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Abstract 

 Habitat loss and human-caused mortality are the most serious threats facing 
grizzly bear (Ursus arctos L.) populations in Alberta, with conflicts between people and 
bears in agricultural areas being especially important.  For this reason, information is 

needed about grizzly bears in agricultural areas.  The objectives of this research were to 
find the best possible classification approach for determining multiple classes of 

agricultural and herbaceous land cover for the purpose of grizzly bear habitat mapping, 
and to determine what, if any, spatial and compositional components of the landscape 
affected the bears in these agricultural areas.  Spectral and environmental data for five 

different land-cover types of interest were acquired in late July, 2007, from Landsat 
Thematic Mapper satellite imagery and field data collection in two study areas in Alberta.  

Three different classification methods were analyzed, the best method being the 
Supervised Sequential Masking (SSM) technique, which gave an overall accuracy of 88% 
and a Kappa Index of Agreement (KIA) of 83%.  The SSM classification was then 

expanded to cover 6 more Landsat scenes, and combined with bear GPS location data.  
Analysis of this data revealed that bears in agricultural areas were found in grasses / 

forage crops 77% of the time, with small grains and bare soil / fallow fields making up 
the rest of the visited land-cover.    

Locational data for 8 bears were examined in an area southwest of Calgary, 

Alberta.  The 4494 km2 study area was divided into 107 sub- landscapes of 42 km2.  Five-
meter spatial resolution IRS panchromatic imagery was used to classify the area and 

derive compositional and configurational metrics for each sub- landscape.  It was found 
that the amount of agricultural land did not explain grizzly bear use; however, secondary 
effects of agriculture on landscape configuration did.  High patch density and variation in 

distances between neighboring similar patch types were seen as the most significant 
metrics in the abundance models; higher variation in patch shape, greater contiguity 
between patches, and lower average distances between neighboring similar patches were 

the most consistently significant predictors in the bear presence / absence models.  
Grizzly bears appeared to prefer areas that were structurally correlated to natural areas, 

and avoided areas that were structurally correlated to agricultural areas.  Grizzly bear 
presence could be predicted in a particular sub- landscape with 87% accuracy using a 
logistic regression model.  Between 30% and 35% of the grizzlies‟ landscape scale 

habitat selection was explained. 
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1. Introduction and Overview 
 

This chapter will provide an introduction and overview of the concepts that are used 

in the following chapters.  The objectives of the thesis will be established, and placed 

within the larger context of existing literature.  

1.1  Grizzly Bear Background 

 

1.1.1  Importance 

 
There has recently been a growing trend in North America, as well as other places 

in the world, to recognize the value of intact, healthy ecosystems that contain native 

plants and animals.  Grizzly bears (Ursus arctos L.) could be considered a well-

recognized poster child for this developing ecological consciousness (Peak et al., 2003).  

In addition to this cultural value, grizzly bears are also an important ecological asset.  

Grizzly bears are an umbrella species, meaning that ecosystems and landscapes that are 

viable for grizzly populations are also viable for a large number of other species (Peak et 

al., 2003), and they are therefore an important indicator of ecosystem health.  Grizzly 

bears can also influence ecosystem health and variability directly, through processes such 

as seed dispersal and transportation of nutrients from marine to inland ecosystems 

(Hilderbrand et al., 1999).  In addition, complex ecological relationships can be affected 

by a lack of grizzly predation on ungulates.  Berger et al. (2001) showed how an 

increased ungulate population caused by lack of predation after a local grizzly extinction 

caused damage to riparian areas from overgrazing, which in turn affected migratory bird 
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diversity.  Grizzly bears can also be a cause of local vegetation diversity.  By overturning 

earth in search of roots and small mammals, they provide disturbance patches that 

become good sites for pioneering plant species (Peak et al., 2003).  Grizzly bears play an 

important role in the environments which they inhabit; unfortunately, they are under 

threat, due mainly to conflict with humans.  Grizzly bears require wilderness and 

seclusion from humans, as well as high quality, contiguous habitat (McLellan and 

Shackleton, 1988). 

  Grizzly bears occupied the entire western half of North America at the time of 

European settlement, with their territory even including much of the Great Plains 

(Kansas, 2002).  In the last 200 years, however, grizzly range has shrunk by as much as 

two-thirds.  Their range south of the Arctic Circle is limited to mountainous areas, 

isolated pockets, and national parks (Figure 1.1, adapted from Kansas, 2002).  They are 

now classified as a „threatened‟ species (likely to become endangered in the near future in 

a significant portion of its range) in the contiguous United States (grizzly bears in 

Yellowstone National Park in the U.S.A. have been delisted, however), and it has been 

recommended by Alberta‟s Endangered Species Conservation Committee that the species 

be elevated from „may be at risk‟ status (believed to be at risk, but needing a detailed 

assessment for confirmation) to „threatened‟ status in Alberta as well (McLellan and 

Shackleton, 1988; Stenhouse et al., 2003). 

1.1.2  Habitat and fragmentation  

 
The term „habitat‟ in this thesis will be defined as “the sum and location of the 

specific resources needed by an organism for survival and reproduction” , which is the 

definition put forward by McDermid et al. (2005).  „Fragmentation‟ in this thesis refers to 
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the more general principle of land transformation in which a large habitat is broken into 

smaller pieces by a spatial process (Forman, 1995).  Fragmentation will therefore lead to 

an overall loss of habitat and increased isolation of the remaining habitat pieces.  Habitat 

loss can also occur without fragmentation, if the use of the land changes.  Fragmentation 

is often measured with „landscape metrics‟, which for the purposes of this thesis will 

follow the definition as outlined by McGarigal (2002).  Landscape metrics refers to 

indices developed for categorical maps, and “is focused on the characterization of the 

geometric and spatial properties of categorical map patterns represented at a single 

scale.” (McGarigal, 2002) Landscape metrics act as the quantitative link between spatial 

Figure 1.1: Current and historic (last 200 years) range of the grizzly bear in North 

America. Adapted from Kansas, 2002. 
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patterns of the landscape and ecological or environmental processes, such as animal 

movement and habitat selection. (O‟Neill et al., 1988; Narumalani et al., 2004).   

There are two primary effects of fragmentation on the landscape: an alteration of 

the remnant habitat microclimate, and isolation of previously connected areas of the 

landscape.  Fragmentation therefore causes both biogeographical and physical effects on 

the landscape (Saunders et al., 1991).  It often has dramatic consequences for species 

richness and complex ecosystem interactions, and can lead to a decrease in biodiversity 

(Saunders et al., 1991; Hoffmeister et al., 2005). 

 Biogeographical effects of fragmentation, such as changes in microclimate, result 

from changes in the physical fluxes, or movements of energy, across the landscape.  

Alterations in solar radiation, wind, and water can all be caused by fragmentation of the 

landscape, and have important effects on remnant populations.  For example, changes in 

the radiation balance can affect large animals by altering resource availability due to 

changes in vegetation type, growth rates, and phenology.  Altered solar radiation fluxes 

can also destabilize predator-prey and other complex interactions though direct changes 

in temperature.  Similar effects can be caused by wind, as fragmented landscapes are 

more susceptible to this process; wind can damage vegetation, and is responsible for the 

transfer of materials such as dust, seeds, and nutrients (Saunders et al., 1991).  

Fragmentation may also interrupt natural processes that have important biological 

consequences, such as fire.  These processes are often essential to creating habitat and 

promoting ecosystem health (Leach and Givnish, 1996).  However, natural processes 

only operate at a limited scale in fragmented landscapes, often being confined to 

individual patches.    
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 Fragmentation also causes direct physical effects on the landscape.  Both 

reduction of total habitat area and the spatial structure of the remaining habitat are 

important factors for the survivability of the remaining native populations.  Habitat (and 

therefore species) isolation is one of the most important factors to examine.  Populations 

that are isolated from neighboring populations are subject to inbreeding and genetic drift 

(Peak et al, 2003; Hoffmeister et al., 2005).  Inbreeding and genetic drift in turn increases 

the population‟s susceptibility to long term climate variability, pathogen- induced changes 

in ecosystem carrying capacity, and, eventually, extinction (Mattson and Reid, 1991; 

Hoffmeister et al., 2005).  Species can no longer survive these habitat changes by normal 

means (i.e., migration and dispersal) because of a lack of travel corridors or contiguous 

habitat in fragmented landscapes (Mattson and Reid, 1991; Saunders et al., 1991; 

Rosenberg et al., 1997).  Suppressed migration and dispersion is especially problematic 

for grizzly bears, with their large natural range and relatively low population numbers 

(Kansas, 2002).  Habitat fragmentation may also lead to evolutionary changes in a 

species, due to changes in their encounters with mutualists, competitors, enemies, and 

prey (Hoffmeister et al., 2005).  The size, shape, and position in the landscape of the 

remaining habitat are all important modifying variables for these direct physical effects 

on the landscape (Fahrig and Merriam, 1994).     

 Probably the most significant impact fragmentation has on grizzly bears is an 

increased exposure to humans, due to greater amounts of edge habitat and an associated 

increase in access by people to formerly remote areas of grizzly habitat (Mattson and 

Reid, 1991; Gibeau et al., 2002; Kansas, 2002; Nielsen et al., 2004).   
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1.1.3  Impacts on grizzly bears 

 

 Human-caused mortality, along with habitat loss, are the most serious threats 

facing grizzly bear populations (Gibeau et al., 2002; Kansas, 2002).  Habitat loss is most 

often caused by uncontrolled human access and industrial development activity in bear 

habitat.  Activities such as oil and gas exploration and extraction, forestry, agriculture, 

and recreation all contribute to grizzly bear habitat fragmentation and loss (Garshelis et 

al., 2005).  Another important factor is the network of roads and trails that all of the 

aforementioned activities depend on, as well as the seismic exploration lines that are cut 

for oil and gas exploration (Mace et al., 1996; Linke et al., 2005).  These linear features 

allow access to otherwise remote areas by people, which leads to conflict and a declining 

bear population (Kansas, 2002).  Roads and trails not only fragment the landscape, but 

reduce the total area of habitat and limit grizzly bear movement.  Roads, for example, can 

act as barriers or even increase mortality for grizzly bears (Gibeau et al., 2002).  Not all 

fragmentation is bad, however - natural habitat variability can be favorable, as it provides 

more potential resources for different activities such as feeding and bedding (Linke et al., 

2005).   

 Oil and gas exploration and extraction is a very large part of fragmentation of 

forested areas in the Rocky Mountains, especially in the Alberta foothills region.  One of 

the major components of oil and gas exploration is the creation of seismic cutlines, which 

dissect the landscape and contribute to the fragmentation of existing patches of forest.  

The network of cutlines can be quite dense, and the lines themselves 5 – 10m wide 

(Linke et al., 2005).  Linke et al. (2005) investigated the role that seismic cutlines and 

landscape structure play in determining grizzly bear use of an area in the foothills of the 
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Alberta Rocky Mountains.  They found no direct relationship between landscape use and 

proportion of cutlines, which is the same result obtained by McLellan and Shackleton 

(1989)  in southern British Columbia.  However, Linke et al.(2005) did find an indirect 

relationship: grizzly bear use was linked to physical landscape metrics that included mean 

patch size, proportion of closed forest, and variation in mean nearest neighbor distances 

between patches of the same type.  These landscape metrics are all affected by the dense 

network of seismic cutlines through forested areas.  

 Grizzly bears are known to prefer areas that include both forested and non-

forested habitat (Apps et al., 2004), but with increasing human presence, natural causes 

of forest variability, such as fire, are suppressed or eliminated.  Elimination of natural 

disturbance results in forest habitat with relatively few openings, which can result in 

bears instead using anthropogenic openings caused by forestry activity (Nielsen et al., 

2004).  Data from bears in the central Alberta Rocky Mountain foothills region shows 

that grizzly bear use could be predicted by landscape metrics, distance-to-edge, and edge-

to-perimeter ratio.  Grizzly bears were found closer to clear-cut edges, selected clear-cuts 

that had an irregular shape, and generally used these areas at night (Nielsen et al., 2004).  

While generally suitable habitat, bear use of clear cuts leads to increased conflict with 

humans, which often results in high bear mortality (Nielsen et al., 2006). 

 While less conspicuous than other forms of fragmentation, linear features such as 

roads can have very large impacts on grizzly bear populations (McLellan and Shackleton, 

1988; Mace et al., 1996; Wielgus et al., 2002; Chruszcz et al, 2003; Waller and 

Servheen, 2005).  The impacts are large due to the bears‟ great mobility and extensive 

spatial requirements for survival (Chruszcz et al, 2003).  Roads may increase landscape 
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connectivity for people, but they decrease it for bears and other wildlife; decreased 

connectivity can have many detrimental effects.  Some of the direct effects of roads on 

grizzly bears include increased access for hunters and poachers, increased probability of 

vehicle-bear collisions, and increased frequency of bear flight responses, the stress of 

which can negatively impact the health of the bear (McLellan and Shackleton, 1988).  

Indirect effects of roads on grizzly bears can occur because of long-term displacement of 

bears from areas adjacent to roads; roads in the Rocky Mountains are usually located 

along valley bottoms, and pass through riparian areas and other highly productive areas 

of bear habitat.  Loss of these areas of productive habitat can lead to increased pressure 

on similar habitats in regions that are not fragmented by roads, as well as the loss of 

overall habitat (McLellan and Shackleton, 1988; Singleton et al., 2004).   

 Agriculture and its associated activities are also causes of habitat fragmentation 

and increased conflict between bears and humans.  Kansas (2002) identified reducing 

human-grizzly conflict on agricultural lands as a priority for mitigating the long term 

decline of the species.  In a study of grizzly-human conflict on agricultural lands in 

Montana, Wilson et al. (2005; 2006) found that there were many different attractants for 

bears on private lands that are a part of the natural bear habitat.  One of the mos t 

important factors was the use of riparian areas by bears as both habitat and transportation 

corridors (Wilson et al., 2005).  The bears use these areas to reach anthropogenic 

attractants, such as cattle, sheep, beehives, and boneyards.  The more attractants that were 

in an area, and the closer that area was to wetlands or riparian areas, the more likely the 

bears were to use that area as habitat.  When barriers such as fences were introduced, the 

rate of bear use of these areas dropped considerably.  For example, beehives that were 
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protected by fencing were much less likely to be “attacked” by the bears than unprotected 

hives (Wilson et al., 2006).  In many cases in Montana, the original bear habitat has not 

been fragmented, but its use has been changed, which brings the bears into conflict with 

people, and can be seen as an effective loss of habitat.  Effective habitat loss is defined as 

an unwillingness of the bear to use suitable habitat because of “high levels of sensory 

disturbance or mortality risk” (Kansas, 2002).  

  The province of Alberta, Canada, also has a large agricultural footprint.  

Agriculture and related activities exist right up to the edge of the foothills of the Rocky 

Mountains.  The recommendation by Alberta‟s Endangered Species Conservation 

Committee that grizzly bears be elevated to „threatened‟ status (Stenhouse et al., 2003) 

means that  appropriate management and conservation planning will be required. 

Effective and current habitat maps will be necessary for this planning (Nielsen et al., 

2006).  A problem currently facing grizzly bear habitat mapping in Alberta is the lack of 

a classification scheme that differentiates between agricultural and herbaceous areas.  An 

accurate classification of such areas will be necessary in order to further understand the 

relationships between the grizzly bears and these agricultural areas.  However, the current 

area of interest for grizzly bear population viability analysis in Alberta is most of the 

western half of the province (Nielsen et al., 2006), rendering traditional field based 

analysis methods problematic for land cover classification purposes.  Therefore, another 

technique is needed.  Due to their spatial and temporal flexibility, remote sensing 

methods of land cover classification are well situated to handle this problem of land cover 

classification over a large spatial range (McDermid et al., 2005). 
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1.2  Land Cover Classification  

 

 One of the most common uses for remotely sensed satellite data is land cover 

classification, the process of creating a thematic map by attributing a particular class 

identity to image objects or discrete pixels within the image (Cihlar et al., 1998; Foody, 

2002).  Each separate class can be defined by its individual spectral response within the 

available spectral bands registered by the satellite sensor being used.  The spectral 

response of a band is a measurement of the amount of reflected solar radiation in a 

particular wavelength, with the wavelength being determined by the band.  Classes can 

also be defined based on textural or spatial measures, such as homogeneity or distance to 

other features.  Land cover classification can be executed in a variety of ways, and for a 

variety of purposes.  Land cover classification can also be accomplished at a variety of 

different scales: from the continental and global level (e.g., Friedl et al., 1999; Agrawal et 

al., 2003; Cihlar et al., 2003; Joshi et al., 2006) to local and regional studies (e.g., Brook 

and Kenkel, 2002; Reese et al., 2002; Van Niel and McVicar, 2004).  Satellite sensors are 

commonly grouped by spatial resolution, and coarse, medium, and fine resolution sensors 

have all been used for land cover classification studies (see Table 1.1).   

 However, McDermid et al. (2005) note that “while landcover maps may contain 

useful predictive power, they are often not capable of revealing the underlying 

mechanisms and dynamic nature of complex natural landscapes”.  To help increase the 

accuracy and usefulness of land cover maps, a small selection of classification methods  

were tested in this thesis.  An exhaustive look at all of the available classification 

methods and satellite remote sensing systems is beyond the scope of this thesis.  

However, some attention will be given to medium resolution sensors, especially Landsat 
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5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+)  and the 

Indian Remote Sensing (IRS) 1-C/D sensors, as images from these satellites were used in 

the thesis.  

 

 

 

 

Table 1.1: Common satellite sensors used for land-cover classification 

Coarse 

Resolution 

Satellite Sensor 

(resolution) 

Common Land 

Covers Studied  

References 

Advanced Very High 
Resolution Radiometer 

(AVHRR) (1.1 km) 

Various – 
continental to 
global scale cover 

Friedl et al., 1999;  
McIver and Friedl, 2002 

Systeme Pour 
l'Observation de la Terre 

(SPOT) Vegetation sensor 

(1.15 km) 
 

Vegetation, 
Agriculture 

Agrawal et al., 2003;  
Kerr and Cihlar, 2003 

Medium 

Resolution 

Landsat Thematic Mapper 

(TM) and Enhanced 
Thematic Mapper 
(ETM+) (30m) 

 Forest 

fragmentation, 
semi-arid 
vegetation, 

National Park land 
cover, habitat 

Franklin et al., 2002;  

Brown de Colstoun et 
al., 2003; 
Camacho-De Coca et 

al., 2004;  
Bock et al., 2005  

 

SPOT (20m) Crop yield, 
Agricultural land 
cover 

Cohen and Shoshany, 
2002;  
Raclot et al., 2005 

Indian Remote Sensing 

(IRS)-1A/B/C/D (5m, 
23.5m, 36.25m, 72.5m, or 

188m, depending on 
sensor and spectral band 

used)  

Wheat crop, crop 

cover, wetland 

Murthy et al., 2003; 

De Wit and Clevers, 
2004;  

Shanmugam et al., 2006 

European Space Agency 
ESA-1 Synthetic Aperture 

Radar (SAR) (26m) 

 Crop mapping Michelson et al., 2000;  
Ban, 2003;  
Blaes et al., 2005 

Fine 

Resolution 

IKONOS (4m) Forest inventory 

parameters, 
Mangrove swamps 

Wang et al., 2004; 

Chubey et al., 2006 
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1.2.1  Medium-resolution cropland and grassland classification 

 The Landsat 5 and Landsat 7 satellites are commonly used for medium-resolution 

land cover classification studies (Table 1.1).  The Landsat 5 TM sensor and the Landsat 7 

ETM+ sensor are very similar.  Details regarding the capabilities of these sensors are 

given in Table 1.2, along with details about the IRS satellites.  Images from these three 

satellites were used in this thesis.  The 5m resolution PAN sensor was the only 

component used from the IRS satellites. 

Table 1.2: Landsat and IRS satellite characteristics.  Adapted from Jensen (2000).  
Landsat 5 TM  Landsat 7 ETM+ IRS-1C and 1D 

Band 

Spectral 

Wavelength 

(μm) 

Spatial 

Resolution 

(m) at Nadir Band 

Spectral 

Wavelength 

(μm) 

Spatial 

Resolution 

(m) at Nadir Band 

Spectral 

Wavelength 

(μm) 

Spatial 

Resolution 

(m) at Nadir 

1 0.45-0.52 30x30 1 0.45-0.52 30x30 1 - - 

2 0.52-0.60 30x30 2 0.52-0.60 30x30 2 0.52-0.59 23x23 

3 0.63-0.69 30x30 3 0.63-0.69 30x30 3 0.62-0.68 23x23 

4 0.76-0.90 30x30 4 0.76-0.90 30x30 4 0.77-0.86 23x23 

5 1.55-1.75 30x30 5 1.55-1.75 30x30 5 1.55-1.70 70x70 

6 10.4-12.5 120x120 6 10.4-12.5 60x60 Pan 0.50-0.75 5x5 

7 2.08-2.35 30x30 7 2.08-2.35 30x30 WiFS 1 0.62-0.68 188x188 

-   Pan 0.52-0.90 15x15 WiFS 2 0.77-0.86 188x188 

Swath 

Width 

185 km 185 km 142 km for bands 2,3,4; 148 km for 

band 5; Pan = 70km;  WiFS = 774 km 

Revisit 

Period  

16 days 16 days 24 days for bands 2-5; 5 days (off-

nadir) for Pan; 5 days for WiFS 

 

Many studies of land cover classification have focused on agricultural 

applications, such as crop yield prediction (e.g., Lobell and Asner, 2003; Ferencz et al., 

2004), nitrogen content (e.g., Boegh et al., 2002), stress (e.g., Estep et al., 2004), as well 

as simple crop classification (e.g., Aplin and Atkinson, 2001; Turker and Arikan, 2005).  

Grasslands have also been studied (e.g., Price et al., 2002; Baldi et al., 2006), for similar 

reasons.  There has been comparatively little research on delineating natural herbaceous  

cover from crop or managed meadow cover.   A few studies have briefly mentioned how 

to delineate between cropland and natural herbaceous or grassland areas (e.g., Reese et 
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al., 2002; Bock et al., 2005); others have simply included classes such as meadow (e.g., 

El-Magd and Tanton, 2003) and grassland (e.g., De Wit and Clevers, 2004) in their 

classifications of agricultural areas.  

 Remote sensing of cropland has used a variety of methods and techniques, 

including multi-temporal analysis, object-based analysis, and classification methods such 

as supervised and unsupervised approaches.    

1.3  Methods of classification 

1.3.1  Multi-temporal analysis  

 One of the problems in using remote sensing data for land cover classification is 

the separability of vegetation types, especially agricultural croplands (hereafter: crops).  

For a single-date image, different vegetation types often show very similar spectral 

responses, possibly resulting from very similar leaf area index values and internal 

structure.  Crops at the same phenological stage are especially hard to discriminate 

(Guerschman et al., 2003).  One solution to this problem has been to use multi- temporal 

image analysis; that is, combining multiple images of the same area from different dates 

or phenological stages (e.g., Murthy et al., 2003; Van Niel and McVicar, 2004; Yuan et 

al., 2005).  There are many different techniques for the combination and analysis of 

multi- temporal scenes. Two techniques, known as iterative multi-date (Van Niel and 

McVicar, 2004) and sequential masking (Turker and Arikan, 2005), give better results 

than others; however, no matter the technique, there is a consensus their use improves 

vegetation separability and can reduce problems caused by clouds, for example.  More 

importantly, multi-temporal techniques can increase classification accuracy (e.g., Murthy 

et al., 2003; Van Niel and McVicar, 2004; Reese et al., 2002; Joshi et al., 2006).  It has 
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been shown that a minimum of two, and preferably three, images taken over a single 

growing season are necessary to distinguish many different crop and grassland types 

(e.g., Reese et al., 2002; Guerschman et al., 2003; Van Niel and McVicar, 2004; 

Wunderle et al., 2005)  

 Despite these benefits, many studies, including this one, do not use multi-

temporal methods (e.g., Latifovic et al., 1999; Vescovi and Gomarasca, 1999; Lobell and 

Asner, 2003; Baldi et al., 2006).  There are often limitations on available imagery, or 

financial resources are not available to obtain more scenes.  In addition, multi- temporal 

analysis may not be best for all areas or land cover types.  For example, Langley et al. 

(2001) found that uni-temporal classification outperformed multi- temporal classification 

in their study of a semi-arid grassland.  They also concluded that single date imagery 

involves less time and money, both in data acquisition and processing.  In some research, 

the authors acknowledge the potential usefulness of multi-temporal imagery, but choose 

not to implement it (e.g., Brook and Kenkel, 2002).  While there is general consensus 

about the potential usefulness of multi- temporal analysis, its use should be analyzed on a 

case-by-case basis.  It may not be suitable to adopt this method in all situations.  For 

example, operational constraints on image acquisition or a lack of availability of cloud-

free imagery often make it impossible to use multi- temporal analysis even in situations 

that would benefit from it.  In other cases, such as in this thesis, classification results may 

be sufficiently accurate with single date imagery, in which case it would not make sense 

to complicate the study with multi-temporal analysis.  
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1.3.2  Object-based classification 

 While most traditional remote sensing land cover classification is pixel-based, 

many newer studies are turning to object-based classification methods as a way to 

improve accuracy (e.g., Aplin and Atkinson, 2001; Smith and Fuller, 2001; Lloyd et al., 

2004; Walter, 2004; Bock et al., 2005).  Object-based classification divides the satellite 

image into objects or segments that represent a homogenous unit on the ground.  The 

entire object is classified based on the overall statistical properties of the pixels that make 

up the object, instead of classifying each pixel separately as in pixel-based classifications 

(e.g., McIver and Friedl, 2002).  Pixel-based methods have two main weaknesses: first, 

the end products do not relate well to the actual landscape structure, often having a 

speckled appearance due to misclassification of individual pixels within a homogenous 

area such as an agricultural field (Smith and Fuller, 2001; De Wit and Clevers, 2004).  

Second, there is a problem with „mixed‟ or „edge‟ pixels;  these are pixels located on the 

boundaries between discrete land covers. An example would be the boundary between 

two different agricultural fields.  In a pixel-based agricultural classification, the spectral 

properties of boundary pixels will not resemble the properties of either of the two crops 

of which it consists, but a mixture of the two, which causes them to be falsely classified 

as alternate land cover types (Smith and Fuller, 2001; De Wit and Clevers, 2004).  

Object-based methods are not immune to these problems, as mixed pixels can lead to 

problems with creating the initial objects, and can affect the values of the object 

properties (such as mean reflectance values).  For some applications however, such as an 

agricultural classification as done in Chapter 2 of this thesis, object-based classification 

has minimal drawbacks when compared to pixel-based classification.  The relatively 
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large, homogenous fields of an agricultural setting are one reason tha t these problems are 

minimized.  Object-based classification also has the added benefit of easier integration 

into vector-based GIS systems (Raclot et al., 2005). 

 The major difficulty with the object-based approach is the delineation of 

meaningful objects.  For large scale projects, it is not feasible to hand digitize, for 

example, tens of thousands of field boundaries.  One option is to use commercially 

available software that can automatically segment an image into discrete objects based on 

some spectral, spatial, or statistical measure.  For large areas, this could be an efficient 

method.  However, there are potential problems associated with this automated 

segmenting.  For example, all of the natural boundaries may not be found, and those 

boundaries that are found may not correspond to either the objects of interest or real 

world objects.  Methods of segmentation can also be highly subjective, requiring a 

laborious set of training data and prior knowledge of the area.  Also, elements such as 

roads and streams may be included in other objects, and therefore cause overestimation of 

area (De Wit and Clevers, 2004).  As the capabilities of the available software improve, 

however, more researchers are turning toward this technique (e.g., Wang et al., 2004; 

Bock et al., 2005; Chubey et al., 2006).  Automated segmentation was used in this thesis.   

 Object-based methods are usually used in combination with other classification 

techniques.  These techniques can be separated into two main types, supervised and 

unsupervised, though often the two are joined in what is known as a hybrid approach 

(e.g., Reese et al., 2002; Yuan et al., 2005).  Many of the newer techniques, such as the 

use of Artificial Neural Networks (ANNs) (e.g., Murthy et al., 2003), Support Vector 

Machines (SVMs) (e.g., Keuchel et al., 2003) and decision trees (e.g., Brown de 
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Colstoun et al., 2003; Chubey et al., 2006), are supervised techniques, though they can be 

hybrid techniques as well, depending on their specific implementation. 

 

1.3.3  Supervised Classification Methods 

 Supervised classification is most often used when a priori knowledge of the area 

to be mapped is extensive, as supervised classification schemes require knowledge of all 

cover types to be mapped.  Supervised methods also use intensive training methods to 

define spectral signatures and information classes from the explanatory variables, which 

will then be applied to the whole scene (Cihlar, 2000; McDermid et al., 2005).  

Supervised classification methods therefore rely heavily on both the quality and 

representation of the training data (Chubey et al., 2006), though ways have been 

suggested to automate, or at least simplify, this training data collection, especially in 

regards to mapping of large areas that represent varying ecosystems (Franklin and 

Wulder, 2002).  For example, one method, known as „boosting‟, weights observations in 

the training algorithm based on their accuracy in previous iterations of classification.  It 

puts higher weights on classes that were improperly classified in the previous iteration, 

thereby forcing the classification algorithm to focus on those observations that are more 

difficult to classify.  The boosting method was also found to increase classification 

accuracy (e.g., Friedl et al., 1999; Brown de Colstoun et al., 2003). 

 There are two basic types of supervised classification.  Parametric methods 

depend on the data having a certain probability distribution.  An example of this type is 

the popular maximum likelihood classifier (MLC) (e.g., Hunter and Power, 2002; 

Keuchel et al., 2003; Yunhao et al., 2006).  MLC is a well-known mathematical decision 
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rule used for classification.  It uses band means and standard deviations from training 

data to reproduce land cover classes as centroids in a multi-dimensional feature space, 

surrounded by probability contours (Bolstad and Lillesand, 1991).  A feature space is a 

combination of features represented in a multi-dimensional space, where each feature is 

an orthogonal axis within the space.  MLC assumes that the sample values for each class 

are normally distributed.  The unclassified pixels from the image are then plotted in this 

same feature space; the pixels are then assigned to the class for which they have highest 

membership probability (the class whose centroid they are closest to)  (Shanmugan et al., 

2006).  Non-parametric methods, conversely, make no assumptions about the statistical 

distribution of the data, which can sometimes be an advantage.  Problems still arise with 

these non-parametric methods, however.  For example, difficulties often arise with ANNs 

that are related to the dependence of the results on the training conditions, and to properly 

interpreting the network‟s behavior (Serpico et al., 1996).  Also, a useful property of 

parametric classifiers, the theoretical estimation of classification error from the assumed 

distributions, is not possible with non-parametric classifiers (Schowengerdt, 2006).  

Despite these drawbacks, however, non-parametric methods are becoming popular (e.g., 

Murthy et al., 2003; Yang et al., 2003; Chubey et al., 2006).  Non-parametric methods 

include decision trees, ANNs, and SVMs.  

 Decision trees are a commonly used non-parametric classifier (e.g. Brown de 

Colstoun et al., 2003; Franklin et al., 2002; Friedl et al., 1999) that have a number of 

advantages (Franklin and Wulder, 2002; Brown de Colstoun et al., 2003; Chubey et al., 

2006): 
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 They are capable of handling high-dimension data sets.  That is, they can use 

ancillary data about the area to aid in classification, including non-remotely 

sensed data.  

 They can handle both categorical and continuous data.   

 They are non-parametric, so no assumptions have to be made about the 

distribution of the data.  

 They are transparent (for example, compared to an ANN, in which you see the 

inputs and outputs, but don‟t know what is happening in between),  

 They can be simple to implement.   

 They have been shown to outperform both MLC and other non-parametric 

classifiers (e.g., Yang et al., 2003; Xu et al., 2005; Chubey et al., 2006).  

Decision trees also have a disadvantage however; they rely heavily on the quality of the 

training data, and accuracy can be dependent on the training data sample size (Chubey et 

al., 2006).  

 

1.3.4  Unsupervised classification methods 

 Unsupervised methods generate natural groupings or clusters that are already 

present in the mapping variables (usually radiometric variables, i.e. different spectral 

bands), and require no prior knowledge of the study area (McDermid et al., 2005).  

Unsupervised classification allows for the exploitation of all the information content of 

satellite data, regardless of the geographic extent or surface characteristics, though the 

analyst still must have enough knowledge to label the resulting clusters (Cihlar et al., 

2003).  Another advantage is repeatability and consistency of the classification.  With 
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unsupervised methods the same result can be obtained for the same data set by different 

analysts.  However, there are also some disadvantages.  For example, unsupervised 

classification can miss very small, but possibly important, classes in the data set that 

would not be missed by supervised classification if the analyst were aware of them 

(Cihlar et al., 1998).  Certain unsupervised methods have also been found to give results 

that are dependent on the parameters guiding the classification process (Cihlar et al., 

1998; Latifovic et al., 1999).  

 There are two basic unsupervised classification strategies, iterative and sequential 

(Cihlar et al., 2000).  In an iterative method, a starting number of desired clusters is 

selected, and the centroid locations of the clusters are then moved around until a proper 

fit is obtained (Cihlar et al., 2000).  Iterative methods commonly used include the K-

means (e.g., Wulder et al., 2004a, 2004b; Tateishi et al, 2004; Joshi et al., 2006), 

ISODATA (e.g., Thompson et al., 1998; Shanmugam et al, 2006), and ISOCLASS (e.g., 

Agrawal et al., 2003) algorithms.  Sequential algorithms, on the other hand, gradually 

reduce the large number of spectral combinations by merging the clusters using various 

proximity measures (Cihlar et al., 2000).  The main sequential method is Classification 

by Progressive Generalization (CPG) (Cihlar et al., 1998).  CPG has been found to be 

more accurate than other unsupervised methods in classifying land cover over large areas 

of Canada, with many classes.  CPG has additional advantages such as greater robustness, 

reduced dependence on control parameters, and the possibility of the analyst‟s input in 

the final clustering stages, which gives greater control over the final classes (Cihlar et al., 

1998; Latifovic et al., 1999).  A combination of K-means and CPG was found to be even 
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more useful in a Canadian boreal landscape setting (Cihlar et al., 2003; Kerr and Cihlar, 

2003).             

1.4.  Research Objectives 

 
The objectives of this thesis were twofold.  The first objective is to find the most 

appropriate classification method for the classification of herbaceous and agricultural 

areas in Alberta.  The most appropriate method will be found by selecting and testing a 

small number of classification schemes from among the many available to find the 

method that gives the most useful results.  The second objective is to determine if 

landscape composition and spatial configuration was significantly different between 

agricultural areas in which the bears have been present, and similar areas where they have 

not been present, and to determine which landscape metrics or compositional elements 

have the greatest relationship with grizzly bear presence, absence, and location density.   

Due to their spatial and temporal flexibility, remote sensing methods of land 

cover classification are well situated to handle the problem of large spatial range 

(McDermid et al., 2005).  Approaches to large-scale, medium resolution (Landsat, for 

example) land cover mapping are still not well developed (McDermid et al., 2005).  Land 

cover classification of a large geographic extent (for example, covering multiple Landsat 

scenes), particularly in a Canadian agricultural context, has been studied, but significant 

room remains for improvement.  The specific goals of the remote sensing classification 

(Chapter 2) are: 

(i) to find the best possible classification approach from a limited selection of methods 

for determining multiple classes of agricultural and herbaceous land cover, and 
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(ii) to create land cover maps of agricultural and herbaceous areas which will be          

integrated into existing grizzly bear habitat maps for western Alberta. 

 Landscape metrics have been shown to be an important element in grizzly habitat 

selection (Linke et al., 2005).  Therefore, the specific goals of the second objective 

(Chapter 3) are to:   

i) identify landscape composition and spatial configuration in the agricultural areas of 

western Alberta, 

ii) determine if landscape composition and spatial configuration are related to grizzly 

presence or absence in an area, 

iii) determine which landscape metrics have the strongest relationships with certain 

grizzly population and biological measures that are available from collared bear GPS 

datasets, and 

iv) determine the extent of the difference between landscape metric values when 

calculated at different spatial and thematic scales.  

Accomplishing these objectives will allow for the creation of a more accurate and 

detailed land cover map covering areas of grizzly bear habitat.  A more accurate map 

could contribute to more accurate resource selection models (Boyce et al., 2002; Nielsen 

et al., 2002) and would give a better understanding of bear activity in agricultural areas.  

The increased thematic resolution (increased number of classes) of this map would also 

contribute to more robust calculation of landscape metrics in agricultural a reas.  

Landscape metrics have been shown by others (e.g. Linke et al., 2005) to be an important 

consideration when trying to understand grizzly bear presence in a landscape.  Applying 

these metrics to an agricultural area could play a role in further understanding the 
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relationship between the spatial configuration and composition of the landscape and 

grizzly presence in that landscape.  

1.5  Organization of Thesis 

 
The thesis has been divided into four parts, with the above literature review being 

the first.  Two research manuscripts have resulted from this study.  The first manuscript 

(Chapter 2) deals with testing a small selection of medium-resolution land cover 

classification techniques, and selecting and applying the most appropriate one for large-

area agricultural mapping in Alberta.  The second manuscript (Chapter 3) deals with 

analyzing the relationships between landscape metrics and grizzly bear  presence or 

absence in agricultural areas.   It is linked with the first manuscript in that it further 

explores the relationship between bears and agricultural areas from a landscape ecology 

point of view.  Unfortunately, the results from Chapter 2 were not available at the time 

that the research in Chapter 3 was being conducted.  However, a brief comparison 

between the older land cover map and the newly classified (higher thematic resolution) 

agricultural areas from Chapter 2 was examined in the context of calculating landscape 

metrics.  The overall contribution can be considered to encompass both remote sensing 

science and landscape ecology.  Finally, a fourth chapter integrates the findings of these 

manuscripts, focuses on the application of this work to wildlife habitat analysis, and 

discusses limitations of the research and future directions of s tudy. 
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2.  A Medium-Resolution Remote Sensing Classification of 

Agricultural Areas in Grizzly Bear Habitat 
  

2.1  Abstract  

 Habitat loss and human-caused mortality are the most serious threats facing 

grizzly bear (Ursus arctos L.) populations in Alberta, with conflicts between people and 

bears in agricultural areas being especially important.  To help manage and mitigate these 

effects, current habitat maps are needed.  The objectives of this research were to find the 

best possible classification approach from a limited selection of methods for determining 

multiple classes of agricultural and herbaceous land cover, and to create land cover maps 

of agricultural and herbaceous areas which will be integrated into existing grizzly bear 

habitat maps for western Alberta.  Spectral and environmental data for five different land-

cover types of interest were acquired in late July, 2007, from Landsat TM satellite 

imagery and field data collection in two study areas in Alberta.  Three different object-

based classification methods, one unsupervised and two supervised methods, were 

analyzed with these data to determine the most accurate and useful method.  The best 

method was the Supervised Sequential Masking (SSM) technique, which gave an overall 

accuracy of 88% and a Kappa Index of Agreement (KIA) of 83%.  Three of the 5 classes 

had an average KIA of greater than 95%, with the other two classes being above 72%.  

The SSM classification was then expanded to cover 6 more Landsat scenes, and when 

combined with bear GPS location data, it was discovered that bears in agricultural areas 

were found in Grass / Forage crops 77% of the time, with Small Grains and Bare Soil / 

Fallow fields making up the rest of the visited land-cover.  The bears were found in these 

areas primarily in the summer months.    
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 The results of this research will allow for the creation of a more accurate and 

detailed land cover map covering areas of grizzly bear habitat.  A more detailed map 

could contribute to more accurate resource selection models and would give a better 

understanding of bear activity in agricultural areas.  The increased thematic resolution of 

the map compared to current maps could also contribute to more robust calculation of 

landscape metrics in agricultural areas.  

2.2  Introduction and Background 

 

Grizzly bears require wilderness and seclusion from humans, as well as high 

quality, contiguous (connected) habitat (McLellan and Shackleton, 1988).  The term 

„habitat‟ in this manuscript will be defined as “the sum and location of the specific 

resources needed by an organism for survival and reproduction” , which is the definition 

put forward by McDermid et al. (2005).  Grizzly bears previously occupied the entire 

western half of North America, with their territory even including much of the Great 

Plains, but in the last 200 years their range has shrunk by as much as two-thirds.  Their 

range south of the Arctic Circle is limited to mountainous areas, isolated pockets, and 

national parks.  They are now classified as a „threatened‟ species (likely to become 

endangered in the near future in a significant portion of its range) in the contiguous 

United States (grizzly bears in Yellowstone National Park in the U.S.A. have been 

delisted, however), and it has been recommended by Alberta‟s Endangered Species 

Conservation Committee that the species be elevated from „may be at risk‟ status 

(believed to be at risk, but needing a detailed assessment for confirmation) to „threatened‟ 

status in Alberta as well (McLellan and Shackleton, 1988; Stenhouse et al., 2003). 
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Agriculture and its associated activities is a major cause of increased conflict 

between bears and humans, and a decline in bear populations.  Kansas (2002) identified 

reducing human-grizzly conflict on agricultural lands as a priority for mitigating the long 

term decline of the species.  In a study of grizzly-human conflict on agricultural lands in 

Montana, Wilson et al. (2005; 2006) found that there were many different attractants for 

bears on private lands that are a part of the natural bear habitat.  One of the most 

important factors was the use of riparian areas by bears as both habitat and transportation 

corridors (Wilson et al., 2005).  The bears use these areas to reach anthropogenic 

attractants, such as cattle, sheep, beehives, and boneyards.  The more attractants that were 

in an area, and the closer that area was to wetlands or riparian areas, the more likely the 

bears were to use that area as habitat.  When barriers such as fences were introduced, the 

rate of bear use dropped considerably.  For example, beehives that were protected by 

fencing were much less likely to be “attacked” by the bears than unprotected hives 

(Wilson et al., 2006).  In many cases in Montana, the original bear habitat has not been 

fragmented or physically modified.  However, its use has been changed, which brings the 

bears into conflict with people, and can be seen as an effective habitat loss.  Effective 

habitat loss is defined as an unwillingness of the bear to use suitable habitat because of 

“high levels of sensory disturbance or mortality risk” (Kansas, 2002).  

  The province of Alberta, Canada, also has a large agricultural footprint.  

Agriculture and related activities exist right up to the edge of the foothills of the Rocky 

Mountains.  The recommendation by Alberta‟s Endangered Species Conservation 

Committee that grizzly bears be elevated from „may be at risk‟ status to „threatened‟ 

status (Stenhouse et al., 2003) means that  appropriate management and conservation 
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planning will be required. Effective and current habitat maps will be necessary (Nielsen 

et al., 2006).  However, one problem currently facing grizzly bear habitat mapping in 

Alberta is the lack of a classification scheme that differentiates between different 

agricultural and herbaceous areas.  By finding an appropriate classification scheme for 

this purpose, the current land cover maps being used by the Foothills Model Forest 

Grizzly Bear Research Program (FMFGBRP) for grizzly habitat analysis will be updated 

with greater thematic resolution, which could lead to increased resource modeling 

accuracy.  The current area of interest for grizzly bear population viability analysis in 

Alberta is most of the western portion of the province, a huge area that renders traditional 

field based methods problematic for land cover mapping purposes; another technique is 

needed.  Due to their spatial and temporal flexibility, remote sensing methods of land 

cover classification are better situated to handle this problem of land cover classification 

over a large spatial range than field-based methods alone (McDermid et al., 2005).  Many 

studies of medium-resolution land cover classification have focused on agricultural 

applications (see Table 2.1). 

Table 2.1: Medium-resolution agricultural and herbaceous applications 

Application Study 

Crop yield prediction Lobell and Asner, 2003; Ferencz et al., 2004 
Crop nitrogen content Boegh et al., 2002 

Crop stress Estep et al., 2004 
Crop classification Aplin and Atkinson, 2001; Turker and Arikan, 2005 

Grassland discrimination / 

agricultural classification 

Price et al., 2002; Reese et al., 2002; El-Magd and 

Tanton, 2003; De Wit and Clevers, 2004; Bock et 
al., 2005; Baldi et al., 2006 

 

Approaches to large-scale, medium-resolution (Landsat, for example) land cover 

mapping, such as that done in this study, are still not well developed, however 

(McDermid et al., 2005).  There are many issues still to be overcome.  Land cover 
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classification of a large geographic extent (for example, covering multiple Landsat 

scenes), particularly in a Canadian agricultural context, has  been studied, but significant 

room remains for improvement.  The purpose of this research is to demonstrate the use of 

remote sensing for land cover classification in western Alberta, specifically focusing on 

the classification of herbaceous and agricultural areas in grizzly bear habitat.  The 

specific goals of this manuscript are: 

(i) to find the best possible classification approach from a limited selection of   

      methods for determining multiple classes of agricultural and herbaceous land               

      cover.  

(ii) to create land cover maps of agricultural and herbaceous areas which will be   

       integrated into existing grizzly bear habitat maps for western Alberta.  

Accomplishing these objectives will allow for the creation of a more accurate and 

detailed land cover map covering areas of grizzly bear habitat.  A more accurate map 

could contribute to more accurate resource selection models (Boyce et al., 2002; Nielsen 

et al., 2002), and would give a better understanding of bear activity in agricultural areas.  

The increased thematic resolution of this map would also contribute to more robust 

calculation of landscape metrics in agricultural areas.   

 

2.3  Study Area and Methods 

 
2.3.1 Study area and Imagery 

The research was conducted as part of the Foothills Model Forest Grizzly Bear 

Research Program (FMFGBRP) in west-central Alberta, Canada.  The study area for this 

project  covers sections within the greater 228 000 km2 study area that contain 
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herbaceous and agricultural areas, and that are within the natural range of the grizzly bear 

(Figure 2.1).  Two areas were examined in detail: one in the northern part of the province, 

located west of Grand Prairie ( the „North study area‟), and one in the south, located 

around the Nanton / Chain Lakes area  (the „South study area‟).  The two study areas 

were selected from agricultural areas that are within the current range of grizzly bears in 

the province, and that have bear GPS collar location data present within them.  Large 

portions of both of these study areas were also located within Landsat scene overlaps, 

which made cloud-free image acquisition more likely.   

The landscape of the North and South study areas are fairly similar, with both 

study areas consisting primarily of grassland and agricultural crops, with small patches of 

forest and shrubs scattered throughout.  The crops are predominately cereals (wheat 

varieties, barley, and oats), tame hay, and canola, with a scattering of others, such as 

legume crops (Agri-Food Statistics Update, 2007).  Both study areas have a high road 

density, mostly gravel grid roads, but also a few highways.  The South study area 

surrounds the Porcupine Hills, a region of moderate topographic relief that is not directly 

used for agriculture.  It acts as an extension of the foothills, but is surrounded on all sides 

by pasture and agricultural crops.  The South area has greater topographic relief than the 

North because of its proximity to the Rocky Mountain foothills.  The western portion of 

the South study area, the area that borders the foothills, is used primarily as natural 

pasture for cattle.  In the North study area, the Wapiti River is a major feature, bisecting 

the area west-to-east.  The area along the river is dominated primarily by Aspen trees 

(populus tremuloides) with some conifers mixed in, and has not been cleared for 

agriculture.   
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There was excessive soil moisture in the study locations in the spring of 2007; this 

delayed seeding, or prevented it altogether, especially in the North study area, resulting in 

more fallow and bare fields than normal.  The north area was hit harder in general by 

Figure 2.1: Map of Alberta showing collared grizzly GPS locations and the North 

and South study areas.  A description of the GPS location events is given in section 
2.3.2. 
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poor weather, and the crop quality was lower than that of the south area (Bergstrom, K., 

2007).  High temperatures in July and a lack of precipitation caused slower growth for 

pasture and tame hay, and poor conditions for non- irrigated field crops (Bergstrom, K., 

2007).  Average precipitation in May and June for the south study area was much higher 

than the 30 year mean, while for July and August it was lower.  July temperatures were 

also well above normals.  For the north study area, precipitation was above normal for 

May – August, but this precipitation was not evenly distributed across the region, leaving 

some areas very dry.  Average July temperatures were above, and August temperatures 

were below, monthly 30-year normals (Environment Canada, 2008). 

The imagery used was from the Landsat 5 TM sensor.  The spatial and spectral 

resolution of Landsat TM imagery is well suited for land cover classification at the level 

of detail required for this research, and has been used for other medium-resolution 

classification studies (e.g., Camacho-De Coca et al., 2004; Ferencz et al., 2004; Franklin 

and Wulder, 2002), with good results.  Landsat is also more efficient at covering large 

regions (as are present in this research) than sensors with greater spatial resolution, such 

as SPOT or IKONOS, due to amount of area that each image covers (170 x 185 km 

Landsat scene size vs. 60x60 km for the SPOT HRV sensor, for example).  Landsat is 

also the sensor being used for most of the Foothills Model Forest Grizzly Bear Research 

Program‟s land classification efforts, so it will match with previous and on-going work.  

Portions of both the North and South study areas were located within Landsat scene 

overlaps.  Overlapping scene paths effectively doubles the possible temporal resolution, 

and increases the chances of getting cloud-free images.   
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One scene was collected for each of the North and South Study areas.  In addition 

to these 2 scenes, 5 additional Landsat TM scenes and one Landsat ETM+ scene were 

used. (Table 2.2, Figure 2.4).  These additional scenes covered the remainder of the 

agricultural areas in western Alberta that are currently being mapped by the FMFGBRP.   

Table 2.2: Landsat scene acquisitions 

Sensor Path / Row Acquisition Date (dd/mm/yy) 

TM 47 / 21.62 (shifted) North study area 26/07/07 
TM 42 / 25 - South study area 23/07/07 

TM 45 / 21 03/09/03 
TM 44 / 22 13/08/04 

TM 44 / 23 17/09/05 
TM 43 / 24 25/08/05 
TM 41 / 26 27/08/05 

ETM+ 46 / 21 22/08/99 

 

2.3.2  Existing datasets 

A large database of grizzly bear GPS (Global Positioning System) location data 

was provided by the FMFGBRP.  In order to collect the data for this database, the FMF 

captured, immobilized, and radio-collared a sample of the grizzly bear population located 

throughout the bear‟s Alberta range.  Collars were placed on both male and female 

grizzly bears.  The resulting telemetry data from these collars was then transmitted to the 

FMF through a satellite uplink, a process that started in 1999 and is on-going.  A detailed 

methodology and results of this program can be found in Hobson (2005, 2006).   

GPS locations in purely agricultural locations (i.e., areas classified in this study) 

consist of 1270 locations, or 0.84% of the total of 151575 bear locations.  These 1270 

locations represent 18 different bears (10 male and 8 female).  The true number of bears 
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in these areas may be underestimated due to possible capture bias.  Bear capture attempts 

are not made in agricultural areas, but in more isolated areas (Hobson, 2005). 

A 10-class, object-based land cover classification of the FMF study area (Franklin 

et al., 2001; McDermid et al., 2006) was used as a starting point for the classification of 

the agricultural areas.  The classes in this base map (hereafter: FMF land cover map) 

include: Upland Trees, Wetland Trees, Upland Herbs, Wetland Herbs, Shrubs, Water, 

Barren Land, Snow/Ice, Cloud, and Shadow.  Using the Barren, Upland Herbs, and 

Wetland Herbs classes from the FMF land cover map along with a manually delineated 

agricultural mask (also now included on the FMF land cover map as an „Agriculture‟ 

mask), a herbaceous/agricultural mask was created and used to define the area to be 

classified (Figure 2.2).  The mask was later limited to areas that could be visually 

confirmed (either from satellite images or from field visits) to be currently under 

agricultural use.  The results of the classification described in this chapter will then be 

applied to the FMF land cover map to increase its thematic resolution. 

 

2.3.3 Field methods 

A stratified random sample scheme was used to collect field level data in late 

July, 2007, which corresponds to the week in which the images that cover the North and 

South study areas were taken (the stratification of the classes was done with an 

exploratory 10-class unsupervised k-means clustering classification).  A random 

sampling design was chosen for a number of reasons.  First, as its name implies, it is a 

random sampling scheme, which reduced the probability of operator bias in selecting 

plots.  Also, by using the stratified method, it could be assured that a number of samples 
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from each class were obtained, from which individual conclusions about each class could 

then be drawn.  Most importantly, this sampling design allowed statistical analyses to be 

applied to the results.  The stratified random sampling scheme is commonly used in land 

cover classification research (e.g., Ban, 2003; Brown de Colstoun et al., 2003).  A target 

of 35 sample plots per class was used during data collection, which is following results 

by Van Niel et al. (2005), who found that, while it is usually recommended to have n = 

Figure 2.2: Red areas define the mask used to select the areas to classify. 
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30p (where p = number of spectral bands being used for the classification) samples for 

each class, 95% of that information can be found in only 3p or 4p for each class.  Using 

Landsat TM bands 1-7 (excluding the thermal band, 6), 3p – 4p gives 18 - 24 samples for 

each class.  Additional samples were added (30% of the total) for validation purposes, 

giving 24 - 35 samples ideally needed per class.  In addition, samples of opportunity were 

taken wherever possible to offset random plots that could not be accessed on the ground.  

An effort was made to make selection of these samples of opportunity as random as 

possible, while preserving the stratified nature of the dataset.  The total number of 

opportunistic samples was small, and for the purposes of this study will be considered 

part of the random dataset.  Data collected consisted of ground cover type of the field as 

it related to the selected classes. The ground information was gathered visually, with 

locations confirmed by GPS.   

A total of 5 classes were used, consisting of Bare Soil/Fallow, Canola, 

Grass/Forage, Legumes, and Small Grains (which includes barley, wheat, and oat 

varieties).  The sample sizes for each class are not equal, but are representative of the 

overall amount of area covered by those classes in the study regions (Agri-Food Statistics 

Update, 2007).  The Legume class did not meet the target of 35 samples, but the 15 

samples collected were enough to derive a meaningful spectral response for the class.  All 

other classes met the minimum target.  A total of 506 samples were collected, with 30% 

of the samples from each class being saved for validation (Figure 2.3). 



45 

 

The classes were chosen because they corresponded with the land cover types that 

represent the most land area in the agricultural region of Alberta (Agri-Food Statistics 

Update, 2007).  Five classes were chosen based on an initial exploration of the data, 

which revealed that certain crop types, such as wheat and barley, were spectrally almost 

identical.  To enable greater classification accuracy, crops such as barley, wheat and oats 

were combined into a single class, Small Grains, an approach that has been taken by 

others (e.g., Martinez-Casanovas et al., 2005), for similar reasons.  

The average spectral reflectance values of each classes were examined for 

Landsat bands 1-5 and 7, and compared for the two study areas.  The spectral analysis 

Figure 2.3: Distribution of ground sample points in the North and South study areas 
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was used as part of an initial exploration of the data, and to help determine the most 

distinct classes, which is helpful for one of the classification methods.  The differences in 

the reflectance values between the two studies was also helpful for determining 

differences in crop status between the two areas.  

2.3.4 Image pre-processing 

 
The Landsat scenes (both TM and ETM+) were orthorectified using 5th order 

polynomial geometric correction in PCI OrthoEngine.  Ground control points (GCPs) 

were collected from existing geo-referenced scenes of the same areas; a minimum of 30 

GCPs were used for each image.  Root Mean Square (RMS) error for all images was 

lower than 0.2 pixels (6m).  Radiometric and atmospheric correction was performed 

using the ATCOR-2 algorithm in PCI Geomatica 10.  ATCOR-2 (Richter, 2008) uses a 

sensor-specific atmospheric database of look-up tables containing the results of pre-

calculated radiative transfer calculation (using the MODTRAN4 radiative transfer code; 

see Berk et al., 1999) to remove the effects of the atmosphere from the spectral values of 

the data, as well as correcting the influences of solar illumination and sensor viewing 

geometry.  Output from this algorithm is surface reflectance for each Landsat band 1-5 

and 7.  Surface reflectance is a true measure of reflected radiation at the ground surface.  

It takes into account factors such as the interaction of the solar radiation with the 

atmosphere, terrain elevation, sun illumination angle, and sensor viewing geometry 

(Richter, 2008; Song et al., 2001).  Surface reflectance was used for a couple of reasons.  

First, it is required for the use of a non- linear vegetation index (NDMI), which was used 

as one of the input channels for the classification methods (Song et al., 2001).   Secondly, 

as the application of these data is over a large area, it is beneficial to have a classification 
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system for one place / time, and be able to apply that same classification to other places / 

times (Song et al., 2001);  this can be accomplished by having actual surface reflectance 

rather than top-of-atmosphere reflectance, which can vary depending on place and time.  

Using surface reflectance also allows the classification to be extended to other Landsat 

scenes for which ground data are not available.   

In addition to the 6 Landsat bands, The tasseled cap transformation of Crist and 

Ciccone (1984) was used to generate the standard orthogonal components brightness, 

greenness, and wetness.  The spectral features of the tasseled cap transform can be 

directly related to important physical parameters of the ground surface (Crist and 

Ciccone, 1984).  Tasseled cap values for the Landsat 5 TM scenes were generated using 

the Tassel algorithm, with L5 (Landsat 5) modifier, in PCI Geomatica 10; the Landsat 7 

ETM+ Tassel values were generated with same algorithm, but used the L7 (Landsat 7) 

modifier.  The Normalized Difference Moisture Index, or NDMI (equation 2.1), was also 

calculated for each scene.  The NDMI (Wilson and Sader, 2002) takes advantage of the 

strong absorption of Landsat band 5 (a short-wave infrared band) by soil water, and the 

strong reflectance of Landsat band 4 (a near- infrared band) by healthy green vegetation 

(Jensen, 2000).  A total of 10 bands, or channels, were therefore used (Landsat 1-5, 7, 

brightness, greenness, wetness, NDMI).   

NDMI = 
      (eq. 2.1)

 

  band4 = TM or ETM+ band 4  
band5 = TM or ETM+ band 5 
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2.3.5 Classification 

While most traditional remote sensing land cover classification is pixel-based, 

many newer studies are turning to object-based classification methods as a way to 

improve accuracy (e.g., Aplin and Atkinson, 2001; Smith and Fuller, 2001; Lloyd et al., 

2004; Walter, 2004; Bock et al., 2005).  Object-based classification divides the satellite 

image into objects or segments that represent a homogenous unit on the ground.  The 

entire object is classified based on the overall statistical properties of the pixels that make 

up the object, instead of classifying each pixel separately as in pixel-based classifications 

(e.g., McIver and Friedl, 2002).  Three different object-based classifications were 

performed and analyzed; one unsupervised classification, and two supervised 

classifications.   

The classification was initially only carried out over the two North and South 

2007 study areas.  The North and South study areas were classified separately to reduce 

differences relating to weather conditions, moisture levels, and phenology.  

The unsupervised classification method used the PCI Geomatica 10 

implementation of the fuzzy k-means classifier (Bezdek, 1973).  Fuzzy k-means is an 

iterative process that uses fuzzy membership grades to assign each pixel membership to 

each of the classes in the spectral feature space, based on the Euclidean distance between 

the spectral value of the pixel and the mean spectral value of each class (Wiemker, 1997).  

The pixel is assigned to the class to which it has the highest membership.  Fuzzy k-means 

was chosen as it is one of the most accurate unsupervised methods that is available in 

commercial software packages (Cihlar et al., 2000).  Unsupervised methods in general 

have also given good classification results for agricultural areas (e.g., Cohen and 
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Shoshany, 2002). The fuzzy k-means classifier was used to first create a 30 class pixel-

based classification.  Sample classes and expert knowledge were used to merge those 

classes down to the 5 to be used for the classification.  The fuzzy k-means classification 

was then combined with the image objects for the scenes, derived from Definiens 

software, and the modal class of the unsupervised classification was then calculated and 

assigned for each object using the VIMAGE algorithm in PCI Geomatica 10.  Using the 

modal class to assign pixel classifications to an object has been used by others, such as 

Turker and Arikan (2005), with good results.  

Two supervised classification methods were also analyzed, both completed using  

Definiens Professional software.  The first of these was a nearest neighbor (NN) fuzzy 

membership classification using an automated feature space optimization based on 

selected class samples (70% of field samples, with 30% saved for validation).  Nearest 

neighbor classification has been used by Bock et al. (2005) for habitat mapping, with 

good results, as well as by Wang et al. (2004), who used it for mapping Mangrove 

forests, and also got good results.  The NN classification method first defines a feature 

space in which each image object becomes a point.  A feature space is a combination of 

features represented in a multi-dimensional space, where each feature is an orthogonal 

axis within the space.  The distance in the feature space to the nearest sample of each 

class is calculated for every object in the image, and class is assigned based on the 

smallest distance (Definiens AG, 2006).  The distance values are shown in a distance 

matrix, which is simply a way of representing the largest distance between the closest 

samples of classes in the feature space (Definiens AG, 2006).  Distances in the distance 

matrix were analyzed as relative values; that is, a distance of 2 (for example) from an 
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object to the nearest sample would mean that the object was twice as close in the feature 

space than if it was at a distance of 4 from the nearest sample.  The distances themselves 

are unit- less.  The feature space in which this occurs was calculated from the mean and 

standard deviation values of each object in each of the 10 channels used.  The optimum 

feature space dimension could therefore be between 1 and 20, with any combination of 

channels and their mean or standard deviation.  Texture measures were not included in 

the feature space calculation, as it was found when testing them that they did not 

significantly change the feature space distances between the classes; i.e., adding texture 

measures did not increase the accuracy of the resulting classification.  

The second supervised classification was a manually delineated sequential masking 

process that masked out the most highly separable crops as they were classified.  This 

second classification technique will be called the Supervised Sequential Masking (SSM) 

classification.  The SSM classification was chosen because it is similar in theory to a 

decision tree classifier, with many of the same benefits (Franklin and Wulder, 2002; 

Brown de Colstoun et al., 2003; Chubey et al., 2006):   

 It is capable of using ancillary data about the area to aid in classification, 

including non-remotely sensed data.  

 It can handle both categorical and continuous data.   

 It is transparent, in that it is possible to see every calculation being done.  

 It is simple to implement.    

The SSM classification is done using sequentially executed processes based on 

mean values for the different channels (TM bands, Tasseled Cap results, NDMI) in the 

image.  The means and standard deviations of the objects in each band were examined to 



51 

 

determine the best way to separate the classes, similar to the process used in the NN 

classification, only done manually.  The classes that were the easiest to distinguish were 

then identified, based on analysis of the feature (mean, standard deviation) values and the 

spectral response curves of the classes in each Landsat band (section 2.3.2).  The classes 

that were most easily distinguishable were Canola and Bare Soil / Fallow, so these 

classes were classified first, followed by Legumes, Grass / Forage, and Small Grains, in 

that order.  Once a class is classified, it is masked out and cannot be changed later in the 

classification process.  In this way, each class is sequentially masked out of the 

classification, until nothing is left unclassified (hence the Supervised Sequential Masking 

nomenclature).  A similar sequential masking process, though with a different classifier, 

was used to good effect by Turker and Arikan (2005) in their agricultural classification.  

The process works backwards, in a way, by classifying all unclassified objects as the 

class being examined.  A rule set is then developed that determines what is not 

characteristic of that class, based on the spectral properties of the channels being 

examined, and the sample training data; objects that are found to not be characteristic of 

the class are made „unclassified‟ again.  Eventually, all that is left classified is the objects 

that belong to the class being examined.  The SSM classification accuracy may be 

influenced by the analyst‟s channel and feature selection.    

 

2.3.6 Validation 

 Validation, or the assessment of accuracy, was carried out using quantitative 

statistical tests.  There is much discussion in the literature about what constitutes a „good‟ 

accuracy assessment for a thematic map (e.g., Foody, 2002; McDermid et al., 2005).  
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There is agreement that there is not one single, universally accepted measure of accuracy; 

rather, it is better to use a combination of tests, each sensitive to different properties of 

the data.   

 Validation of the results was done using both the standard error matrix and the 

Kappa Index of Agreement (KIA) for both overall and class specific results.  The error 

matrix is a site-specific measure of the correspondence between the image classification 

result and the measured ground conditions, and is a standard first step for accuracy 

assessment (Foody, 2002).  From the error matrix, user‟s, producer‟s, and overall 

accuracies were obtained.  User‟s accuracy is a measure of reliability, or the probability 

that a pixel or object classified on the map actually represents that class on the ground.  

Producer‟s accuracy indicates the probability of a reference pixel being correctly 

classified.  Overall accuracy is determined by dividing the total number of correctly 

classified pixels by the total number of pixels in the error matrix.  Overall accuracy is 

therefore a measure of accuracy of all classes, whereas user‟s and producer‟s accuracy 

measure the accuracy of individual classes.    

 KIA is a discrete multivariate technique used to statistically evaluate the accuracy 

of the classification maps and error matrices.  One of the attractive features of KIA 

analysis is that it takes into account the effect of chance agreement in the error matrix; it 

also takes into account unequal class sizes.  KIA can be a measure of both overall 

accuracy and of individual class accuracy.  

 Each of these statistics (user‟s, producer‟s, overall, and KIA) are useful not only 

for accuracy assessment, but also for comparisons of accuracy between different analysts 

and different classification methods (Langley et al., 2001; Foody, 2002).   
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 The field data were used as the “ground truth” for the purpose of the accuracy 

assessment, with 30% of the total field data collected from each class saved for validation 

purposes and not used as training data during the classification process. 

 

2.3.7 Application 

 The most accurate and useful classification method from among those tested was 

applied to the additional six Landsat scenes.  Figure 2.4 shows the coverage area of these 

additional scenes, plus the two scenes covering the north and south study areas.  The 

complete classification of the eight Landsat scenes was then added to the FMF land cover 

map, with the new classification being overlain on top of the existing classification as one 

large image mosaic.   

Figure 2.4: Blue areas show outlines of the 8 Landsat scenes used to 
classify the agricultural area.  The red area is the agricultural mask. 
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The Grizzly bear location data were also analyzed to determine if there were any 

relationships between bear locations in agricultural areas and crop / land cover type.  The 

analysis was done by selecting every newly classified image object that contained a bear 

location point.  The class of each selected image object was then noted, as well as the 

month in which the bear location data were recorded for that particular image object.  

Bear locations were also analyzed separately for each class in which they were present, to 

look for any seasonal visit patterns.  

 

2.4  Results and Discussion 

2.4.1  Spectral properties 

 
There are some minor differences between the spectral responses of the crops 

between the north and south study areas (Figures 2.5 and 2.6).  The classes are separated 

more in the North study area, especially in TM band 4.  Different spectral responses are 

to be expected, as the two areas are nearly 700 km apart, and have different weather 

patterns and moisture levels. Planting dates, crop phenologies, and crop conditions varied 

significantly throughout both the northern and southern areas, even for the same crop 

type among adjacent fields.  The Small Grains class cannot be separated into its 

constituent crop types (wheat varieties, barley, oats) without a severe drop in 

classification accuracy due to these varying spectral properties; there is so much spectral 

overlap between these different cereal crops that they become nearly indistinguishable.  

The peaks for the Legumes and Small Grains classes are much lower in the North image 

as well.  There are similarities in the shapes of the curves of the Grass / Forage and Bare 
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Figure 2.5: Spectral values (in surface reflectance) of the different classes in 

the main Landsat TM bands for the South study area. 

Figure 2.6: Spectral values (in surface reflectance) of the different 

classes in the main Landsat TM bands for the North study area. 
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Soil/Fallow classes.  The three other classes have higher TM band 4 and lower TM band 

5 values. 

2.4.2 Classification results 

 
The average overall accuracy for the unsupervised classification was 59.4%, with 

the accuracy of the north scene (65.7%) being higher than that of the south scene 

(53.1%).  The average Kappa Index of Agreement (KIA) was also low, at 46.40%, with 

the north scene again doing better than the south (56.4% versus 36.4%).  Certain classes 

had a higher accuracy than others, and there were large variations between producer‟s 

and user‟s accuracy within the same class.  The Bare Soil / Fallow class, for example, had 

Figure 2.7: Class accuracy results for the unsupervised classification. Overall accuracy was 

59.4%. 
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an average producer‟s accuracy of 97.3%, and an average class KIA of 97.0%, but a 

lower user‟s accuracy of 26.5%.  Figure 2.7 details these unsupervised results (see 

Appendix E for tabled data).   

The supervised classifications gave higher accuracy results than the unsupervised 

classification.  The supervised NN classification had an overall average accuracy of 

85.7%, with an average KIA of 80.1%.  The accuracy of the north scene was again higher 

than that of the south, with an overall accuracy of 86.7% and a KIA of 82.4% compared 

to the south scene‟s 84.8% overall accuracy and 77.8% KIA.  Figure 2.8 gives these 

details.  The feature space with dimension 8 (8 object features) was found to have the 

Figure 2.8: Class accuracy results for the supervised NN classification. Overall accuracy 
was 86.7%. 
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highest average separation distance (0.567) for the South study area.  The features used 

can be seen in Table 2.3, and the distance matrix showing the separability of each class 

using this feature space can be seen in Table 2.4.  The feature space and distance matrix 

for the North study area can be seen in Tables 2.5 and 2.6. 

Table 2.3: South NN feature space.  The best separation 
distance is the largest distance between the closest 

samples of classes within this feature space. 

Standard deviation: Mean: 

Wetness Wetness 
Greenness TM 2 

TM 2 
TM 3 
TM 4 

TM 3 

Dimension: 8 

Best separation distance: 0.57 

 

 

 

 

 

Table 2.4: South NN distance matrix 

Class / Class 

Bare Soil / 

Fallow Canola 

Grass / 

Forage Legumes Small Grains 

Bare Soil / Fallow 0 8.9 0.7 7.2 2.6 
Canola 8.9 0 6.0 0.6 2.9 

Grass / Forage 0.7 6.0 0 5.0 0.6 

Legumes 7.2 0.6 5.0 0 2.1 
Small Grains 2.6 2.9 0.6 2.1 0 

Table 2.5: North NN feature space.   

Standard deviation: Mean: 

NDMI NDMI 

Brightness Greenness 
Greenness TM 1 

Wetness TM 2 
TM 1 TM 3 
TM 2 TM 4 

TM 3 TM 5 
TM 4 TM 7 

TM 5  
TM 7  

Dimension: 18 
Best separation distance: 0.58 
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The supervised sequential masking (SSM) technique gave the highest 

classification accuracies of the methods tested, with  the highest average overall accuracy  

 (88.0%) and KIA (83.4%) values.  Figure 2.9 gives these results in more detail.  The 

accuracy of the south scene was higher than that of the NN method, but the north scene 

Table 2.6: North NN distance matrix 

Class / Class 
Bare Soil / 

Fallow Canola 
Grass / 
Forage Legumes Small Grains 

Bare Soil / Fallow 0 7.9 1.5 10.1 4.3 

Canola 7.9 0 3.7 0.9 2.1 
Grass / Forage 1.5 3.7 0 4.9 0.6 

Legumes 10.1 0.9 4.9 0 1.6 

Small Grains 4.3 2.1 0.6 1.6 0 

Figure 2.9: Class accuracy results for the SSM classification.  Overall accuracy was 88%. 
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had slightly lower accuracy results than the NN method (Figure 2.10). Individual  

class accuracies were also very good, with classes such as Bare Soil / Fallow, Canola, and 

Peas having average KIA per class values above 95%. The lowest accuracy was the 

southern Bare Soil / Fallow class user‟s accuracy, at 44%.  The process trees used for the 

North and South images (as well as the additional Landsat scenes) can be seen in 

Appendix C. 

The unsupervised classification gave lower than expected results, with the North 

study area classification accuracy being higher than that of the South study area.  These 

relatively low accuracy figures could be the result of the varying crop conditions.  Two 

Figure 2.10: Overall accuracy and KIA for all three classification methods 
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adjacent fields could contain a homogenous cover of identical crops, but be in two 

different stages of growth.  Differences in crop phenology such as these can result in the 

classifier identifying the crops as different, when they are in fact the same.  Early stage 

cereal crops are closer spectrally to grasses than to late stage cereal crops, so there is 

much class confusion with this method.  Training samples were used to help amalgamate 

the unsupervised classes into the final 5 classes examined, but often a homogenous field 

would be made up of multiple classes with this classifier.   

Another factor in the lower accuracy was the confusion between Grass / Forage 

and Bare Soil / Fallow.  Confusion between these classes was due to some grass pasture 

fields being heavily overgrazed, which results in very low biomass, and spectral 

properties that mimic fallow fields.  The same confusion effect can also be seen in the 

supervised Nearest Neighbor classification, as well as the spectral response curves for the 

classes. 

The distance matrices for the NN classification are good indicators of crop 

separability levels for all of the classifications.  Canola and Legumes have a relatively 

low class separation distance, when compared to classes such as Canola and Bare Soil / 

Fallow.  Grass / Forage and Small Grains also have a low class separation, in addition to 

the Grass / Forage and Bare Soil / Fallow relationship mentioned above.  The Grass / 

Forage class is itself very diverse, containing many different types of natural grasses, 

planted feed crops, and herbaceous forage.  The Grass / Forage class is therefore a very 

broad class that contains elements of many of the other classes, hence the spectral 

similarity with other classes.  Canola and Legumes generally have a high class separation 

distance from other classes (except with each other, as mentioned above).  For the Canola 
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class, this is most likely due to the bright yellow flowers that are present on the canola 

plant.  These flowers appear to have a very high spectral reflectance, and canola fields 

can often be identified on unmodified Landsat images shown in true color, showing up as 

a bright yellowy-green color.  Legumes also have a distinct green color, and can be 

spotted on true-color imagery.  A higher separability for some classes is reflected in the 

class accuracy results, with Canola, Legumes, and Bare Soil / Fallow having, on average, 

the highest classification accuracies.  Classes that are more confused with others, such as 

Small Grains and Grass / Forage, generally have lower classification accuracies.  

The difference in the accuracy between the North and South study areas using 

both of the supervised classifications likely has a number of explanations.  First of all, the 

differences in the average spectral values of the crops, though slight, is enough to show 

that there are different growing conditions between the two areas.  The north area was hit 

harder by poor weather, and the crop quality was lower than that of the south.  

Differences in crop quality mean that there is again more confusion between the crops, as 

poor quality crops move farther away spectrally from their class.  There may also have 

been differences in the quality of the training sites chosen for each area.  That is, some 

training sites may be more representative of a crop type than others, depending on the 

factors such as the condition of the field, planting date, or soil moisture content.  The 

SSM classification in particular is unique in that classification accuracy can be increased 

or decreased depending on the analyst‟s ability to correctly identify the best channels and 

features to use for class discrimination.  The specific values of those features that are 

chosen to represent each class can also affect the accuracy.  Thus the classification 

accuracy will vary depending on differences in homogeneity of the crops, weather and 
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moisture patterns, crop phenology, crop condition, and the abilities of the analyst to 

determine those differences. 

  The SSM classification is the best classification of those tested to reach the 

stated goals of this research, for a number of reasons.  The SSM classifier had the highest 

average overall accuracy and the highest overall KIA value.  It was also the most 

adaptable classification scheme; it can be extended to cover areas where on-the-ground 

training data is not available.  In a project such as the FMFGBRP, which covers a large 

amount of land and needs multiple Landsat scenes to cover it all, this is a very important 

factor.  Training sites from other scenes can be used to train the classifier, which can the n 

be adapted to better suit the current area being looked at.  The process trees upon which 

the SSM classification is based are easy to change or refine based on new information, 

which is something that cannot be easily done with the other classification methods 

examined.  The SSM classifier is also able to adapt to different climatic, biophysical, and 

phenological conditions across the entire mosaic of scenes.  The basic theory behind this 

classification can also be applied to other land-cover types, such as wetlands.  In short, 

the SSM classification allows for increased flexibility for current and future mapping 

needs, while at the same time reducing operational costs by eliminating the need for a 

massive field campaign across a large area.     

2.4.3  Completed Mosaic 

 
 Due to the higher average accuracies, as well as other benefits, such as easy 

adaptation to new areas without training sites, the SSM method was chosen as the best 

method of classification, and was applied to the other six Landsat scenes (5 TM, 1 

ETM+) that make up the agricultural area in the Foothills Model Forest Grizzly Bear 
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Research Program (FMFGBRP) study area.  The complete mosaic, with the SSM 

agricultural classification can be seen in Figure 2.11.  The agricultural classification was 

added to the existing FMF land cover map, increasing its thematic resolution.  There are 

some class similarities between the SSM and FMF classified parts of the map.  For 

example, the SSM Bare Soil / Fallow class is spectrally similar to the Barren class of the 

FMF map, though the SSM class represents a different use of the land cover.  Another 

example is the SSM Grass / Forage class, which is similar spectrally to the Upland Herbs 

class of the FMF map, though again the use of the land cover is different between these 

two classes, with the SSM class existing within an agricultural framework.  The new 

SSM land cover map could contribute to more accurate resource selection models (Boyce 

et al., 2002; Nielsen et al., 2002) and would give a better understanding of bear activity 

in agricultural areas.  The increased thematic resolution of this map could also contribute 

to more robust calculation of landscape metrics in agricultural areas (see Chapter 3).  

2.4.4  Grizzly Location Data: 

 
 A total of 502 agricultural image objects from the SSM classification contained 

grizzly bear location data.  Of those, 23 (4.6%) were classified as Bare Soil / Fallow, 386 

(76.9%) as Grass / Forage, and 93 (18.5%) as Small Grains (Figure 2.12).  The location 

of these points was in or near the foothills region of the province, which means that most 

of the Grass / Forage polygons would be represented on the ground by natural prairie 

grasses and shrubby areas, rather than planted hay or feed crops as are more common in 

the eastern areas of the study region. 
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 Many of the bear locations skirt the edge of the agricultural area without actually 

entering it.  The bears appear to prefer the forested regions, entering agricultural land 

only at the margins, or travelling through the river corridors that dissect the landscape.  

Figure 2.11: Completed mosaic with SSM classification, showing new agricultural  
classes (top 5 in legend) with those of the FMF land cover map. 
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 These points were collected from the GPS collars of 18 different bears, 10 male 

and 8 female.  The majority of the points (66.9%) represent data from the months of July, 

August, and September.  Figure 2.13 breaks down the monthly locations of the bears 

within the agricultural area.  The same seasonal pattern also holds true when the classes 

Small Grains and Grass / Forage are looked at separately, with the majority of the points 

located in these classes being from the mid- late summer months of July, August, and 

September.  The Bare Soil / Fallow class, which makes up only 4.6% of the total, is more 

uneven in monthly distribution (class specific breakdowns of monthly bear location can 

be found in Appendix D).  

18.5% 4.6% 

Figure 2.12: Distribution of bear location points within newly classified (SSM) 
agricultural classes. 
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While the percentage of total bear location points appearing in agricultural areas 

is low, the actual number of GPS collar location points that do appear (1270 points 

representing 18 different bears) is still significant, especially when the type of land-cover 

visited and the time of the visits is considered. 

The majority of the locations occurred in the Grass / Forage class, which, in the 

marginal areas where the bears are present, usually consists of natural grasses, pastures, 

and planted feed crops such as oats and alfalfa.  The bears also visit areas classified as 

Small Grains.  The bears visit these locations most frequently in the summer months of 

July, August, and September, which is the time of year when the crops and grasses are 

mature.  The Bare Soil / Fallow class, which makes up only 4.6% of the total agricultural 

Figure 2.13: Bear presence in agricultural areas, shown by month.  Months represented by 

green slices showed the highest bear presence. 
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areas visited by the bears, is more uneven in monthly distribution, with the majority of 

visits taking place in June, July, and September (see Appendix D).  This uneven 

distribution could have resulted because these bare fields don‟t contain a food supply; it 

may also be related to the relatively low visit rate to this class, which means the data 

available may not be a good representation of their presence in this land cover type. 

2.5  Conclusion 

 

The objectives of this research were to test a small selection of classification 

methods, and of those methods, find the one most appropriate for determining multiple 

classes of agricultural and herbaceous land cover for the purpose of land cover mapping 

in areas of grizzly bear habitat.  The most appropriate method was determined to be the 

Supervised Sequential Masking classification, which gave an overall accuracy of 88% 

and a Kappa Index of Agreement (KIA) of 83%.  It had the highest classification 

accuracies, was the most operationally useful, and it is flexible and easily expandable to 

other classification problems.  The SSM demonstrated some of its utility with the 

examination of the grizzly bear locations within the agricultural areas in Alberta.  The 

results from the analysis of this data show that food availability may play a part in the 

bears‟ use of the agricultural area in Alberta, so the SSM land cover map may be useful 

for resource selection and food availability models that could help with grizzly bear 

management in the agricultural areas of the province. 
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3.  Relationships Between Landscape Spatial Properties and 

Grizzly Bear Presence in Agricultural Areas in Alberta 
 

 

3.1 Abstract 

 Management plans to reduce problem bear conflicts in agricultural areas are seen 

as one of the strategies with the greatest potential to mitigate human- induced harmful 

effects on grizzly bear (Ursus arctos) populations in Alberta.  Agricultural practices 

change the physical structure and composition of the landscape.  The purpose of this 

research was to determine which, if any, landscape configurational and compositional 

metrics are related to grizzly bear presence or abundance in an agriculture-dominated 

landscape.  Locational data for 8 bears was examined in an area southwest of Calgary, 

Alberta.  The 4494 km2 study area was divided into 107 sub- landscapes of 42 km2.  Five-

meter spatial resolution IRS panchromatic imagery was used to classify the area and 

derive compositional and configurational metrics for each sub- landscape.  It was found 

that the amount of agricultural land did not explain grizzly bear use; however, secondary 

effects of agriculture on landscape configuration did.  High landscape patch density and 

variation in distances between neighboring similar patch types were seen as the most 

significant metrics in the abundance models; higher variation in patch shape, greater 

contiguity between patches, and lower average distances between neighboring similar 

patches were the most consistently significant predictors in the bear presence / absence 

models.  Grizzly bears appeared to prefer areas that were structurally correlated to natural 

areas, and avoided areas that were structurally correlated to agricultural areas.  Grizzly 

bear presence could be predicted in a particular sub- landscape with 87% accuracy using a 

logistic regression model.  Between 30% and 35% of the grizzlies‟ landscape scale 
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habitat selection was explained using these models.  Landscape metric values are 

dependent to some degree upon the spatial and thematic resolution of the imagery used to 

generate them.   

 

 

3.2  Introduction and Background 

 
 Human-caused mortality, along with habitat loss, are the most serious threats 

facing grizzly bear (Ursus arctos L.) populations in Alberta (Gibeau et al., 2002; Kansas, 

2002).  Mortality and habitat loss is most often caused by uncontrolled human access and 

industrial development activity in bear habitat.  The term „habitat‟ in this manuscript will 

be defined as “the sum and location of the specific resources needed by an organism for 

survival and reproduction” , which is the definition put forward by McDermid et al. 

(2005).  „Fragmentation‟ in this thesis refers to the more general principle of land 

transformation in which a large habitat is broken into smaller pieces by a spatial process 

(Forman, 1995).  Fragmentation will therefore lead to an overall loss of habitat and 

increased isolation of the remaining habitat pieces.   

Activities such as oil and gas exploration and extraction, forestry, agriculture, and 

recreation all contribute to grizzly bear habitat fragmentation and loss (Garshelis et al., 

2005).  Another important factor is the network of roads and trails that all o f the 

aforementioned activities depend on, as well as the seismic exploration lines that are cut 

for oil and gas exploration (Mace et al., 1996; Linke et al., 2005).  These linear features 

allow access to otherwise remote areas by people, which leads to conflict and a declining 

bear population (Kansas, 2002).  Fragmentation not only fragments the landscape, but 

reduces the total area of available habitat, and may limit grizzly bear movement.  
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Management plans to reduce problem bear conflicts in agricultural areas were mentioned 

by Kansas (2002) as one of the strategies with the greatest potential to mitigate human-

induced harmful effects on grizzly bear populations in Alberta.  It has also been 

recommended by Alberta‟s Endangered Species Conservation Committee that the species 

be elevated from „may be at risk‟ status to „threatened‟ status (Stenhouse et al., 2003).  

Any change in status would require appropriate management and conservation planning, 

including management plans for agricultural areas that are a part of traditional grizzly 

habitat.  

 The purpose of this research is to investigate the possible relationships between 

metrics that represent landscape structure and grizzly bear (Ursus arctos) presence in 

agricultural areas.  The characteristics of certain landscape elements and landscape 

composition and configuration are examined to identify their relationships with grizzly 

bear location information.  Using satellite imagery, existing bear location GPS data, and a 

statistical landscape analysis program (FRAGSTATS) this research is designed to 

determine the configurational and compositional differences between areas that the bears 

use and areas that they avoid in the agricultural landscape.  Information about these 

relationships between landscape and bear presence could be critical in determining land 

management practices in agricultural areas that border current grizzly bear habitat. 

 

3.2.1 Landscape Modification and Fragmentation 

 

 This manuscript will follow the definition of „landscape metrics‟ as outlined by 

McGarigal (2002), where it refers to indices developed for categorical maps, and “is 

focused on the characterization of the geometric and spatial properties of categorical map 
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patterns represented at a single scale.”  Landscape metrics act as the quantitative link 

between spatial patterns of the landscape and ecological or environmental processes, such 

as animal movement and habitat selection. (O‟Neill et al., 1988; Narumalani et al., 2004).  

 Landscape metrics have been grouped into four main categories, which describe 

different parameters about the landscape being examined: i) patch area, ii) edge and patch 

shape, iii) diversity, and iv) landscape configuration, which includes measures of 

connectivity, proximity, and dispersion, among others (Herzog and Lausch, 2001; Ivits et 

al., 2002).  Patch shape, for example, can often be an indicator of human manipulation of 

the landscape (O‟Neill et al., 1988; Narumalani et al., 2004), which results in more 

regular, geometric shapes and straight edges.  Landscape configuration metrics can be 

used to measure the amount of fragmentation of the landscape, which is important in 

many habitat and ecology studies.      

 Landscape metrics have been shown to contribute to the explanation of species 

presence and abundance (McGarigal and McComb, 1995; Linke et al., 2005), habitat loss 

and fragmentation (Linke et al., 2005), and the effects of ecotones and corridors on 

species movement (Bowers et al., 1996).  They have also been used extensively for 

describing habitat function and landscape pattern (Herzog and Lausch, 2001), especially 

in the field in landscape ecology.  It has been well documented that grizzly bears are 

affected by landscape structure, especially when caused by anthropogenic landscape 

modification and fragmentation (Mace et al., 1996; Kansas, 2002; Garshelis et al., 2005; 

Linke et al., 2005).  Anthropogenic effects on grizzlies have been shown in oil and gas 

exploration and extraction, (McLellan and Shackleton, 1989; Linke et al., 2005) forestry 

(Apps et al., 2004; Nielsen et al., 2004; Nielsen et al., 2006; Nams et al., 2006), road 
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development (McLellan and Shackleton, 1988; Mace et al., 1996; Wielgus et al., 2002; 

Chruszcz et al., 2003; Waller and Servheen, 2005), and agriculture (Wilson et al., 2005; 

2006). 

3.2.2 Agriculture 

 
 Agriculture and its associated land cover were the focus of this research.  In a 

study of grizzly-human conflict on agricultural lands in Montana, Wilson et al. (2005; 

2006) found that there were many different attractants for bears on private lands that are a 

part of the natural bear habitat.  One of the most important factors was the use of riparian 

areas by bears as both habitat and transportation corridors (Wilson et al., 2005).  The 

bears use these areas to reach anthropogenic attractants, such as cattle, sheep, beehives, 

and boneyards.  The more attractants that were in an area, and the closer that area was to 

wetlands or riparian areas, the more likely the bears were to use that area as habitat.  

When fences were introduced, the rate of bear use dropped considerably.  For example, 

beehives that were protected by fencing were much less likely to be “attacked” by the 

bears than unprotected hives (Wilson et al., 2006).  In many cases in Montana, the 

original bear habitat has not been fragmented, but its availability for bear use has been 

reduced due to human presence.  This human presence in the landscape brings the bears 

into conflict with people, and can be seen as bringing about an effective habitat loss. 

3.2.3 Objectives 

 
Landscape metrics have been shown to be an important element in grizzly habitat 

selection (Linke et al., 2005).  Therefore, the specific goals of this research were to:   
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i) identify landscape composition and spatial configuration in the agricultural areas of 

western Alberta, 

ii) determine if landscape composition and spatial configuration are related to grizzly 

presence or absence in an area, 

iii) determine which landscape metrics have the strongest relationships with grizzly 

location data that are available from collared bear GPS datasets, and 

iv) determine the extent of the difference between landscape metric values when 

calculated at different spatial and thematic scales.  

 

3.3  Study Area and Methods 

3.3.1 Study Area 

 
 The study area for this project was the foothills region to the southwest of 

Calgary, Alberta.  The area was chosen based on grizzly GPS location data that suggested 

that bears were present in agricultural areas in this part of the province.  The landscape of 

this area is dominated by grassland and agricultural crops, with patches of forest, 

changing to largely forested areas further west in the foothills.  Roads are a dominant 

feature in much of this landscape, with higher densities in the agricultural areas, and 

lower densities in the foothills.   

 The total study area covers 4494 km2, which was made up of 107 square sub-

landscapes of 42 km2 each (see Figure 3.1), 71 of which contained bear occurrence 

points.  The scale of the sub- landscapes in this research is based on the recommendations 

of  Linke et al. (2005) and Nams et al. (2006), who found that grizzly bears move 

through and select habitat at a landscape scale of around 35 – 50 km2.  Nams et al. (2006) 
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found a strong selection preference at a scale of 16 - 64 km2, with a peak preference at 36 

km2, while Linke et al. (2005) found  a possible range from 31 – 49 km2, and used a 

Figure 3.1: Study area map showing the distribution of the 107 sub-landscapes in 

southern Alberta. 
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measure of 49 km2.  The use of sub-units of 42 km2 is halfway between the two used 

values of 36 km2 and 49 km2, and well within the given ranges.  It is important that this 

scale be defined and representative of the organism being stud ied; otherwise, the 

landscape patterns detected will have little meaning, and the conclusions reached may not 

be accurate (McGarigal and Marks, 1995).  Each sub-landscape was analyzed separately 

in the FRAGSTATS program (McGarigal et al., 2002), and had its own landscape 

metrics generated.   

3.3.2  Data Acquisition and Preprocessing 

 
 The imagery used for this research was from the Indian Remote Sensing (IRS) 

satellites (IRS-1C and IRS-1D) panchromatic sensors.  The IRS imagery was acquired as  

6 bit image data, resampled to 8 bit by the company Space Imaging (maximum number of 

distinct grey levels = 64).  Each image has been orthorectified to Alberta provincial 

1:20,000 vector data files.  The imagery has a geometric accuracy of +/- 15 meters across 

each scene.  The images are a compilation of scenes from as many as 7 dates, acquired 

between April and October, and some span more than one year (Table 3.1).  The intent of  

Table 3.1: IRS imagery coverage and dates.  Images were 
compiled from as many as 7 dates, acquired between April and 
October, and may span more than one year.  Dates given are 

those that make up the majority of the image. 

NTS map sheet area Imagery Dates 

82I_04 Sept., 2001/2002 
82J_01 July, 2001 

82J_08 July, 2001 
82J_(the rest) Sept., 2005 

82G Sept., 2005 
82H Sept., 2005 
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this compilation was to produce images that were virtually cloud free, and that mirrored 

Alberta provincial 1:50 000 NTS map sheets.  Radiometric correction and tonal balance 

were employed to maintain uniformity across each scene and adjoining scenes within  

each image compilation.  Radiometric correction was done by the originating company, 

Space Imaging.  Further radiometric and atmospheric correction was not conducted, as it  

was not necessary for the classification due to the images being classified separately, and 

accurate biophysical measurements not being needed (Song et al., 2001).   

Also used in this study was an existing Landsat TM based land cover map (the 

same FMF land cover map used in Chapter 2) of the same area of the Alberta foothills.  

The FMF land cover map was created as part of  the Foothills Model Forest Grizzly Bear 

Research Program, and consists of multiple scenes of Landsat TM data combined 

together into a mosaic and classified using an object-based classification method 

(Franklin et al., 2001; McDermid et al., 2006).  The FMF land cover map has an overall 

accuracy of greater than 80% (Franklin et al., 2001).  The classes used in the FMF land 

cover map are Upland Trees, Wetland Trees, Upland Herbs, Wetland Herbs, Shrubs, 

Water, Barren Land, Snow/Ice, Cloud, and Shadow. 

 GIS data were also used in this study, provided by the Foothills Model Forest.  

The data included a grizzly bear point location database, as well as vector data of roads 

and streams within the study area.  In order to collect the bear GPS location data, the 

FMF captured, immobilized, and radio-collared a sample of the grizzly bear population 

located throughout the bear‟s Alberta range.  Collars were placed on both male and 

female grizzly bears.  The resulting telemetry data from these collars were then 

transmitted to the FMF through a satellite uplink, with locations being recorded every 
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four hours or less (varies depending on year of bear capture).  A detailed methodology 

and results of this program can be found in Hobson (2005, 2006). A total of 8 bears (5 

male, 3 female) gave 1454 point locations (not evenly distributed among the bears or the 

study area) in the area of study.  Specific bear behavior, such as foraging or mating, was 

not accounted for.  The road and stream vector data were used to calculate the density of 

these features (km / km2) within each sub- landscape.  Stream density was included based 

on work by Nielsen et al. (2002) and Wilson et al. (2005, 2006) who demonstrated a 

relationship between grizzly habitat selection and distance to riparian areas.  Road 

density was also included, as road density has been shown to play a large role in grizzly 

bear use or avoidance of an area (McLellan and Shackleton, 1988; Mace et al., 1996; 

Wielgus et al., 2002; Chruszcz et al, 2003; Waller and Servheen, 2005).  

3.3.3  Image Classification 

 

 The panchromatic IRS images were classified using the Definiens Professional 

object-based image analysis software package.  Each image was classified separately, 

using the same SSM classifier as described in Chapter 2.  The SSM method was chosen 

for its relatively high accuracy and so that each image that was classified could simply 

use a modified version of the SSM classifier that was used on the previous image; the 

SSM classifier is easily adapted to suit each scene.  A limited number of classes were 

used in this study, due to its focus on agricultural settings and limitations of 

interpretability for the panchromatic imagery.  Panchromatic imagery contains only one 

image channel, or band, so the spectral responses of the land cover types are limited.  

Four classes were used: agriculture (which includes open shrubland, grassland, and 

pastureland in addition to agricultural crops), forest, water, and other (which includes 
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features such as roads, cities, bare rock, snow, etc.).  An object-based approach for the 

classification was chosen, for a number of reasons.  Using an object-based approach, 

images are separated into discrete, homogenous patches, which allows for easy and 

accurate interpretation of the land-cover information by the FRAGSTATS software.  

These homogenous landscape objects also reduce the “salt and pepper” effect that is often 

seen in pixel-based classification methods.  Reduction of this “salt and pepper” effect is 

important for the derivation of landscape metrics, especially those dealing with 

connectivity, as a single incorrectly classified pixel in the center of an otherwise 

homogenous area could lead to inaccurate results (Ivits et al., 2002).  Using an object-

based classification also made assessment of the classification using the existing FMF 

Landsat TM-based land cover map of the area more straightforward.  The classification 

assessment was done because it was not feasible at the time of this research to collect 

ground data to verify the accuracy of the IRS classification.  A total of 150 random points 

were created, using a random point generator in the ArcMap 9 software program.  The 

random points were located in all of the landscape sub-units.  The classes of the FMF 

land cover map were combined to match the classes of the IRS imagery; the two forest 

classes (Upland Trees and Wetland Trees) were combined into a forest class; the Herbs, 

Shrubs, and Barren classes were combined into an agriculture class; Water remained 

water, and the rest of the classes were combined into the other class.  The IRS objects 

matched up visually very well with the existing TM based map objects, with water 

features, general landscape pattern, and placement of classes matching well (Figure 3.2, 

points A, B, and C).  The IRS map often had more detail because of the higher spatial 

resolution of the IRS imagery (5m) compared to the Landsat imagery (30m).  The 
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random points were checked for accuracy against the 4-class FMF land cover map.  The 

IRS map was in agreement with the FMF map 81% of the time.     

 

3.3.4  Selection of Landscape Metrics 

 

 A variety of configurational and compositional landscape metrics were chosen for 

this analysis based on their simplicity and accuracy in measuring different elements of 

the landscape.  Metrics were computed at the landscape level in the FRAGSTATS 

program; landscape level analysis measures the aggregate properties of the entire 

Figure 3.2: Shows correlation between a classified IRS image (darker colored square in 
center) and the FMF  land cover map (lighter colors), after combining the Landsat classes to 
match those used in the IRS image classification.  Points A, B, and C are located at areas that  

showcase how the two images are in thematic agreement. 
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landscape mosaic for each sub-landscape (McGarigal et al., 2002).  Individual grid cells 

of the same land cover type were merged to form discrete patches using the 8-cell patch 

neighbor rule (McGarigal  et al., 2002), and the sub- landscape borders were not counted 

as edges, which are the same parameters used by Linke et al. (2005).  The metrics were 

chosen to try to limit redundancy in the physical characteristics being measured, and to 

represent each of four main categories: i) patch area, ii) edge and patch shape, iii) 

diversity, and iv) landscape configuration.  The „landscape configuration‟ category was 

further sub-divided into measures of isolation/proximity, contagion/interspersion, and 

connectivity (Table 3.2).  Some of the metrics were direct measures of some variable 

(e.g., Landscape Division Index), while others, such as the Shape Index, were aggregates 

of that metric across the entire sub- landscape in all classes.  These aggregated metrics 

included the following statistical distributions of the measurement: mean (MN), area-

weighted mean (AM), median (MD), range (RA), standard deviation (SD), and 

coefficient of variation (CV).  Table 3.2 gives a complete list of the configurational 

metrics used for the analysis.  Some of the metrics used (including the Euclidean Nearest 

Neighbor distance, the Shape Index, and Simpson‟s Evenness Index) have shown 

promise in other studies (e.g., Linke  et al., 2005) in describing the relationship between 

the spatial characteristics of the landscape and bear presence in that landscape. 

 Compositional metrics were also used, and included the percent composition of 

each class type (agriculture, forest, water, and other), as well as road and stream density, 

for each sub- landscape.  Similar compositional components have been used in other 

grizzly landscape studies, with road density especially being seen as an important 

measurement to use (e.g., Apps et al., 2004; Singleton et al., 2004; Nams  et al., 2006).  
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Including the configurational metrics, a total of 16 variables were included in the 

analysis, with 3 of those (Shape Index, Contiguity Index, and Euclidean Nearest  

Neighbor Distance) each having 6 different statistical distributions.   

 

3.3.5  Statistical Analysis 

 
 An initial correlation analysis using Pearson‟s r was conducted to identify 

variables which may be related to grizzly bear abundance (bear location points / km2).  

Table 3.2: Configurational landscape metrics used in the regression analysis.  Entries 
marked as (distribution) are aggregates of that metric across the entire sub-landscape in 

all classes, and include the following statistical distributions: mean (MN), area-weighted 
mean (AM), median (MD), range (RA), standard deviation (SD), and coefficient of 
variation (CV).  For more detailed information and formulas, see McGarigal and Marks 

(1995) 

Name Abbreviation Measure of Description 
Patch Density PD Area/Density/Edge # of patches per landscape area 

Edge Density ED Area/Density/Edge 
Amount of edge per landscape 

area 
Landscape Shape 

Index 
LSI Area/Density/Edge 

A measure of density that adjusts 
for the landscape size 

Shape Index 
SHAPE_ 

(distributions) 
Shape 

A measure of overall patch shape 
complexity 

Contiguity Index 
CONTIG_ 

(distributions) 
Shape 

Assesses the spatial 
connectedness (contiguity) of 
cells in a patch to provide an 

index of patch boundary 
configuration or shape 

Euclidean Nearest 
Neighbor Distance 

ENN_ 
(distributions) 

Isolation/ Proximity 

A measure of patch context – the 
shortest straight line distance 

between a patch and its nearest 
neighbor of the same class 

Percentage of Like 
Adjacencies 

PLADJ 
Contagion / 

Interspersion 
Measures the degree of 

aggregation of patch types 

Landscape 
Division Index 

DIVISION 
Contagion / 

Interspersion 

Measures the probability that 2 
randomly chosen points in the 

landscape are not situated in the 
same patch 

Connectance Index 
(100m) 

CONNECT Connectivity 

The number of functional 
joinings between patches of the 
same class that are within 100m 

of each other 
Simpson‟s 

Evenness Index 
SIEI Diversity 

Measures the distribution of area 
among the different patch classes 
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Abundance as used in this manuscript refers to the number of grizzly GPS locations per 

km2 in a specific sub- landscape.  A Multiple Analysis of Variance (MANOVA) test was 

also conducted to find significant differences between identical variables with bear 

presence or absence (as a binary value; i.e., not abundance) as the controlling factor.  

Multiple regression analysis was conducted, using a stepwise approach, to see which 

metrics could be used to predict grizzly abundance, and how much of the variation can be 

explained by the given metrics.   Finally, logistic regression based on presence/absence of 

bears was conducted, using a conditional forward stepwise method.  Logistic regression 

was done to test predictions of the presence or absence of bears in a given area.  Cushman 

and McGarigal (2004) found that coding for abundance data generally produced a more 

descriptive model, but uncommon species with a low frequency of occurrence (such as 

grizzly bears) can be better represented by presence / absence data.  They also found that 

presence / absence models were more sensitive to analysis of spatia l metrics at the patch- 

and landscape-scale than abundance models were.  The results of the statistical analysis 

could therefore be somewhat dependent on the scale of the landscape and the way in 

which the species-response data are coded (Cushman and McGarigal, 2004). 

 A small selection of the sub- landscapes (39 of the 107) were used to generate 

landscape metrics for the class-combined FMF land cover map and the SSM land cover 

map (from Chapter 2).  The metrics used were the same as those generated with the IRS 

land cover map.  These additional metrics were generated to determine the impact of bo th 

spatial and thematic resolution on the values of the resulting landscape metrics.  The 

class-combined FMF land cover map has the same thematic resolution (4 classes) as the 

IRS land cover map, but with lower spatial resolution (30m, compared to the 5m for the 
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IRS land cover map).  The SSM land cover map has a higher thematic resolution than the 

FMF land cover map (15 classes versus 4 for the FMF class-combined map), but the 

same spatial resolution (30m).  The metric values were compared by calculating the 

difference between each metric for the IRS map and the FMF map (IRS value – FMF 

value) and for the FMF map and the SSM map (FMF – SSM).  The average, minimum, 

maximum, and range for these differences were then calculated, as well as the percent 

difference in the metric value.  

3.4  Results 

3.4.1  Relationships Between Grizzly Abundance and Landscape Metrics 

 

 The Pearson correlation showed that a number of landscape metrics were 

significantly correlated (p < 0.05) with grizzly GPS location density in each landscape 

unit.  These metrics included Patch Density, Edge Density, Landscape Shape Index, the 

mean of the Shape Index, the area-weighted mean of the Contiguity Index, the standard 

deviation of the Contiguity Index, the coefficient of variation of the Contiguity Index, the 

mean of the Euclidean Nearest Neighbor Distance, the coefficient of variation of the 

Euclidean Nearest Neighbor Distance, Percentage of Like Adjacencies, Connectance 

Index (100m) and Road Density (see Table 3.3).  The highest correlation was with Patch 

Density (r = 0.509), which was significant at the p < 0.01 level.  

 The multiple regression analysis indicated that a model that included the metrics 

Patch Density, the area-weighted mean of the Contiguity Index, and the coefficient of 

variation of the Euclidean Nearest Neighbor Distance was a likely predictor of grizzly 

bear location density.  All of these metrics were very significant (p < 0.01) in the model.  

The R value for the model was 0.61, with an adjusted R2 value of 0.35, which indicates 



90 

 

that about 35% of the variance seen in the grizzly location density is explained by these 

metrics.  The formula for this model is:  

Y = -35.041 + 0.453*PD + 34.245*CONTIG_AM + 0.002*ENN_CV.     (eq. 3.1) 

Table 3.3: Landscape metrics correlated with Grizzly 
location density in each sub-landscape. 

  

# Grizzly points in unit 

Pearson r p-value (2-tailed) 

PD .509(**) 0.000 

CONNECT -.287(**) 0.003 

SHAPE_MN -.250(**) 0.009 

ENN_CV .250(**) 0.009 

ENN_AM .243(*) 0.012 

Road Density .227(*) 0.019 

CONTIG_AM -.216(*) 0.025 

CONTIG_SD -.213(*) 0.028 

PLADJ -.207(*) 0.032 

ED .207(*) 0.032 

CONTIG_CV -.202(*) 0.037 

LSI .198(*) 0.040 

** Correlation is significant at the 0.01 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed). 

 The coefficients of the model suggest that bear use of an area increases with 

increasing patch density (represented by Patch Density), increasing amounts of large, 

contiguous patches (represented by the area-weighted mean of the Contiguity Index), and 

increasing variation in the distances between similar patches (represented by the 

coefficient of variation of the Euclidean Nearest Neighbor Distance). 

3.4.2 Relationships Between Grizzly Presence / Absence and Landscape Metrics  

 

 The results of the MANOVA test are shown in Table 3.4.  A total of 15 

configurational and 1 compositional metric (% forest) were found to be significantly 

different when bear presence or absence in the sub-landscape was the controlling factor.   
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Table 3.4:  Landscape metrics that show a significant difference (p < 0.05) 
between sub-units with bears and sub-units without bears.  A Negative mean 
difference indicates that the mean was higher for bear presence.  A positive 

mean difference indicates that the mean value was higher for bear absence. 
Equal variance is assumed.  

Metric 
Sig. (2-tailed) 

(p-value) 
Bear 

presence Mean 
Mean 

Difference 

% Forest 0.020 no 20.5887 

-7.8559  yes 28.4446 
PD 0.007 no 3.0369 

-0.7675  yes 3.8044 
ED 0.001 no 84.1313 

-25.5019  yes 109.6331 
LSI 0.001 no 14.6252 

-4.0568  yes 18.6820 
SHAPE_AM 0.003 no 8.7114 

-2.3623  yes 11.0737 
SHAPE_RA 0.001 no 14.3779 

-3.9555  yes 18.3333 
SHAPE_SD 0.023 no 2.2538 

-0.2215  yes 2.4754 
SHAPE_CV 0.006 no 74.9961 

-6.7653  yes 81.7614 
CONTIG_AM 0.001 no 0.9744 

0.0073  yes 0.9671 
CONTIG_MD 0.039 no 0.8607 

-0.0068  yes 0.8674 
ENN_MN 0.000 no 224.5892 

79.2463  yes 145.3429 
ENN_SD 0.018 no 649.3260 

134.5970  yes 514.7290 
ENN_CV 0.011 no 304.9093 

-56.9590  yes 361.8683 
PLADJ 0.001 no 97.8194 

0.6378  yes 97.1816 
CONNECT 0.004 no 3.7845 

0.5064  yes 3.2781 
DIVISION 0.003 no 0.5959 

-0.1188  yes 0.7147 
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For most metrics, the mean value of the metrics was higher for sub- landscapes in which  

grizzlies were present.  Grizzly presence is indicated by the mean differences being a 

negative value.  Positive mean difference values indicates that the mean value was higher 

for the metric in sub- landscapes where grizzlies were not present.   

 The landscape metrics included in the logistic regression model by the conditional 

forward stepwise regression procedure are the coefficient of variation of the Shape Index 

(SHAPE_CV), the median of the Contiguity Index (CONTIG_MD), and the mean and 

area-weighted mean of the Euclidean Nearest Neighbor distance measure (ENN_MN and 

ENN_AM).  Because of differences between what logistic regression and linear 

regression are predicting, there is no specific R2 value that explains the percentage of 

variance explained, like there is for linear regression.  There is, however, an „R-Square‟ 

measure that approximates a normal R2 value, based on likelihood estimates, called 

Nagelkerke‟s R-Square, which was 0.312 for this model.  Nagelkerke‟s R-Square does 

not measure goodness-of- fit, but strength of association.  From the coefficients for the 

logistic model, it would appear that grizzly bear presence is associated with an increase in 

the variation of the patch Shape Index (SHAPE_CV), a higher median Contiguity Index 

(CONTIG_MD), a decrease in the mean Euclidean Nearest Neighbor distance between  

patches of the same class (ENN_MN), and an increase in the area-weighted mean 

Euclidean Nearest Neighbor distance between patches of the same class (ENN_AM).  

The formula for this model is:   

 

)_*003.0_*009.0_*954.41_*065.0704.39(1

1
AMENNMNENNMDCONTIGCVSHAPEa

e
P
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 Table 3.5 shows the predicted values for the sub- landscapes based on the logistic 

regression model.  Grizzly bear presence was predicted with 87% accuracy, and the 

overall prediction accuracy, including both presence and absence prediction, was 71%.  

The prediction accuracy is based on the number of correctly predicted presence or 

absence values (using the regression equation) for each sub-landscape when compared to 

the observed values (the GPS locations).  

 

Table  3.5: Predicted grizzly presence / absence based on logistic 

regression model. 

 
Predicted Percentage 

Correct Absent Present 

Observed 
Absent 14 22 38.9 

Present 9 62 87.3 

Overall Percentage     71.0 

   

3.4.3  Metric Calculation 

  
 The results of the metric calculation differences between different spatial and 

thematic resolutions can be seen in tables 3.6 and 3.7.  The metric with the greatest 

differences between the different spatial and thematic resolutions was the Euclidean 

Nearest Neighbor distance distributions (ENN_MN, ENN_AM, ENN_MD, ENN_RA, 

ENN_SV, ENN_CV).  There was a greater average % difference between the metrics 

calculated at different spatial resolutions (IRS metrics versus FMF metrics) compared to 

those calculated at different thematic resolutions (FMF metrics versus SSM metrics).  
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Table 3.6: Differences in metric values when calculated from images with 
different thematic resolution (4 class vs. 15 class).  

Landscape 
Metric 

Difference (FMF metric – SSM metric) % difference 
from FMF 

value Average Min Max Range 

PD 0.28 -1.15 2.52 3.67 10.3% 

ED 2.51 -31.07 39.61 70.68 5.4% 

LSI 0.41 -5.05 6.45 11.49 4.8% 

SHAPE_MN -0.05 -0.61 0.25 0.86 -2.7% 

SHAPE_AM 0.72 -2.02 5.09 7.12 13.1% 

SHAPE_MD -0.03 -0.33 0.18 0.52 -2.3% 

SHAPE_RA 0.12 -5.60 4.85 10.45 1.7% 

SHAPE_SD 0.00 -0.81 0.69 1.49 0.2% 

SHAPE_CV 1.39 -38.22 34.27 72.48 2.4% 

CONTIG_MN -0.04 -0.34 0.11 0.44 -6.5% 

CONTIG_AM 0.00 -0.07 0.06 0.12 -0.4% 

CONTIG_MD -0.04 -0.45 0.15 0.60 -6.5% 

CONTIG_RA 0.01 -0.22 0.28 0.51 1.0% 

CONTIG_SD 0.00 -0.07 0.08 0.15 2.2% 

CONTIG_CV 2.48 -22.68 36.10 58.78 7.8% 

ENN_MN -97.97 -700.05 1540.93 2240.98 -35.5% 

ENN_AM -75.31 -582.14 70.26 652.41 -97.4% 

ENN_MD -76.21 -774.59 104.56 879.15 -68.3% 

ENN_RA -786.45 -3092.07 2963.45 6055.52 -32.2% 

ENN_SD -139.34 -679.08 1392.25 2071.33 -34.5% 

ENN_CV -6.68 -102.36 167.43 269.80 -4.6% 

PLADJ -0.38 -5.94 4.66 10.60 -0.4% 

CONNECT -0.01 -2.86 5.17 8.03 -0.4% 

DIVISION -0.08 -0.73 0.46 1.19 -15.3% 

SIEI 0.14 -0.13 0.38 0.51 10.6% 
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Table 3.7: Differences in metric values when calculated from images 
at different spatial resolutions (5m and 30m). 

Landscape 
Metric 

Difference (IRS metric – FMF metric) % 
difference 
from IRS 

value Average Min Max Range 

PD 0.39 -1.35 2.79 4.14 12.5% 

ED 62.18 -17.88 130.42 148.31 57.3% 

LSI 10.06 -2.92 21.19 24.11 54.1% 

SHAPE_MN 1.33 0.79 1.83 1.04 43.1% 

SHAPE_AM 6.55 -2.61 14.74 17.35 54.3% 

SHAPE_MD 0.83 0.15 1.48 1.33 36.2% 

SHAPE_RA 10.97 1.37 26.91 25.54 60.6% 

SHAPE_SD 1.62 0.50 2.94 2.44 61.3% 

SHAPE_CV 27.45 -3.20 67.71 70.91 32.2% 

CONTIG_MN 0.13 0.04 0.35 0.31 16.5% 

CONTIG_AM 0.05 -0.01 0.10 0.11 5.6% 

CONTIG_MD 0.18 0.09 0.51 0.41 20.9% 

CONTIG_RA 0.05 0.00 0.24 0.25 5.5% 

CONTIG_SD 0.04 -0.06 0.14 0.20 17.6% 

CONTIG_CV 0.27 -32.95 19.15 52.10 0.8% 

ENN_MN -102.01 -1703.50 430.01 2133.50 -58.7% 

ENN_AM 126.39 -73.25 457.77 531.01 62.0% 

ENN_MD -81.79 -233.35 273.47 506.82 -274.7% 

ENN_RA 2322.65 -2493.03 6095.79 8588.82 48.8% 

ENN_SD 196.84 -924.30 883.05 1807.36 32.7% 

ENN_CV 237.66 -81.12 514.27 595.39 62.2% 

PLADJ 4.63 -1.06 8.28 9.34 4.8% 

CONNECT 1.78 -5.53 5.02 10.54 48.0% 

DIVISION 0.16 -0.46 0.82 1.28 22.7% 

SIEI 0.01 -0.25 0.25 0.50 0.4% 

 

3.5  Discussion 

 

 The results of the analysis were separated into those that deal with presence / 

absence of grizzly bears from the sub- landscapes, and those that deal with grizzly 

abundance in the sub-landscapes.    
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3.5.1  Abundance Data 

 

 In the correlation analysis, Patch Density (PD) had a high positive correlation 

with bear abundance, which means that sub-landscapes with more patches of any type 

were more likely to have bears.  The mean Shape Index (SHAPE_MN) and the 

Connectance Index (CONNECT) (100m) were both negatively correlated with bear 

abundance, so areas that had a more geometric / regular shaped patches (often associated 

with anthropogenic activities such as agriculture) and low connectance (larger distance 

between patches of same type) were more likely to have bears (see Figure 3.3).  Also, a 

larger variation in the Euclidean Nearest Neighbor distance between similar patches 

(ENN_CV) was strongly (p < 0.01) indicative of grizzly bear abundance in the sub-

landscape.  Roads were also significantly (p < 0.05) negatively correlated with bear 

abundance, which is supported by most of the literature; high road densities are 

associated with increased fragmentation, which leads to loss of overall habitat and 

increased access and use by humans, all of which have been shown to have impacts on 

grizzly bear use and selection of an area (McLellan and Shackleton, 1988; Mace et al., 

1996; Wielgus et al., 2002; Chruszcz et al, 2003; Waller and Servheen, 2005).  Road 

density is quite high in agricultural areas, so this could relate to avoidance of 

anthropogenic landscape use.  Traffic volume and speed can also play a role in bear 

reactions to road density (Chruszcz et al, 2003; Waller and Servheen, 2005).  

 A positive correlation was also seen with Patch Density and the coefficient of 

variation of the Euclidean Nearest Neighbor distance (ENN_CV) in the linear regression 

model, in addition to a high explanation of variance by the area-weighted mean of the 

Contiguity Index (CONTIG_AM), which measures patch cohesion and shape.  A high 
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contiguity is analogous to low fragmentation, so again the pattern emerges that the bears 

are selecting for more natural, less anthropogenically fragmented landscapes.  Patch 

Density, variance of the Euclidean Nearest Neighbor distance, and the area-weighted 

mean of the Contiguity Index represented about 35% of the variation seen in the 

abundance data.  Though the data were not strictly normally distributed, the results of the 

linear regression are still statistically valid, and the results seem to match with the other 

abundance data. 

3.5.2  Presence / Absence Data 

 
 In the MANOVA test, bear presence resulted in higher mean values of % forest, 

so bears are more likely to be present when there is more forested area.  Conversely, 

because of the small number of classes examined, an increase in forest area results in a 

decrease in agricultural area (forest and agriculture are the two dominant classes in the 

analysis; as one increases, the other generally decreases), which means that bear presence 

would be more likely in areas with a low % agriculture..  Bear presence also resulted in 

higher mean values for patch area / edge metrics like Patch Density (PD), Edge Density 

(ED), and the Landscape Shape Index (LSI), which means that there were more patches, 

and they had more irregular shapes, with more edge (i.e., more natural areas), in sub-

landscapes where bears were present.  The Shape Index distributions of area-weighted 

mean, range, standard deviation, and coefficient of variation (SHAPE_AM, SHAPE_RA, 

SHAPE_SD, SHAPE_CV) were also larger on average in areas of bear presence, 

suggesting that bear presence corresponds to more complex shaped patches, with high 

variety among them.  Complex shaped patches can be analogous to more natural, 

undisturbed areas, as a lower Shape Index is associated with more regular, geometric 
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shapes, a characteristic of anthropogenic landscapes such as agricultural areas (Forman, 

1995).  A comparison between natural and anthropogenic landscapes can be seen in 

Figure 3.3.  Complex patch shapes being related to grizzly presence is a different 

relationship from that of the abundance data, where the Shape Index (and therefore patch 

shape complexity) was lower in areas of high bear abundance.  This difference could be 

caused by the effects of coding the response variable differently, as presence / absence in 

this case, versus abundance in the previous case.  The mean and standard deviation of the 

Euclidean Nearest Neighbor distance (ENN_MN and ENN_SD) were both lower in the 

presence of bears, and the variation in the Euclidean Nearest Neighbor distance 

Figure 3.3: Comparison of natural (A) versus agricultural (B) sub-landscapes.  Natural 
areas have high Shape Index mean and variation distributions (complex shapes), low 

mean nearest neighbor distances (but high variation in nearest neighbor distances) and 
high contiguity.  Agricultural areas have opposite values for these metrics. 
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(ENN_CV) was higher.  An analysis of this Euclidean Nearest Neighbor data would 

suggest that while the average distance between nearest similar patches was lower, there 

was a higher overall variation at this smaller distance in areas of bear presence.  A higher 

variation of patch distance is what would be expected in a natural as opposed to an 

agricultural landscape, as distances between patches in agricultural land can be very far 

(Figure 3.3).  The Percentage of Like Adjacencies (PLADJ) metric supports this, as it is 

lower in areas of bear presence, and lower values mean that the landscape is more 

disaggregated, or more natural.  

 The area-weighted mean of the Contiguity Index (CONTIG_AM) was 

significantly (p < 0.05) lower in sub- landscapes where bears were present.  This 

Contiguity result is different from the results of the abundance measures, where the area-

weighted mean of the Contiguity Index (CONTIG_AM) was found to be positively 

associated with bear abundance.  One reason for this difference could be the different 

coding between the data, as mentioned earlier.  The median Contiguity Index 

(CONTIG_MD), however, was higher in the bear presence areas; when considering the 

opposite effect for the area-weighted mean of the Contiguity Index (CONTIG_AM), this 

would suggest more contiguous but smaller patches in areas of bear presence, which 

again leads to spatial parameters that are characteristic of natural landscapes.  The 

Landscape Division Index (DIVISION), a measure of the sub-division of the landscape, 

was also higher in areas of bear presence.  However, the Connectance Index 

(CONNECT) was lower, which means that fewer patches in the landscapes that bears 

were present in were connected at a range of 100 meters or less.  Bear presence being 

related to a low Connectance Index is not surprising, as grizzly bears have large home 
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ranges and can move many kilometers throughout the course of a day (Kansas, 2002).  

Patches on the landscape do not necessarily have to be connected for the bears to use 

them.  

 The results of the logistic regression indicate that grizzly bear presence is 

associated with an increase in the variation of the patch Shape Index (SHAPE_CV), a 

higher median patch Contiguity Index (CONTIG_MD), a decrease in the mean distance 

between patches of the same class (mean Euclidean Nearest Neighbor distance , 

ENN_MN), and an increase in the area-weighted mean of the Euclidean Nearest 

Neighbor distance between patches of the same class (ENN_AM).  These metrics, with 

the exception of the area-weighted mean of the Euclidean Nearest Neighbor, were also 

found to be significant in the MANOVA test, with the variable responses also being in 

the same direction.  All of these metrics are associated with natural areas, or at least 

agricultural areas that have some characteristics of more natural areas.  The predictions of 

bear presence or absence from Table 3.5 are also interesting.  From a landscape 

management perspective, it is much more important to have accurate information on bear 

presence than it is to have information on bear absence.  Grizzly bear presence was 

predicted with 87% accuracy, which is a good result considering the logistic regression 

model only explained about 31% of the strength of the associations between the chosen 

metrics and bear presence in a given sub- landscape.   

3.5.3  Metric calculation 

 The differences in the values of the landscape metrics when calculated from 

different spatial resolutions are quite striking.  There are differences of more than 50% 

for distributions of the Shape Index (SHAPE) and Euclidean Nearest Neighbor distance 



101 

 

(ENN) metrics that were found to be important in the regression models.  Large 

differences can also be seen in the metric values between different thematic resolutions.  

The Euclidean Nearest Neighbor distributions again have very large differences in their 

values.  These differences in landscape metric values for both thematic and spatial 

comparisons show that the type of sensor used, as well as the classification method, both 

have an impact on the landscape metric calculations.  By changing the spatial resolution 

of the input imagery, patches have different shapes and sizes due to smaller pixel sizes 

being able to better represent complex patch boundaries.  These different shapes and sizes 

in turn will have an effect on the calculated distances between the patches.  Different 

thematic resolutions result in different metric values due to more patches being present 

with a greater thematic resolution.  For example, a patch that may be classified as 

“agriculture” in a low thematic resolution could be made up of 3 different patches 

classified as “Canola”, “Legumes”, and “Bare Soil / Fallow” in a higher thematic 

resolution.  The differences in metric values between different spatial and thematic 

resolutions could be a factor when examining the metrics for relationships to grizzly bear 

location data. 

 

3.6  Significance 

 
While this study did not find a direct link between grizzly bear abundance or 

presence and the amount of agricultural land present, it did find links with spatial 

attributes that correspond to reduced agricultural activity and human-caused 

fragmentation.  Size, shape, and position of land cover patches in areas of grizzly habitat 

had a measureable relationship with the presence/absence and abundance of the bears.   
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There was a link between decreased grizzly bear landscape use and agricultural activity.  

Nielsen and Boyce (2002) suggested that grizzly bears tend to select habitat that is highly 

variable, which suggests natural, patchy landscapes, like those to which bear presence 

was correlated with in this study.  Natural, patchy landscapes are different from human- 

fragmented landscapes, which are characterized by patch isolation, geometric patterns, 

and increased human presence.  Relationships between landscape metrics that were 

representative of human fragmented landscapes and bears were negative, in that bears 

were less likely to be present in this type of landscape.  It may be important to know for 

future work which landscape metrics are important for analyzing grizzly habitat, as well 

as what spatial and thematic resolution these metrics should be calculated at; this research 

is a step towards these goals.  

3.7  Limitations 

 

Although habitat spatial structure and composition had a significant, measurable 

effect, much of the variance in the bear presence and abundance in each sub- landscape 

was not explained.  The landscape configurational and compositional metrics that were 

found to be significant could simply be reflections of human presence and use of the 

landscape, especially in this agricultural setting.  Grizzly bears respond to a range of 

variables that were not included in this study, such as food supply and human presence 

(Munro et al., 2006).  The bears may be reacting more directly to these variables than to 

the landscape metrics associated with them.  Also, the low number of bears sampled (8) 

means that if some of the bears were habituated to human presence, or their movement 

was affected by mating or other behavior, then the results could be misleading.  
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 Research in the area of accuracy assessment for landscape metrics is lacking 

(Gergel, 2007).  Unlike classification accuracy assessment, there exists no standard, well-

defined method or concept that can accurately predict the accuracy of spatial landscape 

metrics.  Traditional methods of classification accuracy assessment are generally non-

spatial in nature, and therefore of limited value for assessing the accuracy of spatial 

pattern (Gergel, 2007).  Even the classification accuracy of the map(s) upon which the 

landscape metric analysis is based may not be a good indicator of landscape metric 

accuracy.  Langford et al. (2006) showed that high map classification accuracies do not 

result in more accurate spatial fragmentation indices.  The lack of spatial metric accuracy 

assessment could have potentially large consequences on research, management, and 

policy where spatial metrics are used (Gergel, 2007), and there is likely unknown error 

associated with every spatial pattern study ever conducted (Langford et al., 2006).  With 

no solution to this problem in sight, possible unknown error must be taken into 

consideration when analyzing the results of this study.  

 Other possible introduction of error could have occurred by means other than 

spatial metric error.  The results of the abundance data versus the presence / absence data 

were similar, but there were some differences that may have been a product of GPS collar 

bias.  While collar bias is normally predictable (Frair et al., 2004), problems may arise in 

an agricultural setting because there is likely to be much more loss of collar data in 

forested areas than in open agricultural areas, as the forest canopy could block the signal.  

Blocked GPS signals could skew the abundance data to show more location points in 

open agricultural areas, as there would be very minimal data loss in these areas.  Biased 

data would therefore have affected the relationship between abundance and landscape 
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metrics that are associated with agricultural areas, such as low patch density and 

geometric patch shapes. 

3.8  Conclusion 

 
  Knowledge about grizzly bear selection of habitat in agricultural areas is very 

limited.  While it is known that grizzly bears tend to avoid anthropogenic disturbance, 

this research presents the first evidence that the physical structure and composition of 

agricultural areas may play a part in this behavior.  There were significant differences 

among landscapes that grizzly bears did use versus those they did not use.  Landscape 

spatial structure seems to have at least some role in determining whether or not bears will 

use an area in an agricultural landscape.  The results of this research, while not definite, 

could be helpful in informing other grizzly bear resource selection models.   

 While the results of this research do not completely explain grizzly bear use and 

movement in agricultural areas, they are a good starting point for further research.  Future 

analysis should include the effects of food selection, crop preferences, and human 

avoidance on grizzly bear selection of habitat in these areas.     
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4. Integration and Synthesis 

 

This chapter will revisit the main findings and contributions of the research 

manuscripts, relating them back to the broader context of the literature introduced in 

Chapter 1.  Limitations of the research, as well as d irections for possible future research 

are also identified. 

4.1  Significance and contributions 

 
The first manuscript concluded that a supervised classification technique, the 

SSM method, was the best overall choice of the methods tested for this particular large-

scale habitat mapping objective.  The SSM classification, gave a high classification 

accuracy (88%), and was easily implemented over a regional image mosaic comprising 

multiple biomes.  The level of accuracy exceeds the best results (81.3% accuracy) of 

Turker and Arikan (2005), who also used an object-based classification of agricultural 

fields; their study, however, used multi-temporal imagery (which increased their overall 

accuracies), while this research only used single-date images.  Not requiring multi-date 

imagery while at the same time getting very good accuracy results from the classification 

shows the potential for the SSM technique to be an effective mapping and classification 

tool.  The research presented is also a step towards overcoming the issue of availability of 

multi- temporal imagery (Franklin and Wulder, 2002).  The results of the classification 

analysis were applied to the larger FMFGBRP study area in Alberta, resulting in land 

cover maps that have an increased thematic accuracy in the agricultural regions.  A larger 

classification also allowed for the analysis of the bear location data across all of the 

agricultural regions in the western half of the province.  
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The second manuscript expands on this analysis of the effects of agricultural areas 

on grizzly bears by examining the relationship between the spatial configuration and 

composition of the agricultural landscapes and bear use or abundance in these areas.  

Apps et al. (2004) used a variety of compositional and environmental variables to predict 

grizzly bear abundance and distribution in British Columbia, but configurational 

landscape metrics were not used.  Linke et al. (2005) did use both configurational and 

compositional metrics to examine the effect of seismic exploration lines on grizzlies in 

Alberta, but agricultural areas were not included in the study.  Popplewell et al. (2003) 

used landscape metrics to classify grizzly bear location density in different bear 

management units in Alberta, but again, agricultural areas were not examined.  Wilson et 

al. (2005, 2006) did examine the influences of an agricultural setting on grizzly bears, but 

they focused on human-caused attractants, not the spatial pattern of the landscape.   

The direct and indirect influences of agriculture on grizzly bear movement and 

use of habitat have not been closely examined until now.  The second manuscript 

presents a landscape ecology perspective on the issue by using landscape metrics to 

analyze the effect of the physical structure of this environment on grizzly abundance / 

use.  This research offers the first evidence that the physical structure and composition of 

agricultural areas may play a part in bear habitat use in agricultural landscapes.  Bear 

presence was predicted with 87% accuracy using a logistic regression equation, and it 

was discovered that there were significant differences among landscapes that grizzly 

bears did use versus those they did not use.  A pattern emerged showing that the bears 

were more abundant in more natural, less anthropogenically fragmented landscapes.  

These results show that landscape metrics can contribute to explanations of bear presence 



111 

 

and abundance, which accords well with results from other studies (e.g., McGarigal and 

McComb, 1995; Linke et al., 2005) that have also linked landscape configurational and 

compositional metrics to species use of a landscape.  

Together, these manuscripts show the importance of agricultural land cover on the 

grizzly bear populations of Alberta.  The results from these manuscripts support each 

other in that the Grass / Forage class is the most predominant land-cover type that the 

bears have been present in (Chapter 2 results); the Grass / Forage class is analagous to 

natural grassland and shrubby pastures, which are more „natural‟ landscapes like those 

shown in Chapter 3 that are closer to the western margins of the agricultural area.  Bears 

were not located as often (or at all) in classes such as Small Grains and Canola, which are 

more often planted in the center of agricultural areas, away from the marginal land 

dominated by grass and pastures.  The more central agricultural areas are the areas that 

are the most fragmented and the most frequented by humans, with landscape structural 

and compositional elements that are not condusive to bear presence or abundance.   

The results from Chapter 3 that show the differences between landscape metrics 

when calculated with different spatial and thematic resolutions show how important an 

increased thematic resolution can be for further analysis of landscape metrics.  The SSM 

classification is a way of getting this increased thematic resolution across a large region.  

The results of this thesis will be very useful in examining the relationships 

between the grizzly bears and their use of agricultural areas.  The updated land-cover 

maps are also important from a planning and management perspective.  The methods 

used for this research are not just significant for current grizzly habitat mapping and 
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planning needs, but could also be applied to other species and land-cover types, such as 

woodland caribou (e.g., Johnson et al., 2002). 

4.2 Limitations 

 
One limitation of the classification and spectral analysis of agricultural land is the 

possibility of large differences between fields of the same class.  Planting dates, crop 

health, and crop and soil moisture levels can vary by a large amount, even between 

adjacent fields, which can lead to differences in the spectral responses and classification 

error. 

A similar phenological concern exists for the results of the additional 6 Landsat 

scene classification, for which no ground data was available.  Most of these images are 

taken later in the season than the two test images, with a corresponding difference in 

phenology.  In many cases, the fields had already been harvested.  Harvested fields 

obviously would be very different in their spectral response when compared to fields of 

the same crop that have not been harvested, which makes it much more difficult to 

correctly identify classes. 

Although habitat spatial structure and composition had a significant, measurable 

relationship with grizzly presence/absence and abundance in agricultural areas, much of 

the variance in each sub- landscape was not explained, nor was it expected to be.  The 

landscape configurational and compositional metrics that were found to be significant 

could simply be reflections of human presence and use of the landscape, especially in this 

agricultural setting.   
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4.3 Future research 

 
Future remote sensing research could be done to incorporate texture measures or 

multi- temporal imagery into the SSM classification method, to increase classification 

accuracy, or to increase the number of land cover classes.  Other remote sensing 

platforms, such as SPOT or ASTER, could be examined to determine if they are capable 

of producing results similar to those of the Landsat sensors when doing a land-cover 

classification of a large region. 

Landscape metrics could also be further examined.  Research could include 

examining possible relationships or correlations between metrics to determine which ones 

are the most useful for habitat analysis.  Also, there is currently no way to accurately test 

the accuracy of the metrics themselves, so this could be a further area of research in this 

field.  The most useful spatial and thematic resolution of the images used to generate the 

landscape metrics could also be examined. 

While the results of this research do not completely explain grizzly bear use and 

movement in agricultural areas, they are a good starting point for further research.  Future 

analysis should include the effects of food selection, crop preferences, and human 

avoidance on grizzly bear selection of habitat in these areas.  The analysis could include 

resource selection functions (Nielsen et al., 2002) to further examine these other 

influences.     

The results from the analysis of the grizzly location data show that food 

availability may play a part in the bears‟ use of the agricultural areas of Alberta, so the 
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updated grizzly habitat maps may be useful for resource selection and food availability 

models that could help with grizzly bear management in the agricultural areas.  
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Appendix A: Confusion Matrices 

 
Confusion matrices for the three tested classification methods of Chapter 2.  The data are 

from validation points only, not training data.  The column totals are derived from the 

number of pixels in the reference data, while the row totals represent pixels that were 

actually classified in that category.   Overall accuracy is determined by dividing the total 

number of correctly classified pixels (the sum of the major diagonal) by the total number 

of pixels in the error matrix.  If the total number of correctly classified pixels in a 

category (class) is divided by that class column total, then the result is a measure of 

omission error (producer‟s accuracy).  If the total number of correctly classified pixels in 

a category is divided by that class row total, then the result is a measure of commission 

error (user‟s accuracy).  

 

 
 

Table A1: South study area Unsupervised classification confusion matrix   

User \ Reference Class Bare Soil / Fallow Canola Grasses / Forage Legumes  Small Grains Total 

Bare Soil / Fallow 531 27 4395 0 551 5504 

Canola 0 2921 5 2153 530 5609 

Grasses / Forage 30 332 9852 843 7163 18220 

Legumes 0 5962 0 445 582 6989 

Small Grains 0 45 1237 30 14248 15560 

unclassified 0 288 3 11 552 854 

Total 561 9575 15492 3482 23626 52736 

Table A2: North study area Unsupervised classification confusion matrix   

User \ Reference Class Bare Soil / Fallow Canola Grasses / Forage Legumes  Small Grains Total 

Bare Soil / Fallow 5527 0 7205 0 6 12738 

Canola 0 7211 0 0 610 7821 

Grasses / Forage 0 0 3621 349 1956 5926 

Legumes 0 0 0 769 0 769 

Small Grains 3 3 928 0 6284 7218 

unclassified 0 868 295 0 2 1165 

Total 5530 8082 12049 1118 8858 35637 
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Table A3: North study area Nearest Neighbor classification confusion matrix   

User \ Reference Class Bare Soil / Fallow Canola Grasses / Forage Legumes Small Grains Total 

Canola 0 8076 0 0 4 8080 

Bare Soil / Fallow 5517 0 858 0 744 7119 

Grasses / Forage 10 3 9904 0 888 10805 

Small Grains 3 0 1285 349 6616 8253 

Legumes 0 0 0 769 606 1375 

unclassified 0 3 2 0 0 5 

Total 5530 8082 12049 1118 8858 35637 

Table A4: South study area Nearest Neighbor classification confusion matrix  

User \ Reference Class Bare Soil / Fallow Canola Grasses / Forage Legumes Small Grains Total 

Bare Soil / Fallow 502 0 1001 0 0 1503 

Canola 0 8702 0 194 630 9526 

Grasses / Forage 51 75 12195 20 2812 15153 

Legumes 0 697 6 3177 43 3923 

Small Grains 8 101 2290 91 20137 22627 

unclassified 0 0 0 0 4 4 

Total 561 9575 15492 3482 23626 52736 

Table A5: North study area Supervised Sequential Masking (SSM) classification confusion matrix 

User \ Reference Class Bare Soil / Fallow Canola Grasses / Forage Legumes Small Grains Total 

Bare Soil / Fallow 5094 0 0 0 0 5094 

Canola 0 8082 0 0 624 8706 

Grasses / Forage 436 0 9660 0 1577 11673 

Legumes 0 0 0 1118 0 1118 

Small Grains 0 0 2389 0 6657 9046 

Total 5530 8082 12049 1118 8858 35637 

Table A6: South study area Supervised Sequential Masking (SSM) classification confusion matrix  

User \ Reference Class Bare Soil / Fallow Canola Grasses / Forage Legumes Small Grains Total 

Bare Soil / Fallow 561 0 724 0 0 1285 

Canola 0 9575 0 163 604 10342 

Hay / Pasture 0 0 13546 0 1200 14746 

Peas 0 0 0 3319 1337 4656 

Small Grains 0 0 1222 0 20485 21707 

Total 561 9575 15492 3482 23626 52736 
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Appendix B: Field Form 

 
The form used for field data collection purposes.  
 

 
Field Data 

Crops and Pastures 

 
Date/Time______________/_______________ Site ID/Photo Reference_____________/______________ 

 
Coordinates (UTM 11, Nad 83) of point:  E: ________________________  N: __________________________ 
 for samples of opportunity     

 Observer location:  E:___________________________  N: __________________________  
 Direction of field from Observer:  ______________ 

 
Description: 

Cover Type: Crop (name)__________________   Grass: Planted / Natural / Fenced   Current Grazing:  Yes / No 

           Stubble / Bare Soil / Weeds / Other :  _______________________________________________  

                      Condition: Good / Poor / Other : ___________________________________________________ 

 

Landscape:   flat / rolling / steep      Water:  Irrigated / Standing Water / Other : _________________________ 

Other Description: _________________________________________________________________________ 

_________________________________________________________________________________________ 

__________________________________________________________________________________________
__________________________________________________________________________________________  
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 



119 

 

 

Appendix C: Process Trees 

 
The process tress used for the SSM classification of Chapter 2.  

 

 
Figure C1: North study area process tree 
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Figure C2: South study area process tree 

 
 



121 

 

 
Figure C3: Landsat image 41/26 process tree 

 

 
Figure C4: Landsat image 43/24 process tree 
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Figure C5: Landsat scene 44/22 process tree 

 

 
Figure C6: Landsat image 44/23 process tree 
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Figure C7: Landsat image 45/21 process tree 

 

 
Figure C8: Landsat image 46/21 process tree 
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Appendix D: Class Specific Bear Locations 

 
 Shows the distribution of grizzly GPS location points in different land cover types 

by month.  Months represented by shades of green are the months in which the most 

location points are located.  

 

 
Figure D1: Data represents 18 bears (10 male, 8 female) with 1035 location points. 
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Figure D2: Data represents 12 bears (7 male, 5 female) with 237 location points. 

 
 
 

 

 
Figure D3: Data represents 7 bears (2 male, 5 female) with 52 location points. 
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Appendix E: Tables of Accuracy Results 

 
Detailed class and overall accuracy results for the three classifications that were 

examined in Chapter 2.  Values for the North and South study areas are given separately, 

as well as averaged.  Values are derived from the confusion matrices for these 

classifications (Appendix A). 

 

Table E1: Unsupervised classification details 

  
Bare Soil / 

Fallow Canola 
Grass / 
Forage Legumes Small Grains 

Average Producer 97.30% 59.86% 46.82% 40.78% 65.62% 

Average User 26.52% 72.14% 57.59% 53.18% 89.31% 

Average KIA* Per Class  96.97% 54.21% 30.24% 33.78% 53.63% 

South Producer 94.65% 30.51% 63.59% 12.78% 60.31% 

South User 9.65% 52.08% 54.07% 6.37% 91.57% 

South KIA Per Class  94.03% 22.24% 44.38% -0.55% 43.69% 

North Producer 99.95% 89.22% 30.05% 68.78% 70.94% 

North User 43.39% 92.20% 61.10% 100.00% 87.06% 

North KIA Per Class 99.92% 86.19% 16.10% 68.10% 63.56% 

Average Overall Accuracy 59.39% 
    Average KIA 46.40% 
    South Overall Accuracy 53.09% 
    South KIA 36.36% 
    North Overall Accuracy 65.70% 
    North KIA 56.44% 
    *KIA = Kappa Index of Agreement 
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Table E2: Supervised Nearest Neighbor classification details 

  
Bare Soil / 

Fallow Canola 
Grass / 
Forage Legumes Small Grains 

Average Producer 94.62% 95.40% 80.46% 80.01% 79.96% 

Average User 55.45% 95.65% 86.07% 68.46% 84.58% 

Average KIA Per Class 94.44% 94.39% 72.29% 79.03% 70.60% 

South Producer 89.48% 90.88% 78.72% 91.24% 85.23% 

South User 33.40% 91.35% 80.48% 80.98% 89.00% 

South KIA Per Class  89.17% 88.87% 70.14% 90.54% 74.13% 

North Producer 99.76% 99.93% 82.20% 68.78% 74.69% 

North User 77.50% 99.95% 91.66% 55.93% 80.16% 

North KIA Per Class 99.71% 99.90% 74.45% 67.53% 67.06% 

Average Overall Accuracy 85.72% 
    Average KIA 80.08% 
    South Overall Accuracy 84.79% 
    South KIA 77.80% 
    North Overall Accuracy 86.66% 
    North KIA 82.36% 
     

Table E3: Supervised Sequential Masking (SSM) classification details 

  
Bare Soil / 

Fallow Canola 
Grass / 
Forage Legumes Small Grains 

Average Producer 96.06% 100.00% 83.81% 97.66% 80.93% 

Average User 71.83% 92.71% 87.31% 85.64% 83.98% 

Average KIA Per Class 95.40% 100.00% 76.54% 97.43% 72.05% 

South Producer 100.00% 100.00% 87.44% 95.32% 86.71% 

South User 43.66% 92.58% 91.86% 71.28% 94.37% 

South KIA Per Class  100.00% 100.00% 82.56% 94.87% 77.40% 

North Producer 92.12% 100.00% 80.17% 100.00% 75.15% 

North User 100.00% 92.83% 82.76% 100.00% 73.59% 

North KIA Per Class 90.80% 100.00% 70.51% 100.00% 66.70% 
Average Overall 
Accuracy 87.97% 

    Average KIA 83.37% 
    South Overall Accuracy 90.04% 
    South KIA 85.61% 
    North Overall Accuracy 85.90% 
    North KIA 81.13% 
     

 
 


