003) wolverines: (Kyle & Strobeck 2001; Walker et al. 2001) and lynx: (Hellborg et al.
2002; Schwartz et al. 2002).

The global estimate of Fsr, the measure of population subdivision across all
populations, was 0.227. This degree of subdivision is expected if there are on average
0.85 successful migrants [Nm = (1/Fst-1)/4] entering each population per generation
(approximately 8 years for black bears) assuming an island model of migration
(Frankham et al. 2002). Therefore, on average, across all Florida black bear populations,
there is one successful migrant every 10 years, a relatively low level of gene flow.

There have been dozens of bear translocations among populations due to
management activities during the last 20 years (T. Eason, pers. comm.). Due to the
relatively recent history of these artificial movements, it is unknown what effects they
will have on the genetic structure of these populations. Some studies suggest that most
translocations of carnivores are unsuccessful, and probably do not contribute to the gene
pool of the population in which they were released (Linnell et al. 1997).

In large natural populations occupying a mostly contiguous habitat, a pattern of
isolation by distance is expected (Wright 1931). This relationship has been reported for
other bear populations (Paetkau et al. 1997). However, there was no relationship between
geographic distance and measures of genetic differentiation among Florida black bear

populations. However, nearly significant relationships of pairwise Rgr and Dir values
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with geographic distances suggest that exclusion of values associated with small
populations (i.e., Chassahowitzka and Highlands/Glades) may generate a significant
isolation-by-distance relationship among “larger” populations of Florida black bears.
Interestingly, two pairs of populations separated by comparable geographic distances
(Ocala-St. Johns and Apalachicola-Aucilla) had very different Fsr values, 0.009 and
0.122 respectively, suggesting that there is a high level of gene flow between Ocala and
St. Johns, but not between Apalachicola and Aucilla.

The genetic differentiation among Florida black bears was substantial, although the
average distance between nearest neighboring populations (134 km) is within the
dispersal capabilities of black bears (Rogers 1987; Maehr et al. 1988). Dispersal of bears
is sex-biased, and males typically disperse farther than females, who tend to establish
home ranges near their mother’s home range (Rogers 1987; Schwartz & Franzmann
1992). It has been suggested that dispersing black bears may be able to maintain
connectivity among populations even when populations are fragmented (Noss et al. 1996;
Maehr et al. 2001). Why, then, was there such a high level of genetic differentiation
among Florida black bear populations? Furthermore, why did I fail to find
isolation-by-distance relationship in Florida black bears, which has been reported for
other black bear populations occupying contiguous habitat? I suggest that the substantial
genetic differentiation and the lack of isolation-by-distance relationship among Florida
black bear populations is primarily due to the reduction of bear numbers by habitat
fragmentation, and by human-made barriers to dispersal.

The presence of natural barriers, such as mountain ranges or large rivers, has

historically determined the limits of species distribution (Chesser 1983). Habitat
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fragmentation in the form of anthropogenic barriers such as roads or other human
development can further limit species distribution and gene flow (Mader 1984). The
separation of populations with roads reduced the level of gene flow in the moor frog
(Rana arvalis) (Vos et al. 2001), ground beetle (Carabus violaceus) (Keller & Largiader
2003), and bank vole (Clethrionomys glareolus) (Gerlach & Musolf 2000). Additionally,
habitat fragmentation is responsible for altering the genetic structure of the red squirrel
(Sciurus vulgaris) (Hale et al. 2001) and black grouse (7etrao tetrix) (Caizergues et al.
2003). Although large carnivores are thought to be highly vagile (Paetkau et al. 1999;
Schwartz et al. 2002), some studies suggest they may be limited in distribution because of
anthropogenic barriers (Kyle & Strobeck 2001; Sinclair et al. 2001; Walker et al. 2001,
Ernest et al. 2003; Miller & Waits 2003). Black bear movement does not seem to be
limited by topographical features of the native Floridian landscape; however,
human-made barriers such as roads, cities, and residential areas, appear to limit the
successful dispersal of black bears (Brody & Pelton 1989; Hellgren & Maehr 1993) in
Florida.

Although bears are able to cross some highways (McCown et al. 2001), the impact
of highways on mortality of bears can be detrimental. From 2000 to 2002, 346 bears
were documented as killed on roads in Florida. Most of these were young males that may
have been attempting dispersal or migration to distant populations (FWC, unpublished
data). Additionally, highways and development can act as partial or complete barriers.
Some bears may avoid interstate highways (Brody & Pelton 1989; Proctor et al. 2002),
and other forms of human development may alter movement patterns (Maehr et al. 2003),

further decreasing the probability of movement of bears among populations.
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Given the unprecedented rate of human population growth in Florida, wildlife
habitat will continue to be converted for commercial or residential purposes.
Consequently, further fragmentation or isolation of Florida black bears and other wildlife
population is likely. My results indicate that habitat fragmentation and human-made
dispersal barriers may have substantially altered the genetic structure of Florida black
bears. The effects of habitat fragmentation and isolation are likely to be even greater in
species with limited dispersal capabilities. It is imperative that management plans for the
conservation of black bears in Florida consider measures to mitigate genetic (and most
likely, demographic) consequences of habitat fragmentation and anthropogenic dispersal
barriers.

Conclusion

I conclude that the loss and fragmentation of once contiguous habitat has caused
the loss of genetic variation in the Florida black bear, and that genetic variation in smaller
populations is among the lowest reported for any species of bear. This substantial loss of
genetic variation has contributed to extensive genetic differentiation among populations.
Additionally, roads with high traffic volume and commercial and residential
developments apparently act as barriers to gene flow, contributing to genetic
differentiation among populations.

Loss of genetic variation is a concern for the long-term survival and adaptation of
Florida black bears. What constitutes historical levels of genetic variation for Florida
black bear populations? Evidence suggests that at one time Florida black bears were
distributed throughout the state (Brady & Maehr 1985). Most contiguous mainland

populations of black bears have high levels of genetic variation (Hg ~ 0.76) (Paetkau et
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al. 1998b). Thus, efforts should be made to restore historic levels of genetic variation
within Florida black bear populations, using mainland figures as a baseline.

To prevent the further loss of genetic variation, efforts should be made to increase
the size of Florida black bear populations. It has been suggested that a minimum of 50
effective breeders is needed to prevent inbreeding depression and population levels in the
hundreds or thousands to maintain evolutionary potential (Franklin 1980; Lande 1995).
However, keeping bears at high population levels may be increasingly difficult due to the
rapid rate of development over much of the state.

Given that Florida black bear populations have been reduced in size, gene flow
among bear populations is needed to restore and maintain genetic variation (Waits 1999).
A minimum of one and a maximum of ten successful migrants per generation have been
suggested as a rule of thumb to maintain levels of genetic variation (Mills & Allendorf
1996). I suggest that Florida black bear populations should be managed as a
metapopulation so that gene flow can occur among populations connected with
conservation corridors (Craighead & Vyse 1996; Macehr et al. 2001; Larkin et al. 2004).
However, the effectiveness of corridors in maintaining gene flow among populations of
carnivores is not well understood (Beier & Noss 1998). Recent data suggest that one
such corridor between the Ocala and Osceola populations may facilitate gene flow
between these populations (FWC, unpublished data).

Additionally, wildlife crossing structures may be needed to allow safe passage of
bears across roadways that pose significant barriers to bear movement (Foster &
Humphrey 1995). In situations where population connection via corridors is impractical,

artificial translocation of animals should be considered (Griffith et al. 1989).
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Translocation of animals has been successful in curbing some effects of inbreeding
depression and increasing levels of genetic variation in some animal populations
(Mansfield & Land 2002). Conservation biologists should be cognizant of the fact that
the effects of translocated animals on population structure and hierarchy are not
understood. Finally, further reduction or fragmentation of habitat likely will have
detrimental impact on demographic and genetic health of the Florida black bear

populations, and efforts to conserve remaining habitat cannot be overemphasized.



CHAPTER 3
EVALUATING THE EFFECTIVENESS OF A REGIONAL BLACK BEAR
CORRIDOR

Introduction

The effect of habitat fragmentation on natural populations is one of the greatest
threats to biodiversity conservation (Fahrig & Merriam 1994; Meffe & Carroll 1997;
Fahrig 2001). Habitat fragmentation can subdivide and isolate populations, reduce
genetic diversity, and increase the chances of local extinction (Harris 1984; Saccheri et
al. 1998; Westemeier et al. 1998). Because most wildlife populations in
human-dominated landscapes occur in fragmented habitats, attempts have been made to
identify measures that can reduce the adverse influences of habitat fragmentation.
Corridors have been proposed to mitigate the negative effects of habitat fragmentation by
connecting once isolated populations (Noss & Harris 1986). Corridors can increase
movement of organisms among patches (Hass 1995; Aars & Ims 1999; Haddad 1999;
Sieving et al. 2000; Mech & Hallett 2001; Haddad et al. 2003; Kirchner et al. 2003),
thereby providing additional habitat (Perault & Lomolino 2000), facilitate plant-animal
interactions (Tewksbury et al. 2002), and increase recolonization potential (Hale et al.
2001), survival (Coffman et al. 2001), gene flow (Harris & Gallagher 1989) and the
probability of persistence (Fahrig & Merriam 1985; Beier 1993). The use of corridors in
conservation stems from the equilibrium theory of island biogeography (MacArthur &
Wilson 1967), landscape ecology (Forman & Godron 1986), and the metapopulation

paradigm (Levins 1970; Hanski 1994). Several authors have suggested that conservation
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of fragmented populations requires a metapopulation approach (Hanski & Simberloff
1997; Dobson et al. 1999). Managing fragmented or spatially-structured populations
requires functional corridors that permit exchange of individuals among populations.

Discussions regarding the role of corridors in conservation biology is confused by
the many definitions of this concept (Rosenberg et al. 1997; Beier & Noss 1998; Hess &
Fischer 2001). Corridors range in scale from small transects linking patches of habitat to
regional complexes linking ecosystems and watersheds. Noss et al. (1996) suggested that
“connectivity will be best provided by broad, heterogeneous landscapes, not narrow,
strictly defined corridors.” Thus, evaluating the effectiveness of corridors requires a
consideration of the entire landscape mosaic and the functional/structural aspects of the
corridor for the focal species.

Large carnivores are highly susceptible to the effects of habitat fragmentation,
because of the potential for conflicts with humans, large home ranges, and low
population densities (Noss et al. 1996; Crooks 2002). Many populations of large
carnivores exist within fragmented habitats, encompassing areas much too small to
support viable populations (Woodroffe & Ginsberg 1998). Additionally, the conservation
of large carnivores that are flagship and umbrella species provides a means of protecting
biodiversity at smaller scales (Cox et al. 1994; Noss et al. 1996). It has been suggested
that carnivore populations in fragmented habitats operate as metapopulations (Poole
1997; Ferreras 2001; Palomares 2001). For many carnivore species, movement among
populations is vital for metapopulation persistence (e.g., lynx [Lynx spp.]: Ferreras 2001;
Ganona et al. 1998; Palomares 2001; and brown bears [Ursus arctos]: Craighead & Vyse

1996).
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The long-distance movements of large carnivores suggest that they are more
likely to use corridors for movements than species with limited dispersal capabilities
(Lidicker & Koenig 1996; Harrison & Voller 1998). Corridors were recommended as
management tools for connecting populations of lynx (Poole 1997; Ferreras 2001;
Palomares 2001), cougars (Puma concolor) (Beier 1995; Ernest et al. 2003), wolves
(Canis lupus) (Duke et al. 2001), brown bears (Picton 1987; Craighead & Vyse 1996;
Weaver et al. 1996), and black bears (U. americanus) (Cox et al. 1994; Hoctor 2003;
Larkin et al. 2004). However, the effectiveness of corridors for large carnivores has not
been tested on a regional scale.

One challenge in testing the effectiveness of regional corridors for carnivores
using traditional techniques, such as radio telemetry, is that the long-distance movements
of carnivores make it difficult to locate and observe animals. In many species,
long-distance dispersal is often rare, and there is no guarantee that the sample of
radio-instrumented animals will contain dispersing animals (Koenig et al. 1996).
Moreover, the dispersal of an animal from population to population does not indicate
effective dispersal; genetic data are much more suited to provide that information
(Frankham et al. 2002). The use of relatively inexpensive, non-invasive sampling
techniques, such as hair snares, and genetic analyses may help overcome these limitations
of radio telemetry-based studies. Such techniques provide data necessary for evaluation
of the functionality of corridors by elucidating genetic structure and effective dispersal
(Foran et al. 1997). Recent advances in genetic analyses and statistical techniques (e.g.,
population-assignment tests) have made it possible to identify the origin of animals by

assigning them to a population based on their multilocus genotypes (Paetkau et al. 1995;
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Waser & Strobeck 1998; Waser et al. 2001). Population-assignment tests have been used
to identify immigrants within populations of cougars (Ernest et al. 2003), otters (Lutra
lutra) (Dallas et al. 2002), wolves (Flagstad et al. 2003; Vila et al. 2003), marten (Martes
americana) (Small et al. 2003), wolverines (Gulo gulo) (Cegelski et al. 2003), and bears
(Paetkau et al. 1995). These techniques can identify dispersal patterns and cryptic
boundaries, which may indicate breaks in the gene flow across populations or the
reconnection of once isolated populations (Manel et al. 2003). Additionally, some
assignment tests detect not only immigrants into a population, but also their offspring,
which enables researchers to directly detect and monitor gene flow (Rannala & Mountain
1997, Pritchard et al. 2000).

A carnivore species that could benefit from the implementation of regional
corridors is the Florida black bear (U. a. floridanus). The Florida black bear was once
distributed throughout Florida, and the southern portions of Georgia, Alabama, and
Mississippi. Human activities significantly reduced the number of black bears from the
1850s to the 1970s through extensive fragmentation of habitat and excessive hunting
(Brady & Maehr 1985). Consequently, Florida black bears now occur in fragmented
populations. The long-term isolation of populations could lead to a loss of genetic
variation and evolutionary potential, and may also reduce population viability (Harris
1984; Frankham 1995; Reed & Frankham 2003). However, some populations are
expanding as bears recolonize suitable vacant habitat (Eason 2000). Black bears have
large home ranges and dispersing bears can travel hundreds of kilometers from their natal
home range (Alt 1979; Rogers 1987; Maehr et al. 1988; Wooding & Hardisky 1992;

Hellgren & Maehr 1993; McCown et al. 2001; Lee & Vaughan 2003). However,
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development throughout much of the state of Florida has created formidable obstacles to
movements such as towns, commercial/residential developments, and major highways
(Brody & Pelton 1989; Maehr et al. 2003). Consequently, regional corridors may be
needed to mitigate the detrimental demographic and genetic effects of habitat
fragmentation in Florida black bear populations (Harris & Scheck 1991; Noss 1993).

Documented dispersal and movement of individual bears (Florida Fish and
Wildlife Conservation Commission (FWC), unpublished data) and Geographic
Information Systems (GIS) analysis (Hoctor 2003) suggest that the Osceola-Ocala
regional corridor may be the best option for connecting two of the largest Florida black
bear populations. The Osceola-Ocala corridor is a patchwork of public and private lands
within a matrix of roads and development stretching for 90 km from the Ocala National
Forest to Osceola National Forest (Fig. 4). This proposed corridor contains a mosaic of
flatwoods, pine plantations, forested wetlands, riparian hammocks, scrub, and sandhill
covering over 80,000 ha (Maehr et al. 2001). Osceola and Ocala are two of the largest
populations of Florida black bear (Eason 2000), and establishing or maintaining
connectivity between these populations may be necessary to ensure the long-term
persistence of the Florida black bear.

The goal of my study was to evaluate the effectiveness of the Osceola-Ocala
corridor for the Florida black bear. I used non-invasive sampling to obtain genetic
material from bears within the Osceola-Ocala corridor and genotyped bears for 12
microsatellite loci. I also sampled bears from the Osceola and Ocala populations and
from seven other areas throughout Florida. I used population-assignment tests to assign

individuals sampled from the corridor to a population of origin (Osceola or Ocala) based
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on their multilocus genotypes. These techniques allowed me to characterize the dispersal
of bears from the source populations, and identify gaps in connectivity within the

Osceola-Ocala corridor.

60 km [
i O hile

Osceola-Ocala Corridor
2%, Primary black bear habitat

Secondary black bear habitat

Conservation lands

Figure 4. Area proposed as a regional corridor between the Ocala and Osceola black
bear populations. Crosshatched areas represent primary black bear habitat
(presence of breeding females) and stippled areas represent secondary black
bear habitat from a recent distribution map (Florida Fish and Wildlife
Conservation Commission (FWC), unpublished data). Populations are
abbreviated as: Eglin (EG), Apalachicola (AP), Aucilla (AU), Osceola (OS),
Ocala (OC), St. Johns (SJ), Chassahowitzka (CH), Highlands/Glades (HG),
and Big Cypress (BC).

Methods

I used a map of secondary black bear habitat (FWC, unpublished data; Fig. 4) and
results from a least-cost path analysis (Hoctor 2003) to identify areas that might serve as

a potential regional corridor between Ocala and Osceola. These habitat patches



27

represented areas that bears most likely travel through to avoid commercial and
residential development. I overlaid a grid of 20 km? cells on a map of available lands
within the potential corridor and placed at least one hair snare (Woods et al. 1999) within
each cell.

Each hair snare was constructed of two strands of standard 4-prong barbed wire at
heights of approximately 30 cm and 55 cm, attached to a perimeter of three or more trees
encompassing a total area of 10-30 m”. I baited the center of the snare with pastries and
corn, and placed two attractants (pastries and raspberry extract) > 2.44 m above the snare.
As bears entered the hair snare, the barbed wire snagged hair samples that were used in
genetic analyses. I operated each hair snare for an average of seven times with a mean
period of 26 days between baiting and sampling from May to November of 2002 and
May to August of 2003. I collected hair samples using the protocol of Eason et al.
(2001). Additionally, I collected hair samples within the corridor opportunistically from
a complementary hair snare project in Osceola (May-August, 2002-03), existing fences
(2001-03) and bears killed on roads (1998-2003).

Black bear tissue and hair samples collected from previous research studies and
highway mortalities during 1989-2003 were available for the Osceola and Ocala
populations (n =41 and n = 40 individual bears, respectively). To provide comparative
data, individuals also were sampled from other Florida black bear populations:
Apalachicola (n = 40), Aucilla (n = 9), Big Cypress (n = 41), Chassahowitzka (n = 29),
Eglin (n = 40), Highlands/Glades (n = 28), and St. Johns (n = 40).

I sent hair and tissue samples to Wildlife Genetics International (Nelson, British

Columbia, Canada) (http://www.wildlifegenetics.ca/), where individuals were genotyped
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using microsatellite analysis. DNA was extracted using QIAGEN’s DNeasy Tissue kits
(Valencia, California), as per QIAGEN's instructions
(http://www.qiagen.com/literature/genomlit.asp). Microsatellite loci were amplified
using polymerase chain reaction (PCR) primers (G1A, G10B, G10C, G1D, G10L, G10M,
G10P, G10X, G10H, MU50, MUS59, and G10J). The gender of each bear was determined
using the length polymorphism in the amelogenin gene (D. Paetkau, pers. comm.).
Laboratory analyses were performed as described in Paetkau et al. (1995, 1998a, 1998b,
1999) and Pactkau & Strobeck (1994).

I used the software program STRUCTURE to assign individuals to a population
of origin using Bayesian clustering techniques (Pritchard et al. 2000). STRUCTURE
assumes Hardy-Weinberg equilibrium (HWE) within populations and linkage equilibrium
between loci. I used Genepop 3.4 (Raymond & Rousset 1995) to test for deviations from
Hardy-Weinberg equilibrium (HWE). For loci with fewer than four alleles, exact
p-values were computed using the complete enumeration method (Louis & Dempster
1987), and for loci with more than four alleles the Markov chain method
(dememorization 1,000; batches 100; iterations per batch 1,000) was used (Guo &
Thompson 1992). Using Genepop 3.4, I used linkage disequilibrium tests to identify
nonrandom association between alleles of different loci using the Markov chain method.

I assigned bears sampled from the corridor and from other populations to a cluster
or population based on their genotypes, without regard to where the samples were
collected, using the program STRUCTURE. I used the admixture model, which assumes

that each individual draws some proportion of membership (q) from each of K clusters.
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Allele frequencies were assumed independent and analyses were conducted with a
100,000 burn-in period and 100,000 repetitions of Markov Chain - Monte Carlo.

I conducted population-assignment tests using STRUCTURE at two levels. For
comparative purposes, the first analysis was conducted on the statewide level with
individuals sampled from the nine populations and the corridor (K = 8 clusters). A
second analysis was conducted on a regional level; only individuals sampled from Ocala,
Osceola, and the corridor were included (K = 2 clusters). An individual bear was placed
into a cluster if q > 0.85 for that cluster. If q > 0.40 for both clusters, the genotype profile
indicated mixed ancestry, suggesting the individual may be an offspring of a mating
between the two clusters. I plotted the assigned individuals on a map of north-central
Florida using ArcGIS 8.1.2 to examine the geographic patterns of congruence (Ormsby et
al. 2001).

Results

A total of 598 hair samples was collected at 44 out of 86 hair snare sites within
the Osceola-Ocala corridor (Fig. 5). Overall, trap success for hair snares was 23.33%,
with substantially lower trapping success towards the center of the corridor (Fig. 6).
Within the corridor, 31 black bears were sampled at 50 locations; 11 of the 31 bears were
sampled at multiple locations. Only three of the 31 bears sampled in the corridor were
females, and these were within 20 km of the Ocala population.

There were no significant departures from HWE for any locus or population (p >
0.05), and the linkage disequilibrium test indicated that 10% of loci pairings had
significant nonrandom associations (p < 0.05). These significant loci pairings may be a
result of nonrandom mating, sampling bias, recent admixture, or genetic drift (Frankham

et al. 2002).
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Figure 5. Locations of samples collected in the Osceola-Ocala corridor. Dark circles
represent hair snares visited by bears, whereas open circles represent hair
snares not visited by bears. Squares represent samples collected
opportunistically.
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Figure 6. Bubble plot of trap success in the Osceola-Ocala corridor. The size of the
bubble represents the number of bear visits relative to the number of trapping
sessions. Squares represent hair snares not visited by bears. The distance was
estimated as the linear distance from the population’s centroids (the harmonic
mean of sample locations in the Ocala and Osceola populations) to the hair
snare sites in the corridor.
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For the statewide analysis, the 31 individuals sampled in the corridor, along with

the 308 individuals sampled statewide, were analyzed using STRUCTURE. The 10

predefined populations had 79% or more of their membership assigned to a single cluster.

Individuals sampled from Ocala, St. Johns and the Osceola-Ocala corridor were assigned

to the same cluster (q > 0.85), suggesting no significant genetic differentiation among

these three populations (Table 3).

Table 3. Assignment of individuals using the Bayesian clustering technique using the
program STRUCTURE (Pritchard et al. 2000) without any prior information
on population of origin. The average proportion of membership for
individuals sampled in predefined populations for each of 8 clusters (highest

average proportion of membership assigned to a single cluster is in bold
italics). Sample sizes are in parentheses.

Average proportion of membership in 8§ clusters

Population 1 2 3 4 5 6 7 8

Apalachicola (40) 0.846 0.088 0.013 0.006 0.021 0.007 0.011 0.009
Aucilla (9) 0.121 0.835 0.008 0.009 0.007 0.006 0.006 0.008
Big Cypress (41) 0.012 0.006 0.887 0.006 0.010 0.021 0.045 0.012
Chassahowitzka (29)  0.002 0.004 0.004 0.977 0.003 0.004 0.004 0.003
Eglin (40) 0.010 0.006 0.010 0.005 0.947 0.007 0.006 0.010
Highlands/Glades (28) 0.003 0.003 0.024 0.004 0.003 0.954 0.006 0.003
Ocala (40) 0.006 0.005 0.010 0.004 0.008 0.011 0.947 0.009
Corridor (31) 0.008 0.007 0.009 0.006 0.009 0.008 0.848 0.105
Osceola (41) 0.019 0.016 0.035 0.014 0.015 0.020 0.085 0.796
St. Johns (40) 0.019 0.021 0.024 0.014 0.009 0.035 0.853 0.025

For the regional analysis, I conducted population-assignment tests including only
individuals sampled from Ocala, Osceola, and the corridor, and estimated the proportion
of membership of each bear to the two clusters (Ocala and Osceola). All bears sampled
in Ocala were assigned to cluster 1 (q > 0.90), indicating that no immigrants from
Osceola were sampled in Ocala. Bears sampled in Osceola had ancestry in both clusters,
with 36 of the 41 bears assigned to cluster 2 (q > 0.85). Two individuals sampled in
Osceola (OS31 and OS41) were assigned to cluster 1 (q > 0.99), suggesting they were

immigrants from Ocala. Additionally, two bears sampled in the Osceola population
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(OS14 and OS20) were assigned to both clusters (q > 0.40), indicating that these

individuals were offspring from an Osceola and Ocala mating (Fig. 7).
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Of the 31 black bears sampled in the corridor, 28 were assigned to cluster 1
(Ocala) with q > 0.85, suggesting a predominately one-way movement by bears from
Ocala into the corridor. However, there were three individuals sampled in the corridor
(0020, 0026, and O031) that were assigned to cluster 2 (q > 0.98), suggestive of
origins in the Osceola population (Fig. 7). The sample locations of these bears plotted
on a map of north-central Florida revealed a spatial pattern in the distribution of

genotypes with limited mixing of Osceola and Ocala bears within the corridor (Fig. 8).

Jacksonville

Individual membership in clusters
® >0.85incluster 1 (Ocala)
C g = 0.85in cluster 2 (Osceola)
O q=>0.40 each in cluster 1 and 2 (possible hybrid)

Figure 8. Spatial pattern of the proportion of membership (q) for bears sampled in
Osceola, Ocala and the Osceola-Ocala corridor using the program
STRUCTURE (Pritchard et al. 2000). For Osceola and Ocala, 41 and 40
individuals respectively, are displayed. Within the Osceola-Ocala corridor, 31
bears sampled at 50 different locations are displayed. Black bears with q >
0.85 in a cluster are labeled as belonging to that cluster. Individuals with
mixed ancestry have q > 0.40 in both clusters.
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Discussion

The role of corridors in conservation planning has been controversial, due largely
to the lack of empirical studies evaluating the effectiveness of corridors (Simberloff &
Cox 1987; Simberloff et al. 1992; Rosenberg et al. 1997; Niemela 2001). Despite the
paucity of data supporting the function of corridors, many conservation biologists argue
that corridors should be reestablished or maintained where such connectivity occurred in
the recent past (Noss & Harris 1986; Noss 1987; Beier & Noss 1998). Nowhere has the
corridor controversy been more intense than in the state of Florida (Noss 1987,
Simberloff & Cox 1987; Simberloff et al. 1992). Plans for a regional network of
connected lands have been undertaken with little knowledge of the efficiency of corridors
in facilitating movements of animals (Noss & Harris 1986; Hoctor et al. 2000; Larkin et
al. 2004). The effectiveness of corridors in connecting carnivore populations is a
question of considerable conservation importance. Large carnivores provide flagship and
umbrella mechanisms for conservation and are sensitive to the effects of habitat
fragmentation (Noss et al. 1996; Woodroffe & Ginsberg 1998). Thus, corridors that
provide connectivity among large carnivore populations are likely to be beneficial to
other species with smaller home ranges.

I documented the presence of black bears throughout the Osceola-Ocala corridor,
indicating that perhaps a small population inhabits this area. Male black bears disperse
long distances due to competition for resources (Rogers 1987; Schwartz & Franzmann
1992), and the substantial disparity in the sex ratio of bears (28 males, 3 females)
sampled in the Osceola-Ocala corridor suggests that the corridor is primarily used as a

conduit for gender-biased dispersal.
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For a dispersal corridor to be functional, the distance between populations should
be within dispersal capabilities of the focal species. The average dispersal distance
observed for male black bears is roughly half the distance of the Osceola-Ocala corridor
(Alt 1979; Rogers 1987; Maehr et al. 1988; Schwartz & Franzmann 1992; Wooding &
Hardisky 1992; Wertz et al. 2001; Lee & Vaughan 2003). However, black bears can
move great distances, occasionally dispersing > 100 km (Alt 1979; Rogers 1987; Maehr
et al. 1988). Long-distance dispersal is difficult to measure and often underestimated
(Koenig et al. 1996). However, the range of dispersal distances for black bears suggest
that it is possible for bears to travel the length of the Osceola-Ocala corridor.

The effectiveness of a dispersal corridor would require that animals use the area for
natal dispersal, seasonal migration, foraging or searching for a mate (Harris & Scheck
1991; Noss 1993; Rosenberg et al. 1997; Hess & Fischer 2001). Many studies suggest
that there are directional patterns of dispersal related to the presence of habitat suitable
for dispersal corridors (Smith 1993; Poole 1997; McLellan & Hovey 2001; Wertz et al.
2001; Maehr et al. 2002; Lee & Vaughan 2003). For instance, bears used the
Osceola-Ocala corridor for dispersal because there is available habitat in which to
disperse. Additionally, the presence of the bears, including some females, in multiple
locations suggests that some individuals may be residents with home ranges within the
corridor. Although there were only three females sampled, a reproducing population
within the corridor would better facilitate movement among populations (Noss 1993;
Noss et al. 1996; Rosenberg et al. 1997; Beier & Noss 1998).

Most individuals were assigned to the population in which they were sampled,

verifying the validity of using population-assignment tests for Florida black bears (Table
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3). However, two male bears sampled in Osceola had genotype combinations most
consistent with those assigned to Ocala. Additionally, two individuals had genotypes
assigned as hybrids, indicating that bears born in Ocala may have bred successfully in
Osceola. There is a possibility that some bears identified as immigrants within the
Osceola population may be nuisance bears that were translocated from Ocala. However,
the relatively small number of documented translocations and the known fates of most of
these translocated bears suggests that one or both bears sampled in Osceola that were
assigned to Ocala are dispersers from the latter population that used the corridor for
movement.

Most bears sampled within the Osceola-Ocala corridor were assigned to Ocala,
with a predominantly unidirectional pattern of movement. There was a limited mixing of
Ocala-assigned individuals with Osceola-assigned individuals in one area of the corridor
(Fig. 8). Three of the Ocala-assigned bears were previously sampled in the Ocala
population; these are clear examples of long-distance dispersal (30-100 km) into the
corridor and further validate the accuracy of assignment tests. The use of the
Osceola-Ocala corridor by bears has increased in recent years (J. Garrison, pers. comm.),
a pattern similar to recolonization rates of black bears in the Trans-Pecos (Mexico-Texas
border) (Onorato & Hellgren 2001) and red squirrels (Sciurus vulgaris) in Scotland (Hale
et al. 2001). Expansion of the Ocala population into the Osceola-Ocala corridor likely
will continue as long as habitat is available and there are no significant barriers to
movement.

The spatial pattern of trap success of the hair snares (Fig. 5) and assignment tests

(Fig. 8) indicated a limited gap in connectivity. This gap may have been caused by a
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significant habitat bottleneck caused by residential development and a four-lane highway
(S.R. 301). Development near the city of Starke, the expansion of unincorporated areas
of Jacksonville (especially near Middleburg) and extensive surface mines in those areas
may also have contributed to a break in connectivity (Hoctor 2003). Extensive habitat
alteration by residential and industrial developments have been identified as potential
deterrents for bear dispersal (McLellan & Shackleton 1988; Maehr et al. 2003), and this
may be the situation for bears in the Osceola-Ocala corridor. However, there remains a
possibility that bears have not had sufficient time to recolonize these areas.

Only three bears with Osceola genotypes were sampled south of the interstate
highway (I-10), despite the large population of bears (Osceola) just north of I-10. One of
those three bears also was sampled north of I-10 (FWC, unpublished data) suggesting that
while the highway is not a complete barrier to movement, it may represent a significant
filter allowing only a few individuals to cross successfully. Large, high-speed highways
have been known to alter movement patterns of bears (Brody & Pelton 1989; Wertz et al.
2001; Proctor et al. 2002; Kaczensky et al. 2003). My results were consistent with the
hypothesis that high-speed interstate highways can significantly reduce movements of
Florida black bears.

Roads can have a more significant effect on bear movements within the corridor.
From 1979 to 2002, 32 bears (28 males, 3 females, 1 unknown) were documented as
killed on highways within the Osceola-Ocala corridor. High mortality rates of dispersing
carnivores are not uncommon (e.g., San Joaquin kit foxes [Vulpes macrotis mutical:
Koopman et al. 2000; tigers [Panthera tigris]: Smith 1993; brown bears: McLellan &

Hovey 2001; and black bears: Alt 1979, Schwartz & Franzmann 1992). Clearly,
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maintaining or restoring effective connectivity between the Osceola and Ocala
populations will require measures to reduce mortality of dispersing animals.

Taken together, my results show that the Osceola-Ocala corridor is functional. My
study provides one of the first empirical evaluations of the effectiveness of a regional
corridor in connecting populations of a large carnivore. The methods used in my study
provide a framework for using non-invasive sampling and genetic analysis for evaluating
the effectiveness of corridors in providing demographic and genetic connectivity between
wildlife populations. These techniques allow researchers to identify the genetic
signatures of connectivity by identifying immigrants and hybrids, and these methods
should be useful in evaluating the effectiveness of other potential corridors for connecting
wildlife populations.

Conclusion

My results suggest that the Ocala and Osceola black bear populations were
recently re-connected, primarily through unidirectional movement of bears from Ocala to
Osceola, and that some of the dispersers may have successfully reproduced. Moreover, |
found a small black bear population currently inhabits the Osceola-Ocala corridor itself.
Based on these results, I conclude that the Osceola-Ocala corridor is functional, and
provides genetic and demographic connectivity between Ocala and Osceola black bear
populations. The connection of the Osceola and Ocala populations allows gene flow
between these populations through male-mediated dispersal, the maintenance of
metapopulation structure, and may increase population viability. However, increasing
development pressure in this regional corridor may thwart functional connectivity of

these populations if the habitat within the corridor is not protected.
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Maintaining or restoring connectivity may require multiple strategies including
encouraging recolonization of the corridor by maintaining high densities in the source
populations, minimizing habitat loss and fragmentation, and managing for a high quality
habitat. Very short distances separate most of Osceola and Ocala bears within the
corridor; these breaks in connectivity should be minimized such that a bear could cross
the area in a single dispersal event (Beier & Loe 1992). However, sufficient habitat for
recolonization requires easements, purchasing conservation lands, fostering agreements
with private landowners, and reducing human activity (Beier 1995; Duke et al. 2001).
Providing connectivity may also require retrofitting highways to allow safe passage of
bears (Foster & Humphrey 1995).

I found that the use of non-invasive hair snares and population-assignment tests
could serve as an appropriate and efficient method for evaluating the effectiveness of a
regional corridor. Although my study was not replicated, it did provide useful insights
into the functionality of a regional corridor for large carnivores. A fully replicated,
experimental approach is rarely practical in conservation settings. Design limitations
aside, I do view consistent use of a corridor as sufficient evidence to justify the
conservation value of these areas (Beier & Noss 1998). Given the rapid pace of
development in Florida, the connection of populations with corridors may be the best
option in mitigating the adverse impacts of habitat fragmentation on black bears and

other wildlife.



CHAPTER 4
CONCLUSIONS AND MANAGEMENT RECOMMENDATIONS

In my study, I used microsatellite analysis of complete 12-locus genotypes of 339
bears to investigate the conservation genetics of Florida black bear populations
(Appendix D, Table 5). Allele frequencies for these bears varied substantially across 10
study areas (Appendix D, Table 6). I used these microsatellite data to investigate the
genetic consequences of habitat fragmentation and to examine the functionality of the
Osceola-Ocala corridor.

Conclusions

Genetic variation is an important consideration for the long-term survival and
adaptation of Florida black bears. My results indicate that most Florida black bear
populations had genetic variation within the range reported for other bear populations
(Appendix C, Table 3). However, Florida black bear populations with < 200 individuals
were characterized by low levels of genetic variation. The level of genetic variation
within the Chassahowitzka and Highlands/Glades populations are among the lowest
reported for any species or population of bears (Appendix C, Table 3). The reduction of
genetic variation in the Chassahowitzka and Highlands/Glades populations could
adversely influence evolutionary potential and increase inbreeding depression, which
may lead to the eventual extirpation of these populations.

My results indicated low levels of gene flow among most populations of the Florida

black bear. However, there was a high level of gene flow between the St. Johns and
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Ocala populations, and for genetic management, these populations could be considered as
the same population unit.

Genetic differentiation among Florida black bear populations is greater than that
reported for other bear populations separated by greater geographic distances (Paetkau et
al. 1998b; Paetkau et al. 1999; Waits et al. 2000; Lu et al. 2001; Saitoh et al. 2001;
Warrillow et al. 2001; Marshall & Ritland 2002). Additionally, there was no significant
pattern of isolation by distance in Florida black bear populations. This pattern has been
observed among other populations of bears (Paetkau et al. 1997). Roads with high traffic
volume and anthropogenic development apparently act as barriers to gene flow among
populations of bears in Florida.

Data presented in Chapter 3 clearly indicate that the Osceola-Ocala corridor
provides demographic and genetic connectivity between two of the largest bear
populations via unidirectional movement of bears from Ocala into Osceola. I
documented the presence of bears in Osceola with Ocala genotypes and others that may
be Osceola-Ocala hybrids. There was a preponderance of male bears within the
Osceola-Ocala corridor, suggesting that the corridor is primarily used as a conduit for
dispersal. The recolonization of the corridor likely will continue as long as sufficient
habitat is available and there are no significant barriers to movement. However, there
were some gaps in black bear distribution within the corridor, possibly due to barriers
such as residential and industrial development. The methods used in my study provide a
framework for evaluating functionality of corridors for connecting other wildlife

populations.
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Management Recommendations

Efforts should be made to restore historic levels of genetic variation within Florida
black bear populations. For the smaller, more isolated populations (i.e., Chassahowitzka
and Highlands/Glades) to persist into the foreseeable future, it may be necessary to
increase levels of genetic variation within these populations.

I recommend two ways to increase or maintain genetic variation in Florida black
bear populations. The first is to increase the size of the populations, and to prevent
further loss and fragmentation of their habitat. Efforts should be made to maintain or
increase populations to > 200 individuals to prevent substantial loss of genetic variation.
The increase in population size would minimize the loss of genetic variation due to
genetic drift, and would increase the number of dispersers, potentially increasing the level
of gene flow among populations.

My second recommendation is to increase gene flow among populations. This may
be accomplished in two ways: genetic augmentation and the connection of populations
with corridors. Genetic augmentation would require the translocation of bears among
populations. For augmentation to be successful, these bears must mate with members of
the target population.

The Florida Fish and Wildlife Conservation Commission has a policy that requires
the movement of nuisance bears among populations. A study is needed to determine the
fate and reproductive success of these translocated bears. If the findings suggest that
translocated nuisance bears successfully breed, this method could be used to genetically
augment populations. Translocation of pregnant female bears may be a better option than
nuisance bears because they have a higher probability of staying in the area where they

are released (Eastridge & Clark 2001). Additionally, the stocking of bears in the Big
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Bend of Florida (north of Chassahowitzka and east of Aucilla) would increase the
probability of gene flow into the Chassahowitzka and Aucilla populations (Wooding &
Roof 1996).

Gene flow among populations via natural dispersal would require the connection of
populations with conservation corridors. This method is preferred because it would
restore historical connectivity, increase probability of long-term persistence, and
maintenance of metapopulation structure. However, little habitat that could potentially
serve as corridors is available because of the high rate of commercial and residential
development throughout much of the state of Florida.

The Osceola-Ocala corridor may be the only corridor that can provide demographic
and genetic connectivity of the Florida black bear. As noted above, this corridor is
functional, and efforts should be made to enhance the quality of habitat and minimize the
effects of potential barriers. The protection and conservation of lands within the
Osceola-Ocala corridor will be needed to ensure functional connectivity between these
populations. The large number of landowners requires a consortium to manage these
lands effectively. Management actions to reduce mortality and increase safe movement
across highways also may include the installation of wildlife underpasses and/or
overpasses (Foster & Humphrey 1995; Roof & Wooding 1996). Additionally, a
reproducing population within the Osceola-Ocala corridor would provide a better means
of facilitating movement of bears between the Osceola and Ocala populations. Therefore,
efforts should be made to encourage female recolonization of the corridor.

Recommendations for Further Research

Genetic monitoring of Florida black bear populations is needed to examine changes

in levels of genetic variation over time. These investigations could be coordinated with
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the statewide population monitoring program of the Florida Fish and Wildlife
Conservation Commission (Eason et al. 2001).

A relatedness analysis using microsatellites would help clarify the relationships
among individuals within a populations (Schenk et al. 1998; Spong et al. 2002). This
method could be used to create a pedigree of sampled individuals in a population, thereby
determining the levels of inbreeding.

A comprehensive mitochondrial DNA (mtDNA) study is needed for a better
understanding of the genetic status of these populations. These investigations could
better elucidate female dispersal and population structure.

Finally, comprehensive demographic studies are needed to conduct a population
viability analysis (PVA). These analyses could be used to predict the impact of further

habitat fragmentation and loss on the viability of Florida black bear populations.



APPENDIX A
HISTORY OF THE FLORIDA BLACK BEAR

General

The American black bear (Ursus americanus) has maintained a broad distribution
throughout much of its history, and fossil evidence indicates that black bears have been
present in North America for at least 3 million years (Kurten & Anderson 1980). The
Florida black bear (U. a. floridanus) is one of three subspecies of North American black
bears, and was first described in Key Biscayne by Merriam (1896). The Florida black
bear historically ranged throughout Florida and southern portions of Georgia, Alabama,
and Mississippi (Hall 1981) (Fig. 9).

Black bears have large body size and need considerable expanses of land to
maintain home ranges. They use a wide variety of habitats, including pine flatwoods,
hardwood swamp, cypress swamp, cabbage palm forest, sand pine scrub, and mixed
hardwood hammock (Maehr et al. 2001). The omnivorous diet of black bears includes
mostly plant and some animal material (Maehr & Brady 1984).

Seminole Indians hunted black bears in Florida, using meat, skin and fat for various
consumptive, ornamental, and traditional purposes (Bartram 1980; Bakeless 1989). In
the past, cattle ranchers and beekeepers considered the Florida black bear a nuisance;
consequently, the shooting and poisoning of bears was common (Hendry et al. 1982).
Hunting for sport and food was intensive and unregulated prior to 1950 (Cory 1896).
Regulated bear hunting was initiated in Florida in 1950 (Wooding 1993), but was stopped

in most counties in 1971 and in all counties in 1993 (Maehr et al. 2001).
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American Black Bear
Florids Black Bear
Louisiana Black Bear

Figure 9. Historic distribution of black bears in the southeastern United States (after
Eason 1995)

The greatest reduction of Florida black bear was a result of extensive habitat loss
and fragmentation during the 19" century (Wesley 1991; Pelton & Van Manen 1997).
Forests were cleared for timber and agriculture, wetlands were drained, and large areas
were mined (Myers & Ewel 1991). In the 1970’s, there were only an estimated 300-500
bears in Florida (McDaniel 1974; Brady & Maehr 1985). Under the assumption that
bears once occupied nearly all the state’s land area (34.5 million acres), they have been

eliminated from approximately 83% of their range (Wooding 1993).
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Currently, Florida black bears occur in several populations that are mostly
relegated to public lands within Florida (Apalachicola, Aucilla, Big Cypress,
Chassahowitzka, Eglin, Highlands/Glades, Ocala, Osceola, and St. Johns), Georgia
(Okefenokee), and Alabama (South Alabama) (Fig. 10).

Regulations

The Florida Game and Freshwater Fish Commission classified the Florida black
bear as a threatened species in most Florida counties in 1974 (Wooding 1993). Florida
black bears in Georgia are considered a game animal and are subject to a limited hunting
season, but are listed as an endangered species on the state-level in Alabama (Pelton &
Van Manen 1997; Kasbohm 2004).

The U.S. Fish and Wildlife Service (USFWS) was petitioned in 1990 to list the
Florida black bear as a federally threatened species under the Endangered Species Act of
1973. The USFWS findings of 1991 concluded that the petition to list the Florida black
bear was warranted, but was precluded by work on other species having higher priority
for listing (Wesley 1991). A subsequent reexamination by the USFWS in 1998
concluded that listing the Florida black bear as federally threatened or endangered was
not warranted based on existing data (Bentzien 1998). This decision was challenged in
court by several conservation organizations, and the USFWS was ordered to clarify the
documentation of the adequacy of existing regulatory mechanisms to protect the Florida
black bear. The findings concluded that the existing regulatory mechanisms were
sufficient and that listing the Florida black bear as a threatened or endangered species

was not warranted (Kasbohm 2004).
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Figure 10. Current populations of the Florida black bear (Ursus americanus floridanus).
Abbreviations are as follows: SA (South Alabama), EG (Eglin), AP
(Apalachicola), AU (Aucilla), CH (Chassahowitzka), OC (Ocala), HG
(Highlands/Glades), BC (Big Cypress), SJ (St. Johns), OS (Osceola), and OK
(Okefenokee) (after Pelton and van Manen 1997).



APPENDIX B
MICROSATELLITE ANALYSIS

Microsatellites are a class of nuclear DNA markers that have a rapid mutation rate
and are ideal for studies of genetic consequences of habitat fragmentation (Lindenmayer
& Peakall 2000). Microsatellites consist of a variety of tandem repeat loci that involve a
base motif of 1-6 base pairs repeated up to 100 times. Microsatellites are abundant,
widely disbursed in eukaryotic genomes, and are highly polymorphic. Individual loci are
amplified using polymearse chain reaction (PCR). This allows resolution of alleles that
differ by as little as 1 base pair, and several loci can be analyzed simultaneously (Hedrick
2000).

Microsatellite analysis has frequently been used in conservation studies for
estimating within-population genetic variation and gene flow among populations of black
bears (Ursus americanus) (Paetkau & Strobeck 1994; Saitoh et al. 2001; Warrillow et al.
2001; Marshall & Ritland 2002; Csiki et al. 2003), brown bears (U. arctos) (Kohn et al.
1995; Taberlet et al. 1997; Paetkau et al. 1998a; Paetkau et al. 1998b; Waits et al. 2000;
Miller & Waits 2003), polar bears (U. maritimus) (Paetkau et al. 1995; Paetkau et al.
1999), spectacled bears (Tremarctos ornatus) (Ruiz-Garcia 2003) and giant pandas
(Ailuropoda melanoleuca) (Lu et al. 2001). Microsatellite analysis has also been used to
estimate population density of black and brown bear populations using mark-recapture

models (Woods et al. 1999; Mowat & Strobeck 2000; Boerson et al. 2003).
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APPENDIX C
GENETIC VARIATION AMONG BEAR POPULATIONS
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