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Abstract

In this work, we present three different types of population models. The first two models are

examined in the context of optimal control problems. The third involves the construction

of an invasion model using a significant amount of data.

The first model describes the interaction of three populations, motivated by a combat

scenario. One of the three populations can switch the mode of alliance with the other

two populations between cooperation and competition. The other two populations always

compete with each other. In this system of parabolic partial differential equations, the

control is the function which measures the strength of alliance.

The second model is a metapopulation SIR model for the spread of rabies among rac-

coons. This system of ordinary differential equations considers subpopulations connected

via movement of individuals between subpopulations. The strength of the connectivity be-

tween two subpopulations is inversely proportional to the geographical distance between

them. We apply control theory to find the best strategy (timing and location) for vaccina-

tion to control the disease.

The third problem involves construction of a model of the spread of Eurasian collared

doves in the U.S. using an integrodifference equation. We investigate the effect of spatial

variation of the length of the growing season on the growth rate of the collared dove. Since

the growing season length affects the breeding season length, we take into account the

difference in the number of clutches in estimating the number of offspring produced each

breeding season.
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Chapter 1

Introduction

We present three population models. The first two problems are optimal control problems

involving partial differential equations (PDEs) and ordinary differential equations (ODEs).

The third problem is modeling of the spread of Eurasian collared dove in the U.S., using

an integro-difference equation. We use Pontryagin’s Maximum Principle [51] for ODEs and

its extended version to PDEs [34]. In Chapter 2, we discuss a competition model using a

system of parabolic partial differential equations, which describe the interaction of three

populations. One of the three populations can switch its alliances between cooperation

and competition with the other two populations. The remaining two populations always

compete with each other. The magnitude of the control function measures the strength of

alliance and the sign of the control function determines the mode of alliance: cooperation

or competition. The three populations are represented as the solutions of a nonlinear

system of parabolic partial differential equations with Dirichlet boundary conditions in

a bounded, space-time domain. The objective functional is defined from the perspective

of the opportunistic population. Our goal is to maximize the size of the opportunistic

population while minimizing the difference between the other competing populations and

the cost associated with the strength of the alliance.

We obtain a unique optimal control in terms of the solutions to the optimality system,

which consists of the state system coupled with an adjoint system. In Section 2 of Chapter 2,

we prove the existence of solutions to the state system and corresponding a priori estimates.
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In Section 3, we prove the existence of an optimal control. The control-to-state map is

differentiated to obtain the sensitivity system. Using the sensitivity system, we derive the

optimality system by differentiating the objective functional with respect to the control in

the fourth section. In Section 5, we prove the uniqueness of the optimal control. Finally,

we show numerical results using some simple examples. The first case is with spatially

independent control functions and the second case has spatial and temporal dependence in

the control. We illustrate how the optimal control function and the final time populations

are changed by choosing different values of the weight constants in our objective functional.

In Chapter 3, we briefly discuss a metapopulation SIR (susceptibles, infecteds, removed

(immune)) model for the spread of rabies among raccoons. We consider a system of ordinary

differential equations, representing subpopulations connected via movement of individuals

between subpopulations. The strength of the connectivity between two subpopulations is

inversely proportional to the geographical distance between them. Each subpopulation is

divided into three classes; the susceptibles, infecteds and the removed who are vaccinated

and become immune to rabies. In our model, the control is the rate at which of removal of

susceptibles occurs. We apply control theory to find the best strategy (timing and location)

to apply vaccination to control the disease. In Section 1, we describe the background on

the disease and the current vaccination measures used in the U.S. In Section 2, we present

our model to analyze the best strategy to control the spread of rabies for short time period

(i.e., no birth occurs in the time interval of our interest). Using Pontryagin’s Maximum

Principle, we obtain the necessary conditions for the optimal control(vaccination) in Section

3. In Section 4, we numerically solve the problem using an iterative method with the Runge-

Kutta 4th order scheme.

In the last chapter, the model for the spread of Eurasian collared dove in the U.S. using

an integrodifference equation is addressed. We investigate the effect of spatial variation of

the growing season on the growth rate of the collared dove. The length of growing season

affects the breeding season length, which affects the number of clutches and thus the number

of offspring produced each season.

We used the European banding data [29] to estimate our kernel in the integrodifference

2



equation which determines how far the individuals disperse. To estimate the breeding

season length, we used data on the number of frost free days recorded at numerous weather

stations in the U.S. collected by the US National Climatic Data Center in Asheville, NC.

We assumed that the breeding season length is proportional to the length of frost free days.

Many parameters, such as the survival rate of offspring and the maximum number of

clutches per year, are obtained from the literature, but we estimated the per capita rate

of pair formation using the Christmas bird count (CBC) data collected by the National

Audubon Society. Our spatial domain was a north-south strip starting with South Florida.

Then we simulated the model with one spatial dimension using these parameter values and

compared the rate of invasion speed (in terms of the wave front distance) with the North

American breeding bird survey (BBS) collected by the United States Geological Survey and

the Canadian Wildlife Service.

3



Chapter 2

Competition Model

2.1 Introduction

We consider optimal control of a nonlinear system of parabolic partial differential equations

with Dirichlet boundary conditions in a bounded, space-time domain Q = Ω × (0, T ), Ω ⊂
Rn. Solutions of the system represent populations of three species. One of the populations

can switch its alliances between cooperation and competition with the other two popu-

lations. The other two populations always compete with each other. The control is the

function α, measuring the strength of alliance and the sign of α tells whether the third

population is competing or cooperating with the other two populations. The control set is

defined as

U ≡ {α ∈ L∞(Q) : | α(x, t) |≤ M a.e. in Q },

where M > 0. Given a control α ∈ U , the corresponding state variables, u1(x, t), u2(x, t)

and u3(x, t) satisfy the state system:

L1u1 = −u1

∫

Ω

u2

1 + u2
dx + αu1

∫

Ω

u3

1 + u3
dx + f1

L2u2 = −u2

∫

Ω

u1

1 + u1
dx− αu2

∫

Ω

u3

1 + u3
dx + f2

L3u3 = αu3

∫

Ω

u1

1 + u1
dx− αu3

∫

Ω

u2

1 + u2
dx + f3

(2.1)

4



ICs:

uk(x, 0) = uk0(x) for x ∈ Ω, k = 1, 2, 3 (2.2)

BCs:

uk = 0 on ∂Ω× (0, T ), k = 1, 2, 3 (2.3)

where

Lkuk ≡ (uk)t −
n∑

i,j=1

(ak
ij(uk)xi)xj +

n∑

i=1

(bi)k(uk)xi + ckuk. (2.4)

The functions f ′is represent either immigration or emigration. The first and second terms

on the right hand of each equation represent the non-local interaction between two popula-

tions. For example, the terms in the right hand side of the u1 PDE represent the non-local

interaction between populations 1 and 2 and populations 1 and 3 respectively. This model

was designed with a combat application in mind [52]. The main reason why the interaction

terms have the form,
∫
Ω

ui
1+ui

dx, is to bound the states. If the interaction term was simply

of the form,
∫
Ω ui dx, and the source terms are positive then the solutions may blow up at

finite time, since quadratic growth terms may cause such behavior. We need to put a bound

on the cooperative interaction terms. Such cooperative terms can be seen in related work

on combat coalitions [37].

The objective functional is

J(α) =
1
2

∫

Q

[Ku2
3 − L(u2 − u1)2 −Mα2] dxdt (2.5)

where K, L and M are positive weighting constants, which balance the importance of the

three terms. The functional is defined from the perspective of the opportunistic population

3. The second term in the integrand reflects the risk of disparity between 1 and 2. The last

term reflects the cost of switching alliances. The goal is to maximize the size of population

3 while keeping the sizes of the other two populations close to equal and to minimize cost.

We seek to maximize the functional over the admissible class of control space such that

J(α∗) = max
α∈U

J(α). (2.6)

5



Cosner, Lenhart and Protopopescu studied problems involving parabolic systems with

nonlinear local or nonlocal interactions[10]. They proved global existence and comparison

results under suitable assumptions on the interaction terms and a uniqueness result for the

stationary state with some restrictions on the interaction terms, domain size and boundary

conditions. They also made a comparison with an equivalent ODE system which has been

used in modeling combat. Extending this model, Lenhart, Protopopescu and Stojanovic

consider a two-sided game for the control of a stationary semi-linear competitive system with

autonomous sources, where the controls are the kernels of the nonlocal interaction terms

[36]. Lenhart and Protopopescu also studied a parabolic system with general competitive

interactions as a two-player game with conflicting objectives and with controls on the source

terms [35]. He, Leung and Stojanovic studied the optimal harvesting control problem

governed by a time-periodic competing parabolic Volterra-Lotka system [27]. Fister also

studied similar harvesting control problem of a parabolic system with Neumann boundary

condition [21]. Lenhart, Protopopescu and Szpiro consider optimal control for competing

coalitions. They consider the situation in which the players are grouped in two coalitions.

The players of each coalition cooperate with each other in their own group, and the two

coalitions compete with each other. They studied a semi-linear non-degenerate parabolic

system with general nonlocal interactions, general inhomogeneous boundary conditions and

distributed sources. The source terms play the role of the controls[37].

We obtain a unique optimal control in terms of the solutions to the optimality system,

which consists of the state system coupled with an adjoint system. In Section 2, we prove

the existence of solutions to the state system and a priori estimates for the state solutions.

In Section 3, we prove the existence of an optimal control. The control-to-state map is

differentiated to obtain the sensitivity system. Using the sensitivity system, we derive the

optimality system by differentiating the objective functional with respect to the control in

the fourth section. In Section 5, we prove the uniqueness of the optimal control. Finally,

we show numerical results using some simple examples. The first example is the case with

spatially independent control function α(t) and the second one is the more general form of

control function α(x, t).

6



2.2 Assumptions

We make the following assumptions:

uk0(x) ∈ L∞(Ω), for k = 1, 2, 3 (2.7)

ak
ij ∈ C1(Q), ak

ij = ak
ji for k = 1, 2, 3, i, j = 1, 2, 3, ..., n (2.8)

bk
i ∈ C1(Q), ck

i ∈ C(Q) for k = 1, 2, 3, i = 1, 2, 3, ..., n (2.9)
n∑

i,j=1

ak
ij(x, t)ξiξj ≥ θξ2

i for k = 1, 2, 3, where θ > 0, for all (x, t) ∈ Q, ξ ∈ Rn

(2.10)

aij = aji for all i 6= j (2.11)

fk ∈ L∞(Q), for k = 1, 2, 3 and fk(x, t) ≥ 0 for all (x, t) ∈ Q. (2.12)

The underlying state space for system (2.1)-(2.4) is V = L2(0, T ;H1
0 (Ω)).

Definition 1. We define for each t ∈ (0, T ) the bilinear form in H1(Ω):

ak(t, ψ, φ) =
∫

Ω

n∑

i,j=1

ak
ijψxiφxj dx +

∫

Ω

n∑

i=1

(bi)kψxiφdx +
∫

Ω
ckψφdx

for k = 1, 2, 3.

7



Definition 2. (u1, u2, u3) inV 3 is a solution of system (2.1) - (2.4) provided

(i) (u1)t, (u2)t, (u3)t ∈ L2(0, T ; H−1(Ω))

(ii)
∫ T

0
(< (u1)t, φ1 > +a1(t, u1, φ1)) dt

=
∫

Q
(−u1

∫

Ω

u2

1 + u2
dy + αu1

∫

Ω

u3

1 + u3
dy + f1)φ1 dx dt

∫ T

0
(< (u2)t, φ2 > +a2(t, u2, φ2)) dt

=
∫

Q
(−u2

∫

Ω

u1

1 + u1
dy − αu2

∫

Ω

u3

1 + u3
dy + f2)φ2 dx dt

∫ T

0
(< (u3)t, φ3 > +a3(t, u3, φ3)) dt

=
∫

Q
(α u3

∫

Ω

u1

1 + u1
dy − αu3

∫

Ω

u2

1 + u2
dy + f3)φ3 dx dt

for all φ1, φ2, φ3 ∈ L2(0, T ;H1
0 (Ω)) and,

(iii) u1(x, 0) = u10(x), u2(x, 0) = u20(x), u3(x, 0) = u30(x) for x ∈ Ω.

where < (uk)t, φk > denotes duality action between H−1(Ω) and H1
0 (Ω).

Remark: Since ui for i = 1, 2, 3 are continuous in time, i.e., ui ∈ C([0, T ]; L2(Ω)) by

Evans [18], the initial conditions (iii) in Definition 2 make sense in L2(Ω).

Next, we prove the existence of solutions to the state system (2.1) - (2.4) using a fixed

point method.

Theorem 1. For T sufficiently small, given control α ∈ U , there exists a unique solution

u = (u1, u2, u3) in V 3, solving system (2.1)-(2.4) and there exists C > 0 such that 0 ≤ ui ≤
C a.e..

Proof. By using a change of variables, we can rewrite the state system (2.1)-(2.4)as follows.

Let u1 = eλtw1, u2 = eλtw2, u3 = eλtw3, where λ > 0 is to be chosen later.

L̂1w1 = −w1

∫

Ω

w2

e−λt + w2
dx + αw1

∫

Ω

w3

e−λt + w3
dx + e−λtf1

L̂2w2 = −w2

∫

Ω

w1

e−λt + w1
dx− αw2

∫

Ω

w3

e−λt + w3
dx + e−λtf2

L̂3w3 = αw3

∫

Ω

w1

e−λt + w1
dx− αw3

∫

Ω

w2

e−λt + w2
dx + e−λtf3

(2.13)
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ICs:

wk(x, 0) = uk0(x) for x ∈ Ω, k = 1, 2, 3 (2.14)

BCs:

wk = 0 on ∂Ω× (0, T ), k = 1, 2, 3 (2.15)

where

L̂kwk ≡ (wk)t −
n∑

i,j=1

(ak
ij(wk)xi)xj +

n∑

i=1

(bi)k(wk)xi + (ck + λ)wk. (2.16)

We will show the existence of solutions to the state system (2.13)-(2.16) by applying

Banach’s Fixed Point Theorem in the space, X3, where

X = C([0, T ];L2(Ω)) ∩ {W ∈ L∞(Q)|0 ≤ W ≤ K1 a.e. in Q},
with the norm

‖v‖ = sup
0≤t≤T

‖v(t)‖L2(Ω) and K1 ≥ 2ui0 for i = 1, 2, 3.

From the assumption (2.12), fi(t) ∈ L∞(Q). Let vi ∈ X, i = 1, 2, 3. Then, by replac-

ing wi in the integrands on the right-hand side of equations (2.13) -(2.16), we obtain the

following linear system of parabolic PDEs:

L̂1w1 = −w1

∫

Ω

v2

e−λt + v2
dx + αw1

∫

Ω

v3

e−λt + v3
dx + e−λtf1(x, t)

L̂2w2 = −w2

∫

Ω

v1

e−λt + v1
dx− αw2

∫

Ω

v3

e−λt + v3
dx + e−λtf2(x, t)

L̂3w3 = αw3

∫

Ω

v1

e−λt + v1
dx− αw3

∫

Ω

v2

e−λt + v2
dx + e−λtf3(x, t)

(2.17)

ICs:

wk(x, 0) = uk0(x) for x ∈ Ω, k = 1, 2, 3 (2.18)

BCs:

wk = 0 on ∂Ω× (0, T ), k = 1, 2, 3 (2.19)

Problem (2.17)-(2.19) has a unique weak solution in V 3. Define A : X3 → X3 by setting

A[v] = w where w is the solution of system (2.17)-(2.19). By Evans [18], solution wi ∈ V is

9



also in C([0, T ]; L2(Ω)).

First, we show that 0 ≤ wi ≤ K1 if 0 ≤ vi ≤ K1 for w = A(v).

From the assumption (2.12) and the PDEs (2.1), we have

L̂1w1 + g1w1 = e−λtf1 ≥ 0

L̂2w2 + g2w2 = e−λtf2 ≥ 0

L̂3w3 + g3w3 = e−λtf3 ≥ 0

where
g1 ≡ g1(t) =

∫

Ω

v2

e−λt + v2
dx− α

∫

Ω

v3

e−λt + v3
dx

g2 ≡ g2(t) =
∫

Ω

v1

e−λt + v1
dx + α

∫

Ω

v3

e−λt + v3
dx

g3 ≡ g3(t) = α(
∫

Ω

v2

e−λt + v2
dx−

∫

Ω

v1

e−λt + v1
dx).

Since 0 is the lower bound for the state variable vi,

vi

e−λt + vi
< 1,

therefore, we have ∫

Ω

vi

e−λt + vi
dx ≤ C for i = 1, 2, 3.

Since the control function α is also bounded, the functions gi for i = 1, 2, 3 are also bounded,

i.e.,

|g1| = |
∫

Ω

v2

e−λt + v2
dx− α

∫

Ω

v3

e−λt + v3
dx| ≤ C1

|g2| = |
∫

Ω

v1

e−λt + v1
dx + α

∫

Ω

v3

e−λt + v3
dx| ≤ C2

|g3| = |α(
∫

Ω

v2

e−λt + v2
dx−

∫

Ω

v1

e−λt + v1
dx)| ≤ C3

10



If we choose λ > 0 sufficiently large such that λ ≥ −(ci + gi) for all i = 1, 2, 3, we have

λ + c1 +
∫

Ω

v2

e−λt + v2
dx + α

∫

Ω

v3

e−λt + v3
dx ≥ 0

λ + c2 +
∫

Ω

v1

e−λt + v1
dx− α

∫

Ω

v3

e−λt + v3
dx ≥ 0

λ + c3 + α(
∫

Ω

v1

e−λt + v1
dx−

∫

Ω

v2

e−λt + v2
dx) ≥ 0.

(2.20)

From the weak version of the Maximum Principle for parabolic operators [34], we have

wi ≥ 0.

Next, we show wi ≤ K1. Consider the following system:

L̃1w1 ≤ C1

L̃2w2 ≤ C2

L̃3w3 ≤ C3

(2.21)

where Ci > |e−λtfi| for i = 1, 2, 3, and

L̃1w1 = L̂1w1 + w1(
∫

Ω

v2

e−λt + v2
dx + α

∫

Ω

v3

e−λt + v3
dx)

L̃2w2 = L̂2w2 + w2(
∫

Ω

v1

e−λt + v1
dx− α

∫

Ω

v3

e−λt + v3
dx)

L̃3w3 = L̂3w3 + αw3(
∫

Ω

v1

e−λt + v1
dx−

∫

Ω

v2

e−λt + v2
dx).

Let Wi = wi − Cit, for i = 1, 2, 3, then the system (2.17)-(2.19) implies

L̃1W1 ≤ −(λ + c1 +
∫

Ω

v2

e−λt + v2
dx + α

∫

Ω

v3

e−λt + v3
dx)C1t

L̃2W2 ≤ −(λ + c2 +
∫

Ω

v1

e−λt + v1
dx− α

∫

Ω

v3

e−λt + v3
dx)C2t

L̃3W3 ≤ −(λ + c3 +
∫

Ω

v1

e−λt + v1
dx−

∫

Ω

v2

e−λt + v2
dx)C3t

(2.22)

ICs:

Wi = wi = ui0 (2.23)
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BCs:

Wi = −C1t ≤ 0 on ∂Ω× (0, T ), i = 1, 2, 3 (2.24)

By the extension of the Maximum Principle to weak solutions [34],

wi − Cit = Wi ≤ max |ui0|, and therefore wi ≤ max |ui0|+ Cit.

For t ≤ K1

2Ci
, wi ≤ K1

2
+

K1

2
= K1.

By choosing T < min
i

K1

2Ci
, we have wi ≤ K1 for i = 1, 2, 3.

Next, we prove that if T > 0 is small enough, then, the mapping A is a strict contraction.

Choose v, ṽ ∈ X3, and define w = A[v], w̃ = A[ṽ].

We subtract the bilinear forms of wi and w̃i. The equation for w1 − w̃1 is illustrated

below.

∫

Q
((w1 − w̃1)tφ +

n∑

i,j=1

a1
ij(w1 − w̃1)xiφxj +

n∑

i=1

b1
i (w1 − w̃1)xiφ + (c1 + λ)(w1 − w̃1)φ) dx dt

= −
∫

Q
(w1

∫

Ω

v2

e−λt + v2
dy − w̃1

∫

Ω

ṽ2

e−λt + ṽ2
dy)φdx dt

+
∫

Q
(αw1

∫

Ω

v3

e−λ t + v3
dy − αw̃1

∫

Ω

ṽ3

e−λt + ṽ3
dy)φdx dt

= −
∫

Q
[(w1 − w̃1)(

∫

Ω

v2

e−λ t + v2
dy + w̃1

∫

Ω

e−λt(v2 − ṽ2)
(e−λt + v2)(e−λt + ṽ2)

dy)

− (αw1 − αw̃1)
∫

Ω

v3

e−λ t + v3
dy − αw̃1

∫

Ω

e−λt(v3 − ṽ3)
(e−λt + v3)(e−λt + ṽ3)

dy]φdx dt

where φ ∈ L2(0, T ;H1
0 (Ω)). We can get similar expressions for w2 − w̃2 and w3 − w̃3.

By using test functions wi − w̃i in the corresponding equations and using d
dt

(wk− ewk)2

2 =

12



(wk − w̃k)((wk − w̃k)t in weak sense, we obtain for 0 ≤ s ≤ T , Qs = Ω× (0, s),

1
2

∫

Ω×{t=s}

((w1 − w̃1)2 + (w2 − w̃2)2 + (w3 − w̃3)2) dx +
∫

Qs

(
n∑

i,j=1

a1
ij(w1 − w̃1)xi(w1 − w̃1)xj

+
n∑

i,j=1

a2
ij(w2 − w̃2)xi(w2 − w̃2)xj +

n∑

i,j=1

a3
ij(w3 − w̃3)xi(w3 − w̃3)xj ) dx dt

+
∫

Qs

(
n∑

i=1

b1
i (w1 − w̃1)xi(w1 − w̃1) +

n∑

i=1

b2
i (w2 − w̃2)xi(w2 − w̃2)

+
n∑

i=1

b3
i (w3 − w̃3)xi(w3 − w̃3) dx dt

+
∫

Qs

((c1 + λ)(w1 − w̃1)2 + (c2 + λ)(w2 − w̃2)2 + (c3 + λ)(w3 − w̃3)2) dx dt

= −
∫

Qs

((w1 − w̃1)2
∫

Ω

v2

e−λt + v2
dy + w̃1(w1 − w̃1)

∫

Ω
(

v2

e−λt + v2
− ṽ2

e−λt + ṽ2
) dy) dx dt

+
∫

Qs

α((w1 − w̃1)2
∫

Ω

v3

e−λt + v3
dy + w̃1(w1 − w̃1)

∫

Ω
(

v3

e−λt + v3
− ṽ3

e−λt + ṽ3
) dy) dx dt

−
∫

Qs

((w2 − w̃2)2
∫

Ω

v1

e−λt + v1
dy + w̃2(w2 − w̃2)

∫

Ω
(

v1

e−λt + v1
− ṽ1

e−λt + ṽ1
) dy) dx dt

−
∫

Qs

α((w2 − w̃2)2
∫

Ω

v3

e−λt + v3
dy + w̃2(w2 − w̃2)

∫

Ω
(

v3

e−λt + v3
− ṽ3

e−λt + ṽ3
) dy) dx dt

+
∫

Qs

α((w3 − w̃3)2
∫

Ω

v1

e−λt + v1
dy + w̃3(w3 − w̃3)

∫

Ω
(

v1

e−λt + v1
− ṽ1

e−λt + ṽ1
) dy) dx dt

−
∫

Qs

α((w3 − w̃3)2
∫

Ω

v2

e−λt + v2
dy + w̃3(w3 − w̃3)

∫

Ω
(

v2

e−λt + v2
− ṽ2

e−λt + ṽ2
) dy) dx dt

= −
∫

Qs

((w1 − w̃1)2
∫

Ω

v2

e−λt + v2
dy + w̃1(w1 − w̃1)

∫

Ω

e−λt(v2 − ṽ2)
(e−λt + v2)(e−λt + ṽ2)

dy) dx dt

+
∫

Qs

α((w1 − w̃1)2
∫

Ω

v3

e−λt + v3
dy + w̃1(w1 − w̃1)

∫

Ω

e−λt(v3 − ṽ3)
(e−λt + v3)(e−λt + ṽ3)

dy) dx dt

−
∫

Qs

((w2 − w̃2)2
∫

Ω

v1

e−λt + v1
dy + w̃2(w2 − w̃2)

∫

Ω

e−λt(v1 − ṽ1)
(e−λt + v1)(e−λt + ṽ1)

dy) dx dt

−
∫

Qs

α((w2 − w̃2)2
∫

Ω

v3

e−λt + v3
dy + w̃2(w2 − w̃2)

∫

Ω

e−λt(v3 − ṽ3)
(e−λt + v3)(e−λt + ṽ3)

dy) dx dt

+
∫

Qs

α((w3 − w̃3)2
∫

Ω

v1

e−λt + v1
dy + w̃3(w3 − w̃3)

∫

Ω

e−λt(v1 − ṽ1)
(e−λt + v1)(e−λt + ṽ1)

dy) dx dt

−
∫

Qs

α((w3 − w̃3)2
∫

Ω

v2

e−λt + v2
dy + w̃3(w3 − w̃3)

∫

Ω

e−λt(v2 − ṽ2)
(e−λt + v2)(e−λt + ṽ2)

dy) dx dt

13



Using uniform ellipticity, we have

1
2

∫

Ω×{t=s}

(|w1 − w̃1|2 + |w2 − w̃2|2 + |w3 − w̃3|2) dx

+ θ

∫

Qs

(| 5 (w1 − w̃1)|2 + | 5 (w2 − w̃2)|2 + | 5 (w3 − w̃3)|2) dx dt

+
∫

Qs

((c1 + λ)|w1 − w̃1|2 + (c2 + λ)|w2 − w̃2|2 + (c3 + λ)|w3 − w̃3|2) dx dt

≤
∫

Qs

(|w1 − w̃1|2
∫

Ω
| v2

e−λt + v2
| dy + |w̃1||w1 − w̃1|

∫

Ω

e−λt|v2 − ṽ2|
|e−λt + v2||e−λt + ṽ2| dy) dx dt

+
∫

Qs

|α|(|w1 − w̃1|2
∫

Ω
| v3

e−λt + v3
| dy + |w̃1||w1 − w̃1|

∫

Ω

e−λt|v3 − ṽ3|
|e−λt + v3||e−λt + ṽ3| dy) dx dt

+
∫

Qs

(|w2 − w̃2|2
∫

Ω
| v1

e−λt + v1
| dy + |w̃2||w2 − w̃2|

∫

Ω

e−λt|v1 − ṽ1|
|e−λt + v1||e−λt + ṽ1| dy) dx dt

+
∫

Qs

|α|(|w2 − w̃2|2
∫

Ω
| v3

e−λt + v3
| dy + |w̃2||w2 − w̃2|

∫

Ω

e−λt|v3 − ṽ3|
|e−λt + v3||e−λt + ṽ3| dy) dx dt

+
∫

Qs

|α|(|w3 − w̃3|2
∫

Ω
| v1

e−λt + v1
| dy + |w̃3||w3 − w̃3|

∫

Ω

e−λt|v1 − ṽ1|
|e−λt + v1||e−λt + ṽ1| dy) dx dt

+
∫

Qs

|α|(|w3 − w̃3|2
∫

Ω
| v2

e−λt + v2
| dy + |w̃3||w3 − w̃3|

∫

Ω

e−λt|v2 − ṽ2|
|e−λt + v2||e−λt + ṽ2| dy) dx dt

+
∫

Qs

n∑

i=1

(|b1
i ||(w1 − w̃1)xi ||w1 − w̃1|+ |b2

i ||(w2 − w̃2)xi ||w2 − w̃2|

+ |b3
i ||(w3 − w̃3)xi ||w3 − w̃3|) dx dt

≤
∫

Qs

(|w1 − w̃1|2
∫

Ω
| v2

e−λt + v2
| dy + |w̃1||w1 − w̃1|

∫

Ω

e−λt|v2 − ṽ2|
|e−λt + v2||e−λt + ṽ2| dy) dx dt

+
∫

Qs

|α|(|w1 − w̃1|2
∫

Ω
| v3

e−λt + v3
| dy + |w̃1||w1 − w̃1|

∫

Ω

e−λt|v3 − ṽ3|
|e−λt + v3||e−λt + ṽ3| dy) dx dt

+
∫

Qs

(|w2 − w̃2|2
∫

Ω
| v1

e−λt + v1
| dy + |w̃2||w2 − w̃2|

∫

Ω

e−λt|v1 − ṽ1|
|e−λt + v1||e−λt + ṽ1| dy) dx dt

+
∫

Qs

|α|(|w2 − w̃2|2
∫

Ω
| v3

e−λt + v3
| dy + |w̃2||w2 − w̃2|

∫

Ω

e−λt|v3 − ṽ3|
|e−λt + v3||e−λt + ṽ3| dy) dx dt

+
∫

Qs

|α|(|w3 − w̃3|2
∫

Ω
| v1

e−λt + v1
| dy + |w̃3||w3 − w̃3|

∫

Ω

e−λt|v1 − ṽ1|
|e−λt + v1||e−λt + ṽ1| dy) dx dt

+
∫

Qs

|α|(|w3 − w̃3|2
∫

Ω
| v2

e−λt + v2
| dy + |w̃3||w3 − w̃3|

∫

Ω

e−λt|v2 − ṽ2|
|e−λt + v2||e−λt + ṽ2| dy) dx dt

+ C1

∫

Qs

(| 5 (w1 − w̃1)||w1 − w̃1|+ | 5 (w2 − w̃2)||w2 − w̃2|

+ | 5 (w3 − w̃3)||w3 − w̃3|) dx dt.
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Applying Cauchy’s inequality with ε on the last integral of the right-hand side of above

expression, we have

1
2

∫

Ω×{t=s}

(|w1 − w̃1|2 + |w2 − w̃2|2 + |w3 − w̃3|2) dx

+ θ

∫

Qs

(| 5 (w1 − w̃1)|2 + | 5 (w2 − w̃2)|2 + | 5 (w3 − w̃3)|2) dx dt

+
∫

Qs

((c1 + λ)|w1 − w̃1|2 + (c2 + λ)|w2 − w̃2|2 + (c3 + λ)|w3 − w̃3|2) dx dt

≤
∫

Qs

(|w1 − w̃1|2
∫

Ω
| v2

e−λt + v2
| dy + |w̃1||w1 − w̃1|

∫

Ω

e−λt|v2 − ṽ2|
|e−λt + v2||e−λt + ṽ2| dy) dx dt

+
∫

Qs

|α|(|w1 − w̃1|2
∫

Ω
| v3

e−λt + v3
| dy + |w̃1||w1 − w̃1|

∫

Ω

e−λt|v3 − ṽ3|
|e−λt + v3||e−λt + ṽ3| dy) dx dt

+
∫

Qs

(|w2 − w̃2|2
∫

Ω
| v1

e−λt + v1
| dy + |w̃2||w2 − w̃2|

∫

Ω

e−λt|v1 − ṽ1|
|e−λt + v1||e−λt + ṽ1| dy) dx dt

+
∫

Qs

|α|(|w2 − w̃2|2
∫

Ω
| v3

e−λt + v3
| dy + |w̃2||w2 − w̃2|

∫

Ω

e−λt|v3 − ṽ3|
|e−λt + v3||e−λt + ṽ3| dy) dx dt

+
∫

Qs

|α|(|w3 − w̃3|2
∫

Ω
| v1

e−λt + v1
| dy + |w̃3||w3 − w̃3|

∫

Ω

e−λt|v1 − ṽ1|
|e−λt + v1||e−λt + ṽ1| dy) dx dt

+
∫

Qs

|α|(|w3 − w̃3|2
∫

Ω
| v2

e−λt + v2
| dy + |w̃3||w3 − w̃3|

∫

Ω

e−λt|v2 − ṽ2|
|e−λt + v2||e−λt + ṽ2| dy) dx dt

+ C1ε

∫

Qs

(| 5 (w1 − w̃1)|2 + | 5 (w2 − w̃2)|2 + | 5 (w3 − w̃3)|2) dx dt

+
C1

4ε

∫

Qs

(|w1 − w̃1|2 + |w2 − w̃2|2 + |w3 − w̃3|2) dx dt.
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By choosing ε = θ
2C1

and combining like terms, we obtain

1
2

∫

Ω×{t=s}

(|w1 − w̃1|2 + |w2 − w̃2|2 + |w3 − w̃3|2) dx

+
θ

2

∫

Qs

(| 5 (w1 − w̃1)|2 + | 5 (w2 − w̃2)|2 + | 5 (w3 − w̃3)|2) dx dt

+
∫

Qs

(−C2 + λ)(|w1 − w̃1|2 + |w2 − w̃2|2 + |w3 − w̃3|2) dx dt

≤
∫

Qs

(|w1 − w̃1|2
∫

Ω
| v2

e−λt + v2
| dy + |w̃1||w1 − w̃1|

∫

Ω

e−λt|v2 − ṽ2|
|e−λt + v2||e−λt + ṽ2| dy) dx dt

+
∫

Qs

|α|(|w1 − w̃1|2
∫

Ω
| v3

e−λt + v3
| dy + |w̃1||w1 − w̃1|

∫

Ω

e−λt|v3 − ṽ3|
|e−λt + v3||e−λt + ṽ3| dy) dx dt

+
∫

Qs

(|w2 − w̃2|2
∫

Ω
| v1

e−λt + v1
| dy + |w̃2||w2 − w̃2|

∫

Ω

e−λt|v1 − ṽ1|
|e−λt + v1||e−λt + ṽ1| dy) dx dt

+
∫

Qs

|α|(|w2 − w̃2|2
∫

Ω
| v3

e−λt + v3
| dy + |w̃2||w2 − w̃2|

∫

Ω

e−λt|v3 − ṽ3|
|e−λt + v3||e−λt + ṽ3| dy) dx dt

+
∫

Qs

|α|(|w3 − w̃3|2
∫

Ω
| v1

e−λt + v1
| dy + |w̃3||w3 − w̃3|

∫

Ω

e−λt|v1 − ṽ1|
|e−λt + v1||e−λt + ṽ1| dy) dx dt

+
∫

Qs

|α|(|w3 − w̃3|2
∫

Ω
| v2

e−λt + v2
| dy + |w̃3||w3 − w̃3|

∫

Ω

e−λt|v2 − ṽ2|
|e−λt + v2||e−λt + ṽ2| dy) dx dt

+ C3

∫

Qs

(|w1 − w̃1|2 + |w2 − w̃2|2 + |w3 − w̃3|2) dx dt

where −C2 is a lower bound on ci for i = 1, 2, 3.
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Since |α| ≤ M , and |w̃i| ≤ K1,

1
2

∫

Ω×{t=s}

(|w1 − w̃1|2 + |w2 − w̃2|2 + |w3 − w̃3|2) dx

+
∫

Qs

(−C2 + λ)(|w1 − w̃1|2 + |w2 − w̃2|2 + |w3 − w̃3|2) dx dt

≤
∫

Qs

(|w1 − w̃1|2
∫

Ω
| v2

e−λt + v2
| dy + K1|w1 − w̃1|

∫

Ω

e−λt|v2 − ṽ2|
|e−λt + v2||e−λt + ṽ2| dy) dx dt

+
∫

Qs

M(|w1 − w̃1|2
∫

Ω
| v3

e−λt + v3
| dy + K1|w1 − w̃1|

∫

Ω

e−λt|v3 − ṽ3|
|e−λt + v3||e−λt + ṽ3| dy) dx dt

+
∫

Qs

(|w2 − w̃2|2
∫

Ω
| v1

e−λt + v1
| dy + K1|w2 − w̃2|

∫

Ω

e−λt|v1 − ṽ1|
|e−λt + v1||e−λt + ṽ1| dy) dx dt

+
∫

Qs

M(|w2 − w̃2|2
∫

Ω
| v3

e−λt + v3
| dy + K1|w2 − w̃2|

∫

Ω

e−λt|v3 − ṽ3|
|e−λt + v3||e−λt + ṽ3| dy) dx dt

+
∫

Qs

M(|w3 − w̃3|2
∫

Ω
| v1

e−λt + v1
| dy + K1|w3 − w̃3|

∫

Ω

e−λt|v1 − ṽ1|
|e−λt + v1||e−λt + ṽ1| dy) dx dt

+
∫

Qs

M(|w3 − w̃3|2
∫

Ω
| v2

e−λt + v2
| dy + K1|w3 − w̃3|

∫

Ω

e−λt|v2 − ṽ2|
|e−λt + v2||e−λt + ṽ2| dy) dx dt

+ C3

∫

Qs

(|w1 − w̃1|2 + |w2 − w̃2|2 + |w3 − w̃3|2) dx dt.

Since vi ≥ 0, the terms of the form | vi

e−λt + vi
|, for i = 1, 2, 3 are bounded by 1. Similarly,

using the positivity of vi’s, we have
e−λt

|e−λt + vi||e−λt + ṽi| ≤
1

e−λt
≤ eλT for i = 1, 2, 3. By

17



using these estimates, we have

1
2

∫

Ω×{t=s}

(|w1 − w̃1|2 + |w2 − w̃2|2 + |w3 − w̃3|2) dx

+
∫

Qs

(−C2 + λ)(|w1 − w̃1|2 + |w2 − w̃2|2 + |w3 − w̃3|2) dx dt

≤ K1

∫

Qs

|w1 − w̃1|(
∫

Ω

|v2 − ṽ2|
|e−λt + v2||e−λt + ṽ2| dy + M

∫

Ω

|v3 − ṽ3|
|e−λt + v3||e−λt + ṽ3| dy) dx dt

+ K1

∫

Qs

|w2 − w̃2|(
∫

Ω

|v1 − ṽ1|
|e−λt + v1||e−λt + ṽ1| dy + M

∫

Ω

|v3 − ṽ3|
|e−λt + v3||e−λt + ṽ3| dy) dx dt

+ K1M

∫

Qs

|w3 − w̃3|(
∫

Ω

|v1 − ṽ1|
|e−λt + v1||e−λt + ṽ1| dy +

∫

Ω

|v2 − ṽ2|
|e−λt + v2||e−λt + ṽ2| dy) dx dt

+ C3

∫

Qs

(|w1 − w̃1|2 + |w2 − w̃2|2 + |w3 − w̃3|2) dx dt

≤ K1e
λT

∫

Qs

|w1 − w̃1|(
∫

Ω
|v2 − ṽ2| dy + Me

∫

Ω
|v3 − ṽ3| dy) dx dt

+ K1e
λT

∫

Qs

|w2 − w̃2|(
∫

Ω
|v1 − ṽ1| dy + M

∫

Ω
|v3 − ṽ3| dy) dx dt

+ K1MeλT

∫

Qs

|w3 − w̃3|(
∫

Ω
|v1 − ṽ1| dy +

∫

Ω
|v2 − ṽ2| dy) dx dt

+ C3

∫

Qs

(|w1 − w̃1|2 + |w2 − w̃2|2 + |w3 − w̃3|2) dx dt

≤ K1e
λT

∫

Qs

|w1 − w̃1|( sup
0≤t≤T

∫

Ω
|v2 − ṽ2| dy + M sup

0≤t≤T

∫

Ω
|v3 − ṽ3| dy) dx dt

+ K1e
λT

∫

Qs

|w2 − w̃2|( sup
0≤t≤T

∫

Ω
|v1 − ṽ1| dy + K1M sup

0≤t≤T

∫

Ω
|v3 − ṽ3| dy) dx dt

+ K1MeλT

∫

Qs

|w3 − w̃3|( sup
0≤t≤T

∫

Ω
|v1 − ṽ1| dy + K1M sup

0≤t≤T

∫

Ω
|v2 − ṽ2| dy) dx dt

+ C3

∫

Qs

(|w1 − w̃1|2 + |w2 − w̃2|2 + |w3 − w̃3|2) dx dt
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Applying Cauchy’s inequality on the K1 terms of the right-hand side, we have

1
2

∫

Ω×{t=s}

(|w1 − w̃1|2 + |w2 − w̃2|2 + |w3 − w̃3|2) dx

+
∫

Qs

((c1 + λ)|w1 − w̃1|2 + (c2 + λ)|w2 − w̃2|2 + (c3 + λ)|w3 − w̃3|2) dx dt

≤ K1(1 + M)eλT

∫

Qs

(|w1 − w̃1|2 + |w2 − w̃2|2) dx dt]

+ K1(1 + M)eλT

∫

Qs

(( sup
0≤t≤T

∫

Ω
|v1 − ṽ1| dy)2 + ( sup

0≤t≤T

∫

Ω
|v2 − ṽ2| dy)2) dx dt

+ 2K1MeλT

∫

Qs

(|w3 − w̃3|2 + ( sup
0≤t≤T

∫

Ω
|v3 − ṽ3| dy)2) dx dt

+ C3

∫

Qs

(|w1 − w̃1|2 + |w2 − w̃2|2 + |w3 − w̃3|2) dx

By rearranging the terms in the above estimates, we have,

1
2

∫

Ω×{t=s}

(|w1 − w̃1|2 + |w2 − w̃2|2 + |w3 − w̃3|2) dx

+
∫

Qs

(−C2 + λ−K1(1 + M)eλT − C3)|w1 − w̃1|2

+ (−C2 + λ−K1(1 + M)eλT − C3)|w2 − w̃2|2

+ (−C2 + λ− 2K1MeλT − C3)|w3 − w̃3|2) dx dt

≤ C4K1e
λT

∫

Qs

[( sup
0≤t≤T

∫

Ω
|v1 − ṽ1| dy)2 + ( sup

0≤t≤T

∫

Ω
|v2 − ṽ2| dy)2

+ ( sup
0≤t≤T

∫

Ω
|v3 − ṽ3| dy)2] dx dt)

Since K1(1 + M)eλT + C2 + C3 ≤ C5K1e
λT and 2K1MeλT + C2 + C3 ≤ C5K1e

λT for
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some C5,

1
2

∫

Ω×{t=s}

(|w1 − w̃1|2 + |w2 − w̃2|2 + |w3 − w̃3|2) dx

+
∫

Qs

(λ− C5K1e
λT )(|w1 − w̃1|2 + |w2 − w̃2|2 + |w3 − w̃3|2) dx dt

≤ K1e
λT C4

∫

Qs

(( sup
0≤t≤T

∫

Ω
|v1 − ṽ1| dy)2 + ( sup

0≤t≤T

∫

Ω
|v2 − ṽ2| dy)2

+ ( sup
0≤t≤T

∫

Ω
|v3 − ṽ3| dy)2) dx dt.

The terms of the form ( sup
0≤t≤T

∫

Ω
|vi − ṽi| dy)2 can be estimated as follows.

∫

Ω
|vi − ṽi| dy ≤ CΩ(

∫

Ω
|vi − ṽi|2 dy)1/2.

By taking the sup of both sides over 0 ≤ t ≤ T ,

sup
0≤t≤T

∫

Ω
|vi − ṽi| dy ≤ CΩ sup

0≤t≤T
(
∫

Ω
|vi − ṽi|2 dy)1/2.

By squaring both sides, we have

( sup
0≤t≤T

∫

Ω
|vi − ṽi| dy)2 ≤ C2( sup

0≤t≤T
(
∫

Ω
|vi − ṽi|2 dy)1/2)2

= C2(( sup
0≤t≤T

∫

Ω
|vi − ṽi|2 dy)1/2)2

= C2 sup
0≤t≤T

∫

Ω
|vi − ṽi|2 dy.

By using the estimates above, we have

1
2

∫

Ω×{t=s}

(|w1 − w̃1|2 + |w2 − w̃2|2 + |w3 − w̃3|2) dx

+
∫

Qs

(λ− C5K1e
λT )[|w1 − w̃1|2 + |w2 − w̃2|2 + |w3 − w̃3|2] dx dt

≤ C7K1e
λT T ( sup

0≤t≤T

∫

Ω
|v1 − ṽ1|2 dy + sup

0≤t≤T

∫

Ω
|v2 − ṽ2|2 dy + sup

0≤t≤T

∫

Ω
|v3 − ṽ3|2 dy)
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First, choose λ > 0 such that

λ > C5K1.

Then, if we choose T such that

T < min(
1
λ

ln(
λ

C5K1
),

e
− λ

2C7K1

2C7K1
),

we have

λ− C5K1e
λT > 0 and 2C7K1e

λT T < 1,

therefore, we obtain

1
2

∫

Ω×{t=s}

(|w1 − w̃1|2 + |w2 − w̃2|2 + |w3 − w̃3|2) dx

≤ C7K1e
λT T ( sup

0≤t≤T
‖v1 − ṽ1‖L2(Ω) + sup

0≤t≤T
‖v2 − ṽ2‖L2(Ω) + sup

0≤t≤T
‖v3 − ṽ3‖L2(Ω))

By taking the supremum of the left-side over the interval [0, T ], we have

sup
0≤t≤T

‖w1 − w̃1‖L2(Ω) + sup
0≤t≤T

‖w2 − w̃2‖L2(Ω) + sup
0≤t≤T

‖w3 − w̃3‖L2(Ω)

≤ 2C7K1e
λT T ( sup

0≤t≤T
‖v1 − ṽ1‖L2(Ω) + sup

0≤t≤T
‖v2 − ṽ2‖L2(Ω) + sup

0≤t≤T
‖v3 − ṽ3‖L2(Ω))

Therefore,

‖w − w̃‖ = ‖A[v]−A[ṽ]‖ ≤ C‖v − ṽ‖

where C < 1. Using similar estimates, one can prove the uniqueness of solutions to the

state system.

Next, we derive an a priori estimate for the state solution in V 3.

Theorem 2. For all α ∈ U , the corresponding solution to the state system (2.1)-(2.4) in

V 3, is bounded in V 3 ,i.e.,

‖ui‖L2(0,T ;H1
0 (Ω)) ≤ C, i = 1, 2, 3,
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where C depends on the coefficients, initial conditions and the source terms.

Proof. To obtain the necessary a priori estimates on the solution of the state system(2.1)-

(2.4), we need a change of variable. Let u1 = eλtw1, u2 = eλtw2, u3 = eλtw3, where λ > 0

is to be chosen later. Using the weak definition of solution, we obtain

∫ T

0
(< (w1)t, w1 > +a1(t, w1, w1)) dt +

∫

Q
λw2

1 dx dt

= −
∫

Q
w2

1

∫

Ω

w2

e−λt + w2
dy dx dt +

∫

Q
αw2

1

∫

Ω

w3

e−λt + w3
dy dx dt +

∫

Q
e−λtf1w1 dx dt

∫ T

0
(< (w2)t, w2 > +a2(t, w2, w2)) dt +

∫

Q
λw2

2 dx dt

= −
∫

Q
w2

2

∫

Ω

w1

e−λt + w1
dy dx dt−

∫

Q
αw2

1

∫

Ω

w3

e−λt + w3
dy dx dt +

∫

Q
e−λtf2w2 dx dt

∫ T

0
(< (w3)t, w3 > +a3(t, w3, w3)) dt +

∫

Q
λw2

3 dx dt

=
∫

Q
αw2

3

∫

Ω

w1

e−λt + w1
dy dx dt−

∫

Q
αw2

3

∫

Ω

w2

e−λt + w2
dx dt +

∫

Q
e−λtf3w3 dx dt.

By adding these three equations and using d
dt(

(wk)2

2 ) = wk(wk)t in weak sense,we obtain

1
2

∫

Ω×{t=T}

(w2
1 + w2

2 + w2
3) dx +

∫

Q
(

n∑

i,j=1

a1
ij(w1)xi(w1)xj +

n∑

i,j=1

a2
ij(w2)xi(w2)xj

+
n∑

i,j=1

a3
ij(w3)xi(w3)xj ) dx dt

+
∫

Q
(

n∑

i=1

b1
i (w1)xiw1 +

n∑

i=1

b2
i (w2)xiw2 +

n∑

i=1

b3
i (w3)xiw3) dx dt

+
∫

Q
((c1 + λ)w2

1 + (c2 + λ)w2
2 + (c3 + λ)w2

3) dx dt

= −
∫

Q
(w2

1

∫

Ω

w2

e−λt + w2
dy + w2

2

∫

Ω

w1

e−λt + w1
dy − αw2

3

∫

Ω

w1

e−λt + w1
dy) dx dt

+
∫

Q
αw2

1

∫

Ω

w3

e−λt + w3
dy − αw2

2

∫

Ω

w3

e−λt + w3
dy − αw2

3

∫

Ω

w2

e−λt + w2
dy dx dt

+
∫

Q
e−λt(f1w1 + f2w2 + f3w3) dy dx dt +

1
2

∫

Ω×{t=0}

(w2
1 + w2

2 + w2
3) dx.
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Using the uniform ellipticity property, we have the following estimate:

1
2

∫

Ω×{t=T}

(w2
1 + w2

2 + w2
3) dx +

θ

2

∫

Q

(| 5 w1|2 + | 5 w2|2 + | 5 w3|2) dx dt

+
∫

Q
((c1 + λ)w2

1 + (c2 + λ)w2
2 + (c3 + λ)w2

3) dx dt

≤
∫

Q
|α|(w2

3

∫

Ω

w1

e−λt + w1
dy dx + w2

1

∫

Ω

w3

e−λt + w3
dy dx + w2

2

∫

Ω

w3

e−λt + w3
dy dx

+ w2
3

∫

Ω

w2

e−λt + w2
dy dx) dt +

∫

Q
e−λt(|f1w1|+ |f2w2|+ |f3w3|) dx dt

+ C1

∫

Q
(|w1|2 + |w2|2 + |w3|2) dx dt +

1
2

∫

Ω×{t=0}

(w2
1 + w2

2 + w2
3) dx.

Note the terms with first derivatives were estimated as

∫

Q

n∑

i=1

bk
i (wk)xi(wk) dx dt ≤ θ

2

∫

Q
(| 5 w1|2 + | 5 w2|2 + | 5 w3|2) dx dt

+ C1

∫

Q
(|w1|2 + |w2|2 + |w3|2) dx dt.

(2.25)

Using that |wi| ≤ |e−λt + wi| for 0 ≤ t ≤ T , | wi

e−λt+wi
| ≤ 1, we have

1
2

∫

Ω×{t=T}

(|w1|2 + |w2|2 + |w3|2) dx +
θ

2

∫

Q

(| 5 w1|2 + | 5 w2|2 + | 5 w3|2) dx dt

+
∫

Q
(−C3 + λ)(|w1|2 + |w2|2 + |w3|2) dx dt

≤ C2

∫

Q
(|w1|2 + |w2|2 + |w3|2) dx dt +

1
2

∫

Q
(|f1|2 + |f2|2 + |f3|2) dx dt

+
1
2

∫

Ω×{t=0}

(|w1|2 + |w2|2 + |w3|2) dx

where −C3 is a lower bound on ci, i = 1, 2, 3.
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Combining like terms, we obtain

1
2

∫

Ω×{t=T}

(|w1|2 + |w2|2 + |w3|2) dx +
θ

2

∫

Q

(| 5 w1|2 + | 5 w2|2 + | 5 w3|2) dx dt

+
∫

Q
(−C3 + λ− C2)(|w1|2 + |w2|2 + |w3|2) dx dt

≤ 1
2

∫

Q
(|f1|2 + |f2|2 + |f3|2) dx dt +

1
2

∫

Ω×{t=0}

(|w1|2 + |w2|2 + |w3|2) dx.

We choose λ large enough so that λ > C2 + C3 , and we conclude

∫

Q
(|w1|2 + |w2|2 + |w3|2) dx dt +

∫

Q

(| 5 w1|2 + | 5 w2|2 + | 5 w3|2) dx dt

≤ C4(
∫

Q
(|f1|2 + |f2|2 + |f3|2) dx dt +

1
2

∫

Ω×{t=0}

(|w1|2 + |w2|2 + |w3|2) dx).

Therefore, ‖wi‖L2(0,T ;H1
0 (Ω)) ≤ C6 for i = 1, 2, 3 and since ui = eλtwi,

‖ui‖L2(0,T ;H1
0 (Ω)) ≤ C7‖wi‖L2(0,T ;H1

0 (Ω)) ≤ C6 for all 0 < t < T .

2.3 Existence of Optimal Control

Next we prove the existence of an optimal control.

Theorem 3. There exists an optimal control α∗ ∈ U that maximizes the objective functional

J(α).

Proof. Since both the state variables and control are bounded in L∞(Q),

sup{J(α) | α ∈ U} < ∞,

there exists a maximizing sequence {αn} in U such that

lim
n→∞J(αn) = sup{J(α) | α ∈ U}.

By the existence and uniqueness of solutions to the state system with control αn, we define

24



un
1 = u1(αn), un

2 = u2(αn), un
3 = u3(αn). From the result of a priori estimates from Theorem

2 and from PDEs (2.1) - (2.4),

‖un
i ‖L2(0,T ;H1

0 (Ω)) ≤ C

‖(ui)n
t ‖L2(0,T ;H−1(Ω)) ≤ C

with C, independent of n. Since the control functions are uniformly bounded in L∞(Q) and

the domain Q is bounded, on the subsequence {αn}, {un
i }and {(ui)n

t } are weakly convergent,

i.e., there exists α∗ ∈ U and u = (u∗1, u
∗
2, u

∗
3) ∈ V 3 such that

un
i ⇀ u∗i in L2(0, T ; H1

0 (Ω)),

(ui)n
t ⇀ u∗t in L2(0, T ;H−1(Ω)),

αn ⇀ α∗ in L2(Q).

Moreover, by the compactness result of Simon [61], {un
i } is strongly convergent in L2(Q).

We need to show u∗ = (u∗1, u
∗
2, u

∗
3, ) is the weak solution associated with α∗.

Consider the weak formulation satisfied by un
i ,

∫ T

0
(< (un

1 )t, φ1 > +a1(t, un
1 , φ1)) dt

=
∫

Q
(−un

1

∫

Ω

un
2

1 + un
2

dy + αnun
1

∫

Ω

un
3

1 + un
3

+ f1)φ1 dx dt

∫ T

0
(< (un

2 )t, φ2 > +a2(t, un
2 , φ2)) dt

=
∫

Q
(−un

2

∫

Ω

un
1

1 + un
1

dy − αnun
2

∫

Ω

un
3

1 + un
3

dy + f2)φ2 dx dt

∫ T

0
(< (un

3 )t, φ3 > +a3(t, un
3 , φ3)) dt

=
∫

Q
(αn un

3

∫

Ω

un
1

1 + un
1

dy − αnun
3

∫

Ω

un
2

1 + un
2

dy + f3)φ3 dx dt.

We illustrate the convergence estimate from the equation for un
1 . From the weak convergence
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in L2(0, T ;H1
0 (Ω)) and weak* convergence in L2(0, T ; H−1(Ω)),

∫ T

0
(< (un

1 )t, φ1 > +a1(t, un
1 , φ1)) dt

→
∫ T

0
(< (u∗1)t, φ1 > +a1(t, u∗1, φ1)) dt.

Now, we show that

∫

Q

−un
1φ1

∫

Ω

un
2

1 + un
2

dy dx dt +
∫

Q

αnun
1φ1

∫

Ω

un
3

1 + un
3

dy dx dt

→
∫

Q

−u∗1φ1

∫

Ω

u∗2
1 + u∗2

dy dx dt +
∫

Q

α∗u∗1φ1

∫

Ω

u∗3
1 + u∗3

dy dx dt.

We estimate

|
∫

Q

−un
1φ1

∫

Ω

un
2

1 + un
2

dy dx dt +
∫

Q

αnun
1φ1

∫

Ω

un
3

1 + un
3

dy dx dt

+
∫

Q

u∗1φ1

∫

Ω

u∗2
1 + u∗2

dy dx dt−
∫

Q

α∗u∗1φ1

∫

Ω

u∗3
1 + u∗3

dy dx dt|

≤ |
∫

Q

un
1φ1

∫

Ω

un
2

1 + un
2

dy dx dt−
∫

Q

u∗1φ1

∫

Ω

u∗2
1 + u∗2

dy dx dt|

+ |
∫

Q

αnun
1φ1

∫

Ω

un
3

1 + un
3

dy dx dt−
∫

Q

α∗u∗1φ1

∫

Ω

u∗3
1 + u∗3

dy dx dt|,

(2.26)

which converges to zero using the strong L2 convergence of un
i . The first term above is
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estimated as follows,

|
∫

Q

un
1φ1

∫

Ω

un
2

1 + un
2

dy dx dt−
∫

Q

u∗1φ1

∫

Ω

u∗2
1 + u∗2

dy dx dt|

≤ |
∫

Q

(un
1 − u∗1)φ1

∫

Ω

un
2

1 + un
2

dy dx dt|+ |
∫

Q

u∗1φ1

∫

Ω

(
un

2

1 + un
2

− u∗2
1 + u∗2

) dy dx dt|

≤ |
∫

Q

|un
1 − u∗1|2 dx dt| 12 |

∫

Q

(φ1

∫

Ω

u∗2
1 + u∗2

dy)2 dx dt)| 12

+ |
∫

Q

u∗1φ1

∫

Ω

(un
2 − u∗2)

(1 + un
2 )(1 + u∗2)

dy dx dt|

≤ C1(
∫

Q

|un
1 − u∗1|2 dx dt)

1
2 + |

∫

Q

u∗1φ1

∫

Ω

(un
2 − u∗2)

1
(1 + un

2 )(1 + u∗2)
dy dx dt|

≤ C1(
∫

Q

|un
1 − u∗1|2 dxdt)

1
2 + C2|

∫

Q

u∗1φ1

∫

Ω

(un
2 − u∗2) dy dx dt|

≤ C1(
∫

Q

|un
1 − u∗1|2 dx dt)

1
2 + C3

∫

Q

(
∫

Ω

|un
2 − u∗2|2 dy)

1
2 |u∗1φ1| dx dt ,

which converges to 0 by the strong L2 convergence of un
i sequences. The second term on
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the right-hand side of (2.26) is estimated as follows,

|
∫

Q

αnun
1φ1

∫

Ω

un
3

1 + un
3

dy dx dt−
∫

Q

α∗u∗1φ1

∫

Ω

u∗3
1 + u∗3

dy dx dt|

≤ |
∫

Q

αnun
1φ1

∫

Ω

un
3

1 + un
3

dy d dt−
∫

Q

αnu∗1φ1

∫

Ω

un
3

1 + un
3

dy dx dt|

+ |
∫

Q

αnu∗1φ1

∫

Ω

un
3

1 + un
3

dy dx dt−
∫

Q

α∗u∗1φ1

∫

Ω

u∗3
1 + u∗3

dy dx dt|

≤ |
∫

Q

(un
1 − u∗1)α

nφ1

∫

Ω

un
3

1 + un
3

dy dx dt|

+ |
∫

Q

αnu∗1φ1

∫

Ω

un
3

1 + un
3

dy dx dt−
∫

Q

αnu∗1φ1

∫

Ω

u∗3
1 + u∗3

dy dx dt|

+ |
∫

Q

αnu∗1φ1

∫

Ω

u∗3
1 + u∗3

dy dx dt−
∫

Q

α∗u∗1φ1

∫

Ω

u∗3
1 + u∗3

dy dx dt|

≤ |
∫

Q

(un
1 − u∗1)α

nφ1

∫

Ω

un
3

1 + un
3

dy dx dt|

+ |
∫

Q

αnu∗1φ1

∫

Ω

(
un

3

1 + un
3

− u∗3
1 + u∗3

) dy dx dt|

+ |
∫

Q

(αn − α∗)u∗1φ1

∫

Ω

u∗3
1 + u∗3

dy dx dt|

≤ C4

∫

Q

|un
1 − u∗1||αnφ1| dx dt

+ |
∫

Q

αnu∗1φ1

∫

Ω

(un
3 − u∗3)

(1 + un
3 )(1 + u∗3)

dy dx dt|

+ |
∫

Q

(αn − α∗)u∗1φ1

∫

Ω

u∗3
1 + u∗3

dy dx dt|

≤ C6

∫

Q

|un
1 − u∗1||φ1| dx dt + C7

∫

Q

|αn||u∗1φ1|
∫

Ω

|un
3 − u∗3| dy dx dt

+ |
∫

Q

(αn − α∗)u∗1φ1

∫

Ω

u∗3
1 + u∗3

dy dx dt|

≤ C6

∫

Q

|un
1 − u∗1||φ1| dx dt + C9

∫

Q

|αn||u∗1φ1|(
∫

Ω

|un
3 − u∗3|2 dy)

1
2 dx dt

+ |
∫

Q

(αn − α∗)u∗1φ1

∫

Ω

u∗3
1 + u∗3

dy dx dt|,
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which converges due to strong L2 convergence of un
i and weak L2 convergence of αn.

We get similar results for un
2 and un

3 . Passing to the limit and using the convergence of

sequences, we showed that u∗ = (u∗1, u
∗
2, u

∗
3, ) is the weak solution associated with α∗.

Next, we show that α∗ is an optimal control. Since α∗ ∈ U , we have

J(α∗) ≤ sup{J(αn) | αn ∈ U}.

For the weakly convergent sequence, we have

∫

Q

(α∗)2 dx dt ≤ lim inf
n→∞

∫

Q

(αn)2 dx dt.

By using the upper semi-continuity of the objective functional with respect to weak L2convergence

to handle the control terms and the strong L2 convergence of the states,

J(α∗) ≥ lim
n→∞J(αn),

and then

maxα∈UJ(α) = J(α∗).

We conclude that α∗ is an optimal control that maximizes the objective functional.

In next section, we derive the optimality system which consists of the state system

coupled with the adjoint system with appropriate initial conditions.

2.4 Derivation of the Optimality System

To differentiate the map α → J(α), we must first differentiate the map α → (u1, u2, u3).

Theorem 4. (Sensitivities) The mapping α ∈ U −→ u(α) = (u1(α), u2(α), u3(α)) is dif-

ferentiable in the following sense :

For α ∈ U and h ∈ L∞(Q) such that α + εh ∈ U , as ε → 0, there exist ψk, k = 1, 2, 3 in
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V such that uk(α+εh)−uk(α)
ε ⇀ ψk, as ε → 0 for k = 1, 2, 3 where the sensitivities, ψk in V

satisfy the following system:

L1ψ1 = −ψ1(
∫

Ω

u2

1 + u2
dx− α

∫

Ω

u3

1 + u3
dx)− u1(

∫

Ω

ψ2
1

(1 + u2)2
dx− α

∫

Ω

ψ3
1

(1 + u3)2
dx)

+hu1

∫

Ω

u3

1 + u3
dx

L2ψ2 = −ψ2(
∫

Ω

u1

1 + u1
dx + α

∫

Ω

u3

1 + u3
dx)− u2(

∫

Ω

ψ1
1

(1 + u1)2
dx + α

∫

Ω

ψ3
1

(1 + u3)2
dx)

−hu2

∫

Ω

u3

1 + u3
dx

L3ψ3 = αψ3(
∫

Ω

u1

1 + u1
dx−

∫

Ω

u2

1 + u2
dx) + αu3(

∫

Ω

ψ1
1

(1 + u1)2
dx−

∫

Ω

ψ2
1

(1 + u2)2
dx)

+hu3(
∫

Ω

u1

1 + u1
dx−

∫

Ω

u2

1 + u2
dx)

(2.27)

in Q = Ω× (0, T )

ψk(x, 0) = 0 for x ∈ Ω, k = 1, 2, 3. (2.28)

ψk = 0 on ∂Ω× (0, T ), k = 1, 2, 3. (2.29)

Proof. Define uε
1 = u1(α + εh), uε

2 = u2(α + εh), uε
3 = u3(α + εh). Let uε

1 = eλtwε
1, uε

2 =

eλtwε
2, uε

3 = eλtwε
3,and u1(α) = eλtw1, u2(α) = eλtw2, u3(α) = eλtw3, where λ > 0 is to be
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chosen later. We estimate the quotients on Q1 = Ω× (0, T1):

1
2

∫

Ω×{t=T1}

(| wε
1 − w1

ε
|2 + | wε

2 − w2

ε
|2 + | wε

3 − w3

ε
|2) dx

+ θ

∫

Q1

(| 5(
wε

1 − w1

ε
) |2 + | 5(

wε
2 − w2

ε
) |2 + | 5(

wε
3 − w3

ε
) |2) dx dt

+
∫

Q1

((c1 + λ) | wε
1 − w1

ε
|2 +(c2 + λ) | wε

2 − w2

ε
|2 +(c3 + λ) | wε

3 − w3

ε
|2) dx dt

≤ C1

∫

Q1

(| wε
1 − w1

ε
|2 + | wε

2 − w2

ε
|2 + | wε

3 − w3

ε
|2) dx dt

+ C2

∫

Q1

| w1 || wε
1 − w1

ε
|
∫

Ω

1
ε
| wε

2

e−λt + wε
2

− w2

e−λt + w2
+

wε
3

e−λt + wε
3

− w3

e−λt + w3
| dy dx dt

+ C3

∫

Q1

| w2 || wε
2 − w2

ε
|
∫

Ω

1
ε
| wε

1

e−λt + wε
1

− w1

e−λt + w1
+

wε
3

e−λt + wε
3

− w3

e−λt + w3
| dy dx dt

+ C4

∫

Q1

| w3 || wε
3 − w3

ε
|
∫

Ω

1
ε
| wε

1

e−λt + wε
1

− w1

e−λt + w1
+

wε
2

e−λt + wε
2

− w2

e−λt + w2
| dy dx dt

+ C6

∫

Q1

h(| wε
1 ||

wε
1 − w1

ε
| + | wε

2 ||
wε

2 − w2

ε
| + | wε

3 ||
wε

3 − w3

ε
|) dx dt

+ C7

∫

Q1

(| 5(
wε

1 − w1

ε
) || wε

1 − w1

ε
| + | 5(

wε
2 − w2

ε
) || wε

2 − w2

ε
|

+ | 5(
wε

3 − w3

ε
) || wε

3 − w3

ε
|) dx dt.

The term of the form ∫

Ω

| wε
i

e−λt + wε
i

− wi

e−λt + wi
| dy

is estimated as follows.

∫

Ω

| wε
i

e−λt + wε
i

− wi

e−λt + wi
| dy =

∫

Ω

| e−λt(wε
i − wi)

(e−λt + wε
i )(e−λt + wi)

| dy

=
∫

Ω

| eλt(wε
i − wi)

(1 + eλtwε
i )(1 + eλtwi)

| dy

≤ eλt

∫

Ω

| wε
i − wi | dy.
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The estimates similar to (2.25) in the proof of Theorem 2 were used for the terms of first

derivatives in the right-hand side of the above inequality.

1
2

∫

Ω×{t=T1}

(| wε
1 − w1

ε
|2 + | wε

2 − w2

ε
|2 + | wε

3 − w3

ε
|2) dx

+
θ

2

∫

Q1

(| 5(
wε

1 − w1

ε
) |2 + | 5(

wε
2 − w2

ε
) |2 + | 5(

wε
3 − w3

ε
) |2) dx dt

+
∫

Q1

(−C8 + λ)(| wε
1 − w1

ε
|2 + | wε

2 − w2

ε
|2 + | wε

3 − w3

ε
|2) dx dt

≤ C7

∫

Q1

(| wε
1 − w1

ε
|2 + | wε

2 − w2

ε
|2 + | wε

3 − w3

ε
|2) dx dt

+ C2e
λT1

∫

Q1

| w1 || wε
1 − w1

ε
|
∫

Ω

(
| wε

2 − w2 |
ε

+
| wε

3 − w3 |
ε

) dy dx dt

+ C3e
λT1

∫

Q1

| w2 || wε
2 − w2

ε
|
∫

Ω

(
| wε

1 − w1 |
ε

+
| wε

3 − w3 |
ε

) dy dx dt

+ C4e
λT1

∫

Q1

| w3 || wε
3 − w3

ε
|
∫

Ω

(
| wε

1 − w1 |
ε

+
| wε

2 − w2 |
ε

) dy dx dt

+ C6

∫

Q1

h(| wε
1 ||

wε
1 − w1

ε
| + | wε

2 ||
wε

2 − w2

ε
| + | wε

3 ||
wε

3 − w3

ε
|) dx dt

where −C8 is a lower bound on ci for i = 1, 2, 3. Continuing to estimate gives

1
2

∫

Ω×{t=T1}

(| wε
1 − w1

ε
|2 + | wε

2 − w2

ε
|2 + | wε

3 − w3

ε
|2) dx

+
θ

2

∫

Q1

(| 5(
wε

1 − w1

ε
) |2 + | 5(

wε
2 − w2

ε
) |2 + | 5(

wε
3 − w3

ε
) |2) dx dt

+
∫

Q1

(−C8 + λ− C9(1 + eλT1))(| wε
1 − w1

ε
|2 + | wε

2 − w2

ε
|2 + | wε

3 − w3

ε
|2) dx dt

≤ C

∫

Q1

| h |2 dx dt

First, choose λ to be a positive number satisfying

−C8 + λ− C9 > C9.
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Therefore, if we choose T1 sufficiently small such that

lnλ−(C8+C9)
C9

λ
> T1 (2.30)

we have

−C8 + λ− C9(1 + eλT1) > 0

The above estimate for λ and T1 satisfying (2.4), (2.30) , we get

‖wε
i − wi

ε
‖L2(0,T1;H1

0 (Ω)) ≤ C.

By stacking time intervals, we obtain the estimate on Ω×(0, T ). Then we have the estimate

on uε
i−ui

ε .

Hence, there exists ψi ∈ V, i = 1, 2, 3, such that on a subsequence uε
i−ui

ε ⇀ ψi in

L2(0, T ; H1
0 (Ω)) for i = 1, 2, 3. From PDE’s (2.1)-(2.4) and the above estimate,we can show

that

‖(u
ε
i − ui

ε
)t‖L2(0,T ;H−1(Ω)) ≤ C

and

(
uε

i − ui

ε
)t ⇀ (ψi)t

in L2(0, T ;H−1(Ω)) for i = 1, 2, 3. Using the compactness result by Simon [? ] ,

uε
i − ui

ε
→ ψi
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strongly in L2(Q) for i = 1, 2, 3. Considering the PDE satisfied by the quotient:

L1(
uε

1 − u1

ε
) = −1

ε
[uε

1

∫

Ω

uε
2

1 + uε
2

dy − u1

∫

Ω

uε
2

1 + uε
2

dy + u1

∫

Ω

uε
2

1 + uε
2

dy − u1

∫

Ω

u2

1 + u2
dy]

+
1
ε
[(α + εh)uε

1

∫

Ω

uε
3

1 + uε
3

dy − αu1

∫

Ω

uε
3

1 + uε
3

dy + αu1

∫

Ω

uε
3

1 + uε
3

dy

− αu1

∫

Ω

u3

1 + u3
dy]

= −uε
1 − u1

ε

∫

Ω

uε
2

1 + uε
2

dy − u1

∫

Ω

uε
2 − u2

ε

1
(1 + uε

2)(1 + u2)
dy

+ α(
uε

1 − u1

ε
)
∫

Ω

uε
3

1 + uε
3

dy + αu1

∫

Ω

uε
3 − u3

ε

1
(1 + uε

3)(1 + u3)
dy

+ huε
1

∫

Ω

uε
3

1 + uε
3

dy.

Similarly, we get

L2(
uε

2 − u2

ε
) = −uε

2 − u2

ε

∫

Ω

uε
1

1 + uε
1

dy − u2

∫

Ω

uε
1 − u1

ε

1
(1 + uε

1)(1 + u1)
dy

− α(
uε

2 − u2

ε
)
∫

Ω

uε
3

1 + uε
3

dy − αu2

∫

Ω

uε
3 − u3

ε

1
(1 + uε

3)(1 + u3)
dy

− huε
2

∫

Ω

uε
3

1 + uε
3

dy

L3(
uε

3 − u3

ε
) = α

uε
3 − u3

ε

∫

Ω

uε
1

1 + uε
1

dy + αu3

∫

Ω

uε
1 − u1

ε

1
(1 + uε

1)(1 + u1)
dy

− α(
uε

3 − u3

ε
)
∫

Ω

uε
3

1 + uε
3

dy − αu3

∫

Ω

uε
2 − u2

ε

1
(1 + uε

2)(1 + u2)
dy

+ huε
3

∫

Ω

(
uε

1

1 + uε
1

− uε
2

1 + uε
2

) dy.

Taking the limit in the weak form of the PDEs satisfied by uε
i−ui

ε for i = 1, 2, 3, we obtain

the PDE system for the sensitivities ψi, i = 1, 2, 3..

To derive the optimality system and to characterize the optimal control, we introduce

adjoint variables and the adjoint operator in the sensitivity system for ψ1, ψ2, ψ3. We denote
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the system of PDEs in ψ1, ψ2, ψ3 as

L




ψ1

ψ2

ψ3




=




hu1

∫
Ω

u3
1+u3

dx

−hu2

∫
Ω

u3
1+u3

dx

hu3

∫
Ω

( u1
1+u1

− u2
1+u2

) dx




where

L




ψ1

ψ2

ψ3




=




L1ψ1

L2ψ2

L3ψ3




+ B




ψ1

ψ2

ψ3




and

B




ψ1

ψ2

ψ3




=




ψ1(
∫
Ω

u2
1+u2

dx− α
∫
Ω

u3
1+u3

dx) + u1(
∫
Ω

ψ2
1

(1+u2)2
dx− α

∫
Ω

ψ3
1

(1+u3)2
dx)

ψ2(
∫
Ω

u1
1+u1

dx + α
∫
Ω

u3
1+u3

dx) + u2(
∫
Ω

ψ1
1

(1+u1)2
dx + α

∫
Ω

ψ3
1

(1+u3)2
dx)

−αψ3

∫
Ω

( u1
1+u1

− u2
1+u2

) dx− αu3

∫
Ω

(ψ1
1

(1+u1)2
− ψ2

1
(1+u2)2

) dx




Similarly, we denote the adjoint PDE system in p1, p2 and p3 as

L∗




p1

p2

p3




=




L(u2 − u1)

−L(u2 − u1)

Ku3




where

L∗




p1

p2

p3




=




L∗1p1

L∗2p2

L∗3p3




+ B∗




p1

p2

p3



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and

B∗




p1

p2

p3




=




p1(
∫
Ω

u2
1+u2

dx− α
∫
Ω

u3
1+u3

dx) + 1
(1+u1)2

(
∫
Ω

p2u2 dx− ∫
Ω

αp3u3 dx)

p2(
∫
Ω

u1
1+u1

dx + α
∫
Ω

u3
1+u3

dx) + 1
(1+u2)2

(
∫
Ω

p1u1 dx +
∫
Ω

αp3u3 dx)

−αp3

∫
Ω

( u1
1+u1

− u2
1+u2

) dx− 1
(1+u3)2

(
∫
Ω

αp1u1 dx− ∫
Ω

αp2u2 dx)




Lkψk ≡ (ψk)t −
n∑

i,j=1

(ak
ij(ψk)xi)xj +

n∑

i=1

bk
i (ψk)xi + ckψk

L∗kpk ≡ −(pk)t −
n∑

i,j=1

(ak
ij(pk)xi)xj −

n∑

i=1

(bk
i pk)xi + ckpk.

Finally we obtain the adjoint system and the characterization of the optimal control, which,

together with state PDEs, form the optimality system.

Theorem 5. Given an optimal control α ∈ U and corresponding solution u = (u1, u2, u3),

there exists p = (p1, p2, p3), each component in L2(0, T ;H1
0 (Ω)), satisfying the adjoint sys-

tem:

L∗1p1 = L(u2 − u1)− p1(
∫

Ω

u2

1 + u2
dx− α

∫

Ω

u3

1 + u3
dx)

− 1
(1 + u1)2

(
∫

Ω

p2u2 dx−
∫

Ω

αp3u3 dx)

L∗2p2 = −L(u2 − u1)− p2(
∫

Ω

u1

1 + u1
dx + α

∫

Ω

u3

1 + u3
dx)

− 1
(1 + u2)2

(
∫

Ω

p1u1 dx +
∫

Ω

αp3u3 dx)

L∗3p3 = Ku3 + αp3(
∫

Ω

u1

1 + u1
dx−

∫

Ω

u2

1 + u2
dx)

+
1

(1 + u3)2
(
∫

Ω

αp1u1 dx−
∫

Ω

αp2u2 dx)

(2.31)

in Q = Ω× (0, T )

pk(x, T ) = 0 for x ∈ Ω, k = 1, 2, 3

pk = 0 on ∂Ω× (0, T ), k = 1, 2, 3
(2.32)
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for k = 1, 2, 3.

Futhermore we conclude

α = min{max{ 1
M

(p1u1 − p2u2)
∫

Ω

u3

1 + u3
dx +

p3u3

M

∫

Ω

(
u1

1 + u1
− u2

1 + u2
)dx, −M}, M}.

(2.33)

Proof. Let α be an optimal control and (u1, u2, u3) the corresponding solution. Given u1,

u2, u3, the structure of the adjoint system is simpler than the state system due to the

linearity of terms in p1, p2, p3. A fixed point argument in C(0, T ; L2(Ω)) gives the existence

of the solution to the adjoint system in C(0, T ; L2(Ω))
⋂

L2(0, T ;H1
0 (Ω)). Note that we can

estimate

sup
t

∫

Ω
(p2

1 + p2
2 + p2

3)(x, t) dx

in terms of bounds on coefficients and the states ui for i = 1, 2, 3. Then the right hand side

of the adjoint system is L∞ bounded, which implies the L∞ boundedness of the adjoint

function by the Maximum Principle.

Let α + εh ∈ U for ε > 0. Let uε
k = uk(α + εh). The directional derivative of the

objective functional J(α) with respect to α in the direction of h is calculated below:

J(α + εh)− J(α)
ε

=
1
2

∫

Q

[−L(uε
2 + u2 − uε

1 − u1)(
uε

2 − u2

ε
− uε

1 − u1

ε
) + K

(uε
3 − u3)(uε

3 + u3)
ε

− 2Mαh + εMh2)] dx dt

lim
ε→0+

J(α + εh)− J(α)
ε

=
∫

Q

[L(u2 − u1)ψ1 − L(u2 − u1)ψ2 + Ku3ψ3 −Mαh] dx dt.
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Since J(α) is the maximum value, we have

0 ≥ lim
ε→0+

J(α + εh)− J(α)
ε

=
∫

Q

[L(u2 − u1)ψ1 − L(u2 − u1)ψ2 + Ku3ψ3 −Mαh] dx dt

=
∫

Q

[
(

ψ1 ψ2 ψ3

)



L(u2 − u1)

−L(u2 − u1)

Ku3



−Mαh] dx dt

=
∫

Q

[
(

ψ1 ψ2 ψ3

)
L∗




p1

p2

p3



−Mαh] dx dt in weak sense

=
∫

Q

[−(p1)tψ1 +
n∑

i,j=1

a1
ij(p1)xi(ψ1)xj −

n∑

i=1

(b1
i p1)xiψ1 + c1p1ψ1

− (p2)tψ2 +
n∑

i,j=1

a2
ij(p2)xi(ψ2)xj −

n∑

i=1

(b2
i p2)xiψ2 + c1p2ψ2

− (p3)tψ3 +
n∑

i,j=1

a3
ij(p3)xi(ψ3)xj −

n∑

i=1

(b3
i p3)xiψ3 + c3p3ψ3

+
(

ψ1 ψ2 ψ3

)
B∗




p1

p2

p3




] dx dt−
∫

Q

Mαh dxdt

=
∫

Q

[p1(ψ1)t +
n∑

i,j=1

a1
ij(p1)xi(ψ1)xj +

n∑

i=1

b1
i p1(ψ1)xi + c1p1ψ1

+ p2(ψ2)t +
n∑

i,j=1

a2
ij(p2)xi(ψ2)xj +

n∑

i=1

b2
i p2(ψ2)xi + c2p2ψ2
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+ p3(ψ3)t +
n∑

i,j=1

a3
ij(p3)xi(ψ3)xj +

n∑

i=1

b3
i p3(ψ3)xi + c3p3ψ3

+
(

p1 p2 p3

)
B




ψ1

ψ2

ψ3




] dxdt−
∫

Q

Mαh dxdt

=
∫

Q

[
(

p1 p2 p3

)
L




ψ1

ψ2

ψ3



−Mαh] dx dt

=
∫

Q

[
(

p1 p2 p3

)




hu1

∫
Ω

u3
1+u3

dy

−hu2

∫
Ω

u3
1+u3

dy

hu3

∫
Ω

( u1
1+u1

− u2
1+u2

) dy



−Mαh] dx dt

=
∫

Q

h[(p1u1 − p2u2)
∫

Ω

u3

1 + u3
dy + p3u3

∫

Ω

(
u1

1 + u1
− u2

1 + u2
) dy −Mα] dx dt.

Hence, we have

∫

Q

h[(p1u1 − p2u2)
∫

Ω

u3

1 + u3
dy + p3u3

∫

Ω

(
u1

1 + u1
− u2

1 + u2
) dy −Mα] dxdt ≤ 0.

Consider the following three cases.

(i) On the set{(x, t) ∈ Q |α∗(x, t) = −M}, the variation h with support on that set

must be non-negative, and we have

[(p1u1 − p2u2)
∫

Ω

u3

1 + u3
dy + p3u3

∫

Ω

(
u1

1 + u1
− u2

1 + u2
) dy −Mα] ≤ 0,

which gives

1
M

[(p1u1 − p2u2)
∫

Ω

u3

1 + u3
dy + p3u3

∫

Ω

(
u1

1 + u1
− u2

1 + u2
) dy] ≤ α = −M.
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(ii) On the set {(x, t) ∈ Q |α(x, t) = M}, the variation h must be non-positive, which gives

1
M

[(p1u1 − p2u2)
∫

Ω

u3

1 + u3
dy + p3u3

∫

Ω

(
u1

1 + u1
− u2

1 + u2
) dy] ≥ α∗ = M.

(iii) On the set{(x, t) ∈ Q | −M < α(x, t) < M}, the sign of variation h is arbitrary, and

[(p1u1 − p2u2)
∫

Ω

u3

1 + u3
dy + p3u3

∫

Ω

(
u1

1 + u1
− u2

1 + u2
) dy −Mα] = 0,

gives
1
M

[(p1u1 − p2u2)
∫

Ω

u3

1 + u3
dy + p3u3

∫

Ω

(
u1

1 + u1
− u2

1 + u2
) dy] = α.

Putting the three cases together,

α = min{max{ 1
M

(p1u1 − p2u2)
∫

Ω

u3

1 + u3
dx +

p3u3

M

∫

Ω

(
u1

1 + u1
− u2

1 + u2
)dx, −M}, M}

2.5 Uniqueness of the Optimality System

The optimality system consists of the state system (2.1)-(2.4) and the adjoint system(2.31)-

(2.32) coupled with the characterization of the optimal control (2.33). We now prove that

solutions of the optimality system are unique, which gives a characterization of the unique

optimal control in terms of the unique solution of the optimality system. We know that the

solution of the optimality system exists by Theorem 5.

Theorem 6. The solution of the optimality system is unique for sufficiently small T .
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Proof. Suppose (u1, u2, u3, p1, p2, p3) and (u1, u2, u3, p1, p2, p3) are two solutions of the op-

timality system. Let

α = min{max{ 1
M

(p1u1 − p2u2)
∫

Ω

u3

1 + u3
dx +

p3u3

M

∫

Ω

(
u1

1 + u1
− u2

1 + u2
) dx, −M}, M}

α = min{max{ 1
M

(p1u1 − p2u2)
∫

Ω

u3

1 + u3
dx +

p3u3

M

∫

Ω

(
u1

1 + u1
− u2

1 + u2
) dx, −M}, M}

We change the variables

ui = eλtwi, pi = e−λtzi, ui = eλtwi, pi = e−λtzi

where λ > 0 is to be chosen later. We subtract the bilinear forms of wi and wi, pi and pi.

The equation for w1 − w1 is illustrated below.

∫

Q
((w1 − w1)tφ +

n∑

i,j=1

a1
ij(w1 − w1)xiφxj +

n∑

i=1

b1
i (w1 − w1)xiφ + (c1 + λ)(w1 − w1)φ) dx dt

= −
∫

Q
(w1

∫

Ω

w2

e−λ t + w2
dy − w1

∫

Ω

w2

e−λt + w2
dy)φ dx dt

+
∫

Q
(αw1

∫

Ω

w3

e−λ t + w3
dy − αw1

∫

Ω

w3

e−λt + w3
dy)φdx dt

= −
∫

Q
((w1 − w1)(

∫

Ω

w2

e−λ t + w2
dy + w1

∫

Ω

e−λt(w2 − w2)
(e−λt + w2)(e−λt + w2)

dy)

+ (αw1 − αw1)
∫

Ω

w3

e−λ t + w3
dy − αw1

∫

Ω

e−λt(w3 − w3)
(e−λt + w3)(e−λt + w3)

dy)φdx dt

≤
∫

Q
[C1|w1 − w1|+ |w1|

∫

Ω
|w2 − w2|eλt dy + C2|αw1 − αw1|

+ |αw1|
∫

Ω
|w3 − w3|eλtdy]|φ| dx dt

where φ ∈ L2(0, T ;H1
0 (Ω)).

We can get similar expressions for w2 − w2, w3 − w3, z1 − z1, z2 − z2 and z3 − z3. By

using test functions wi − wi, zi − zi in the corresponding equations and adding the weak
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formulations, we get the following:

1
2

∫

Ω×{t=T}

(|w1 − w1|2 + |w2 − w2|2 + |w3 − w3|2) dx

+ θ

∫

Q

(| 5 (w1 − w1)|2 + | 5 (w2 − w2)|2 + | 5 (w3 − w3)|2) dx dt

+
∫

Q

((c1 + λ)|w1 − w1|2 + (c2 + λ)|w2 − w2|2 + (c3 + λ)|w3 − w3|2) dx dt

≤ C1

∫

Q

eλt(|w1 − w1|
∫

Ω

|w2 − w2|dy + |w2 − w2|
∫

Ω

|w1 − w1|dy) dx dt

+ C2

∫

Q

(|αw1 − αw1||w1 − w1|+ |αw2 − αw2||w2 − w2|+ |αw3 − αw3||w3 − w3|) dx dt

+ C3

∫

Q

eλt(w1|α||w1 − w1|+ w2|α||w2 − w2|)(
∫

Ω

|w3 − w3|dy) dx dt

+
∫

Q

w3|α||w3 − w3|eλt[
∫

Ω

(|w1 − w1|+ |w2 − w2|)dy] dx dt

+
1
2
θ

∫

Q

(| 5 (w1 − w1)|2 + | 5 (w2 − w2)|2 + | 5 (w3 − w3)|2 dx dt

+ C4

∫

Q

(|w1 − w1|2 + |w2 − w2|2 + |w3 − w3|2)dxdt

We illustrate the estimates of two specific terms from the right-hand side. The terms of the

form ∫

Q

eλt|wi − wi|
∫

Ω

|wj − wj |dy dx dt

or from the adjoint equations

∫

Q

eλt|zi − zi|
∫

Ω

|zj − zj |dy dx dt

where i 6= j, are estimated by using the Hölder’s inequality and the Cauchy inequality as
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follows:

C1

∫

Q

eλt|w1 − w1|
∫

Ω

|w2 − w2|dy dx dt = C1e
λT

∫ T

0
(
∫

Ω

|w1 − w1| dx)(
∫

Ω

|w2 − w2| dy) dt

≤ C2e
λT

∫ T

0
(
∫

Ω

|w1 − w1|2 dx)
1
2 (

∫

Ω

|w2 − w2|2 dy)
1
2 dt

≤ C3e
λT

∫ T

0
(
∫

Ω

|w1 − w1|2 dx) + (
∫

Ω

|w2 − w2|2 dy) dt .

The terms of the form ∫

Q

|αwi − αwi||wj − wj | dx dt

or ∫

Q

|αzi − αzi||zj − zj | dx dt

are estimated as follows:

C2

∫

Q

|αw1 − αw1||w1 − w1| dx dt = C2

∫

Q

|αw1 − αw1 + αw1 − αw1||w1 − w1| dx dt

≤ C2

∫

Q

|α(w1 − w1) + w1(α− α)||w1 − w1| dx dt

≤ C2

∫

Q

|α||w1 − w1|2 + |w1||α− α||w1 − w1| dx dt.

In order to estimate the second term of the above integral, we estimate |α− α|.

43



Using (2.33), we obtain

|α− α| ≤ | 1
M

(z1w1

∫

Ω

w3

e−λt + w3
dx− z1w1

∫

Ω

w3

e−λt + w3
dx− z2w2

∫

Ω

w3

e−λt + w3
dx

+ z2w2

∫

Ω

w3

e−λt + w3
dx + z3w3

∫

Ω

w1

e−λt + w1
dx− z3w3

∫

Ω

w1

e−λt + w1
dx

− z3w3

∫

Ω

w2

e−λt + w2
dx + z3w3

∫

Ω

w2

e−λt + w2
dx|

≤ 1
M

(|z1w1 − z1w1|
∫

Ω

|w3|
|e−λt + w3| dx + |z1w1|

∫

Ω

e−λt|w3 − w3|
|e−λt + w3||e−λt + w3| dx

+ |z2w2 − z2w2|
∫

Ω

|w3|
|e−λt + w3| dx + |z2w2|

∫

Ω

e−λt|w3 − w3|
|e−λt + w3||e−λt + w3| dx

+ |z3w3 − z3w3|
∫

Ω

|w1|
|e−λt + w1| dx + |z3w3|

∫

Ω

e−λt|w1 − w1|
|e−λt + w1||e−λt + w1| dx

+ |z3w3 − z3w3|
∫

Ω

|w2|
|e−λt + w2| dx + |z3w3|

∫

Ω

e−λt|w2 − w2|
|e−λt + w2||e−λt + w2| dx)

≤ 1
M

(C1|z1w1 − z1w1|+ |z1w1|
∫

Ω

eλt|w3 − w3| dx

+ C2|z2w2 − z2w2|+ |z2w2|
∫

Ω

eλt|w3 − w3| dx

+ C3|z3w3 − z3w3|+ |z3w3|
∫

Ω

eλt(|w1 − w1|+ |w2 − w2|) dx)

≤ C4

M
(|z1w1 − z1w1|+ |z2w2 − z2w2|+ |z3w3 − z3w3|

+ eλt

∫

Ω

(|w1 − w1|+ |w2 − w2|+ |w3 − w3|) dx)

using L∞ bounds on the state and the adjoint variables.
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To illustrate, we substitute this estimate into a particular term.

C2

∫

Q

|w1||α− α||w1 − w1| dx dt

≤ C5

M
[
∫

Q

(|z1w1 − z1w1|+ |z2w2 − z2w2|+ |z3w3 − z3w3|)|w1 − w1| dx dt

+
∫

Q

eλt|w1 − w1|
∫

Ω

(|w1 − w1|+ |w2 − w2|+ |w3 − w3|) dy dx dt

=
C5

M

∫

Q

(|z1w1 − z1w1 + z1w1 − z1w1||w1 − w1|+ |z2w2 − z2w2 + z2w2 − z2w2||w1 − w1|

+ |z3w3 − z3w3 + z3w3 − z3w3||w1 − w1|) dx dt

+
∫

Q

eλt|w1 − w1|
∫

Ω

(|w1 − w1|+ |w2 − w2|+ |w3 − w3|) dy dx dt

≤ C5

M

∫

Q

(|z1||w1 − w1|2 + |w1||z1 − z1||w1 − w1|+ |z2||w2 − w2||w1 − w1|

+ |z2 − z2||w2||w1 − w1|+ |z3||w3 − w3||w1 − w1|+ |z3 − z3||w3||w1 − w1|) dx dt

+
∫

Q

eλt|w1 − w1|
∫

Ω

(|w1 − w1|+ |w2 − w2|+ |w3 − w3|) dy dx dt.

By using that wi, zi are L∞bounded and Hölder’s and Cauchy’s inequalities as before, we

have,

C2

∫

Q

|w1||α− α||w1 − w1| dx dt

≤ C6(
∫

Q

(|w1 − w1|2 + |w2 − w2|2 + |w3 − w3|2) dx dt

+ C7(
∫

Q

(|z1 − z1|2 + |z2 − z2|2 + |z3 − z3|2) dx dt

+ C8e
λT

∫

Q

(|w1 − w1|2 + |w2 − w2|2 + |w3 − w3|2) dx dt.
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The combined estimate becomes

1
2

∫

Ω×{t=T}

(|w1 − w1|2 + |w2 − w2|2 + |w3 − w3|2) dx

+
1
2

∫

Ω×{t=0}

(|z1 − z1|2 + |z2 − z2|2 + |z3 − z3|2) dx

+ θ

∫

Q

(| 5 (w1 − w1)|2 + | 5 (w2 − w2)|2 + | 5 (w3 − w3)|2

+ | 5 (z1 − z1)|2 + | 5 (z2 − z2)|2 + | 5 (z3 − z3)|2) dx dt

+
∫

Q
((c1 + λ)(|w1 − w1|2 + |z1 − z1|2) + (c2 + λ)(|w2 − w2|2 + |z2 − z2|2)

+ (c3 + λ)(|w3 − w3|2 + |z3 − z3|2) dx dt

≤ C3(
∫

Q

(|w1 − w1|2 + |w2 − w2|2 + |w3 − w3|2 + |z1 − z1|2 + |z2 − z2|2 + |z3 − z3|2) dx dt

+ eλT

∫

Q

(|w1 − w1|2 + |w2 − w2|2 + |w3 − w3|2 + |z1 − z1|2 + |z2 − z2|2 + |z3 − z3|2) dx dt)

+
1
2
θ

∫

Q

(| 5 (w1 − w1)|2 + | 5 (w2 − w2)|2 + | 5 (w3 − w3)|2dx dt.

By combining like terms, we have,

1
2

∫

Ω×{t=T}

(|w1 − w1|2 + |w2 − w2|2 + |w3 − w3|2) dx

+
1
2

∫

Ω×{t=0}

(|z1 − z1|2 + |z2 − z2|2 + |z3 − z3|2) dx

+
1
2
θ

∫

Q

(| 5 (w1 − w1)|2 + | 5 (w2 − w2)|2 + | 5 (w3 − w3)|2

+ | 5 (z1 − z1)|2 + | 5 (z2 − z2)|2 + | 5 (z3 − z3)|2) dx dt

+
∫

Q
((−C4 + λ− C3(1 + eλT ))(|w1 − w1|2 + |w2 − w2|2 + |w3 − w3|2

+ |z1 − z1|2 + |z2 − z2|2 + |z3 − z3|2) dx dt

≤ 0

where −C4 is a lower bound on ci for i = 1, 2, 3.
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First, choose λ to be a positive number satisfying

−C4 + λ− C3 > C3

i.e.,

λ > 2C3 + C4.

Therefore, if we choose T such that

lnλ−(C3+C4)
C3

λ
> T

we have

−C4 + λ− C3(1 + eλT ) > 0.

Therefore, we obtain wi = wi and zi = zi. Thus, ui = ui and pi = pi for i = 1, 2, 3.

This result gives a characterization of the unique optimal control in terms of the unique

solution of the optimality system.

2.6 Numerical Results - Control Function α(t)

In Theorem 8, we showed that the optimal control is characterized in terms of state and

adjoint variables for the control function of the form α(x, t) as follows.

α = min{max{ 1
M

(p1u1 − p2u2)
∫

Ω

u3

1 + u3
dx +

p3u3

M

∫

Ω

(
u1

1 + u1
− u2

1 + u2
)dx, −M}, M}.

If the control is a function of time only, then the above characterization becomes

α = min{max{ 1
M

∫

Ω

[(p1u1−p2u2)
∫

Ω

u3

1 + u3
dx+p3u3

∫

Ω

(
u1

1 + u1
− u2

1 + u2
)dx] dy, −M}, M}.

We numerically solve the simplified version of our problem in one spatial dimension using

different values of scaling constants in the objective functional and initial populations. For
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simplicity, we set all source terms and the coefficients bk
1 and ck

1 to be zero for all k = 1, 2, 3.

Then, the state system (2.1)-(2.4) becomes

(u1)t − a1
1(u1)xx = −u1

∫

Ω

u2

1 + u2
dx + αu1

∫

Ω

u3

1 + u3
dx

(u2)t − a2
1(u3)xx = −u2

∫

Ω

u1

1 + u1
dx− αu2

∫

Ω

u3

1 + u3
dx

(u3)t − a3
1(u3)xx = αu3

∫

Ω

u1

1 + u1
dx− αu3

∫

Ω

u2

1 + u2
dx

(2.34)

Initial Conditions:

uk(x, 0) = uk0(x) for x ∈ Ω, k = 1, 2, 3 (2.35)

Boundary Conditions:

uk = 0 on ∂Ω× (0, T ), k = 1, 2, 3 (2.36)

where Ω = [0, 1] and T = 0.0375.

Numerical solutions for the three populations and the optimal control have been gener-

ated iteratively using the finite difference method with central differences for second deriva-

tive terms. First, with the initial guess for the control, the state system is solved forward in

time. Using these state solutions, we solve the adjoint system backward in time. We repeat

the iteration with the updated control until the solutions converge.

We examined how the difference in the weight constants in the objective functional (2.5)

affect the optimal control and final time population distribution. In this section, we discuss

the results using three different initial population distributions (A, B and C) shown in Figure

2.1 and four different settings of weight constants and control bounds as the following.

1. K = 1, L = 1, M = 0.1 and M = 5

2. K = 1, L = 0.1, M = 0.1 and M = 5

3. K = 1, L = 0.1, M = 0.01 and M = 5

4. K = 1, L = 0.01, M = 0.1 and M = 5

5. K = 1, L = 0.1, M = 0.01 and M = 20.
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(a) Initial population A
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(b) Initial population B
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(c) Initial population C

Figure 2.1: Initial population distribution A, B and C.
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We set a1
1 ≡ a2

1 ≡ a3
1 ≡ 0.6, i.e., all populations have the same diffusivity, except in a

few cases. Since there is no source terms and individuals die at the both boundaries (x = 0

and x = 1), all populations eventually die out if T is long enough.

Figure 2.2 and Figure 2.3 show the two solutions with the same initial population dis-

tribution (Initial population A) but different sets of weight constants. In initial population

distribution A, u3 is between u1 and u2, and the u2 is the largest of all. Figure 2.2(b)

shows the optimal control with K = 1, L = 1, M = 0.1 and M = 5 and Figure 2.3(b)

shows the optimal control with K = 1, L = 0.1, M = 0.1 and M = 5. In both cases,

population 3 cooperates with population 1 all the time, however, population 3 cooperates

with population 1 more strongly in the case of L = 1. Figure 2.2(c) and Figure 2.3(c) show

that the difference between the competing populations 1 and 2 is smaller for L = 1 than

for L = 0.1. The objective functional values, J(α∗) for L = 1 and L = 0.1 are 3.6033 and

4.2259 respectively. Population 3 maximizes the objective functional value by decreasing

the alliance with population 1 when L gets smaller since the increased difference between

populations 1 and 2 does not have a strong effect.

Now, we also change the value M from 0.1 to 0.01. The weight constant setting is

K = 1, L = 0.1, M = 0.1 and M = 5. Smaller M means the cost associated with the

alliance is less. Thus, we would expect that population 3 tries to cooperate with population

1 more strongly. In fact, Figure 2.4(b) shows population 3 strengthens the alliance much

more when compared with Figure 2.3(b). Consequently, the difference of the two competing

populations 1 and 2 becomes smaller and the objective functional value is 4.23.

Next, we modify the scaling constant L to 0.01 and set M = 0.1. This means that

the difference between the competing populations 1 and 2 becomes much less important,

while the size of population 3 becomes more important. In this new setting, the optimal

control is quite different from the previous examples with L = 1 or L = 0.1. Population 3

cooperates with population 2 all the time. The optimal control and the final time population

distribution are given in Figures 2.5(b) and 2.5(c). Since population 2 is more dominant than

population 1, population 3 gets more benefit by cooperating with the higher population.

In this setting, J(α∗) = 4.3257. It is interesting to see that the final time distribution for

50



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

location

po
pu

la
tio

n

u1
u2
u3

(a) Initial population
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(b) Optimal control
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(c) Population at final time T

Figure 2.2: Population distribution and optimal control α(t) with K = 1, L = 1,M =
0.1,M = 5.
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(a) Initial population
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(b) Optimal control
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(c) Population at final time T

Figure 2.3: Population distribution and optimal control α(t) with K = 1, L = 0.1,M =
0.1,M = 5.

52



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

location

po
pu

la
tio

n

u1
u2
u3

(a) Initial population
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(b) Optimal control
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(c) Population at final time T

Figure 2.4: Population distribution and optimal control α(t) with K = 1, L = 0.1,M =
0.01, M = 5.
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(c) Population at final time T

Figure 2.5: Population distribution and optimal control α(t) with K = 1, L = 0.01, M =
0.1,M = 5.
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population 3 is almost the same but the objective functional value is increased. Moreover,

the final time populations 1 and 2 are much greater than the cases with L = 1 and L = 0.1.

Since the magnitude of the control is less than the previous example with L = 1 (see Figure

2.2(b) and Figure 2.5(b)), the cost associated with the alliance is smaller. Moreover, the

small value of the weight constant L allows the large difference of populations 1 and 2

without lowering the objective functional value.

Next, we examined the outcome with the same weight constant setting: K = 1, L = 0.1,

M = 0.01 and M = 5 but changed the initial population distribution from A to C (see

Figure 2.1(a) and 2.1(c)). In initial population distribution C, the peaks of u1 and u2

are at different locations. The optimal control starting with the initial population C is

given in Figure 2.6(b) and the final time population distribution is given in Figure 2.6(c).

The sign of the optimal control is positive all the time, i.e., population 3 cooperates with

the population 1. Since the cost of the alliance is small, population 3 tries to maximize

the objective functional value by cooperating with smaller population 1 and minimizing

the difference between the competing populations 1 and 2. The objective functional value

J(α∗) is 2.0086 in this setting.

When we start with the initial population B with u3 being the largest with the setting

K = 1, L = 1, M = 0.1 and M = 5 (Figure 2.7), the population 3 always cooperates

with the weaker population 1 and maximizes the objective functional value by reducing the

difference of the populations 1 and 2. Compare with Figure 2.2.

So far, we analyzed the cases in which all the diffusivity constants for the three popu-

lations are equal. Now, we start with the same initial population A (Figure 2.1(a)) with

the setting: K = 1, L = 1, M = 0.1 and M = 5 but set the diffusivity constants to

a1 = 0.8, a2 = 0.6, a3 = 0.4. This means population 1 diffuses more quickly and dies at

the boundaries faster than the other two. The optimal control with this setting is given

in Figure 2.8(b), slightly different from the one with the same diffusivity constants setting.

However, the final time population distribution is different (see Figure 2.2(c) and 2.8(c)).

Population 3 cooperates with population 1 all the time but for a little longer duration in

the new setting. Since population 1 decreases in size more rapidly than population 2, the
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(b) Optimal control
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(c) Population at final time T

Figure 2.6: Population distribution and optimal control α(t) with initial population C,
K = 1, L = 0.1,M = 0.01, M = 5.
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(a) Initial population
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(b) Optimal control
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(c) Population at final time T

Figure 2.7: Population distribution and optimal control α(t) with initial population B,
K = 1, L = 1,M = 0.1, M = 5.
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(c) Population at final time T

Figure 2.8: Population distribution and optimal control α(t) with K = 1, L = 1,M =
0.1,M = 5,a1 = 0.8, a2 = 0.6, a3 = 0.4.
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difference between the two populations tends to increase, therefore, population 3 tries to

help the smaller population to improve the objective functional. The objective functional

value is 4.0166, which is slightly larger than the equal diffusivity case.

In the next section, we consider a more general form of the control function, α(x, t).

Now, the control function depends on both space and time.

2.7 Numerical Results - Control Function α(x, t)

In the previous section, the control function only depends on time, but now we consider the

control function which depends on both time and space.

First, we examined how the solutions are different with the same initial population

distribution and the weight constants when we allow the control function to depend on

both time and space. We generated the solutions with the following settings.

1. K = 1, L = 1, M = 0.1 and M = 5 with initial population distribution A

2. K = 1, L = 0.01, M = 0.1 and M = 5 with initial population distribution A

3. K = 1, L = 0.1, M = 0.01 and M = 5 with initial population distribution C

In addition to the graphs of the optimal control and the final time distribution, the cross

sectional view of the optimal control at different times is given for each setting.

Consider the case with K = 1, L = 1, M = 0.1 and M = 5 with initial population

distribution A. In initial population distribution A, u3 is between u1 and u2, and the u2 is

the largest of all. Figure 2.9 represents the results with the optimal control function α(x, t)

and the corresponding results with the optimal control α(t) is shown in Figure 2.2. The

final time population distributions are almost the same for both cases. Figure 2.9(c) shows

that population 3 cooperates with population 1 all the time at any location. The alliance

is stronger where the difference between populations 1 and 2 are larger and smaller at both

ends where the size of all the populations are small. The objective functional value with

the control α(x, t) is 3.6208, which is slightly larger than the case of α(t) cases.

When we change the value of L from 1 to 0.01 with the same initial population dis-

tribution, the sign of the optimal control was reversed from positive to negative and the
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(d) Optimal control for different time t, 0 < t ≤ T

Figure 2.9: Population distribution and optimal control α(x, t) with K = 1, L = 1, M =
0.1,M = 5.
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magnitude of the optimal control decreased (Figure 2.10(c), 2.10(d)). This means that pop-

ulation 3 cooperates with population 2 instead. Since the importance of the difference in

the size of the populations 1 and 2 becomes less important, population 3 could improve the

objective functional value by reducing the strength of the alliance. The objective functional

value increased from 3.6208 with L = 1 to 4.3303 in this new setting with smaller L. In

this setting, the final time population distributions are almost identical for both α(x, t) and

α(t) (2.10(b) and 2.5(c)). The objective functional value is 4.3303, which is slightly larger

than the case with α(t) with the same weight constant setting.

Next, we examined the case with the setting K = 1, L = 0.1,M = 0.01, M = 5 and the

initial population distribution C. In initial population distribution C, the peaks of u1 and u2

are at different locations. In comparison with the case of α(t), we see a big difference in the

pattern of the optimal control. When the control function depends only on time, population

3 always cooperates with the larger population 2 at any location (Figure 2.6(b)). Figure

2.11(c) shows that population 3 cooperates with both populations 1 and 2 at the same

time in different spatial locations. Population 3 cooperates with the smaller population to

minimize the difference of the others. For example, population 2 is more dominant than

the population 1 on the locations between x = 0 and x = 0.6 (Figure 2.11(d)). In this

range of x, population 3 cooperates with population 1. When we compare the final time

population distributions for cases α(x, t) and α(t), the size of population 1 is smaller with

the case α(x, t). Since the control function can change sign across the spatial domain, more

refined adjustment is possible to improve the objective functional value. In fact, although

the difference is small, J(α∗) = 4.3303 for the case α(x, t) and the corresponding value for

the case α(t) is 4.3257.

Finally, we compared the results using different diffusivity constants. We generated the

numerical solutions using the initial population C with the setting: K = 1, L = 0.1,M =

0.01, M = 5. In all examples presented above in this section, we set all the diffusivity

constants equal to 0.6. Now, we examine two other combinations. The first one is a1
1 =

0.8, a2
1 = 0.6, a3

1 = 0.4 and the other one is a1
1 = 0.8, a2

1 = 0.4, a3
1 = 0.6. The difference in

the optimal control is more clearly seen in the cross sectional view of the optimal control
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(d) Optimal control for different time t, 0 < t ≤ T

Figure 2.10: Population distribution and optimal control α(x, t) with K = 1, L = 0.01,M =
0.1,M = 5.
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(d) Optimal control for different time t, 0 < t ≤ T

Figure 2.11: Population distribution and optimal control α(x, t) with initial population C,
K = 1, L = 0.1,M = 0.01, M = 5.
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curves shown in Figure 2.12(d) and Figure 2.13(d). Note each curve shown in Figures

2.12(d) and 2.13(d) are obtained by slicing the graph in Figures 2.12(c) and 2.13(c)at

different time respectively. The peaks of the curves are decreasing over time in both cases.

When the difference in the diffusivity constants for populations 1 and 2 is larger, i.e., the

case when a1
1 = 0.8, a2

1 = 0.4, the difference in the size of the two populations is larger and

the difference is more obvious in the range between x = 0 and x = 0.6. When we compare

the cross sectional view of the optimal control for this spatial location, the alliance between

population 3 and population 1 is stronger for the case a1
1 = 0.8, a2

1 = 0.4. In both Figures

2.12(d) and 2.13(d), the curve with the smallest peak(i.e., the innermost curve) corresponds

to the optimal control curve at the penultimate time slice. At any given time, the optimal

control value is higher for the case a1
1 = 0.8, a2

1 = 0.4. This is because population 3 tries

to minimize the difference in the size of the other two population to improve the objective

functional value.

2.8 Conclusions

This work introduces a new feature of spatial-temporal control that can switch the structure

of interaction terms. The control can switch an interaction from cooperative to competitive

and vice-versa. Balancing the strengths of the two competing populations with an alliance

involving the third population is a reasonable scenario in today’s global community.

We first proved the existence of solutions to the state system and then we obtained the

existence and uniqueness results for the optimal control. This gives a characterization of

the unique optimal control in terms of the unique solution of the optimality system(OS).

Using the characterization of OS, we numerically solved the problem to illustrate how the

weight constants in the objective functional and the control bounds affect the outcome. The

following are conclusions from the numerical results.

When the reversal in the order of the size of the three populations exists across the

spatial domain, the opportunistic population 3 can improve the objective functional better

with the control function α(x, t) than the control function α(t). When the control function

depends on both time and space, α(x, t) can have different signs, i.e., the opportunistic
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Figure 2.12: Population distribution and optimal control α(x, t) with initial population C,
K = 1, L = 0.1,M = 0.01, M = 5, a1

1 = 0.8, a2
1 = 0.6, a3

1 = 0.4.
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Figure 2.13: Population distribution and optimal control α(x, t) with initial population C,
K = 1, L = 0.1,M = 0.01, M = 5, a1

1 = 0.8, a2
1 = 0.4, a3

1 = 0.6.
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population can cooperate with different populations at different locations at the same time.

This feature was only seen for the case with α(x, t), thus the spatial dependence in the

control can cause switches in alliances. For the case of α(t), the sign of the control is

always the same at different locations. This means population 3 cooperates with the same

population everywhere.

If we had used much smaller diffusivity constants and compared the final time population

distribution, the sign of the control might have been changed at some time in the interval

[0,T].

Since the time interval we used is very short, the final time population distribution for

population 3 was almost identical regardless of the difference in the settings of the weight

constants and the control bounds. Therefore, the changes in the objective functional values

were mainly caused by either minimizing the difference in the size of the two competing

populations 1 and 2 when the importance of the cost associated with the alliance is low, or

minimizing the cost associated with the alliance when the importance of the size difference

of populations 1 and 2 is small. This result was common to both cases α(x, t) and α(t).

Finally, since the interaction terms in the state equations are symmetric with respect

to populations 1 and 2, we may add some constants in front of the non-local interaction

terms on the right hand side of the state equations to break this symmetry. The strength of

the alliance may be the same but the degree of the benefit from cooperation with different

populations may not be the same. Also adding first derivative or source terms may be more

realistic and lead to some unexpected behavior.
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Chapter 3

Rabies Metapopulation Model

3.1 Introduction

Rabies is one of the oldest known viral diseases. The most common mode of rabies virus

transmission is through the bites of an infected animal. In infected animals, rabies virus

migrates through the nervous system to the brain. When rabies virus reaches the brain, it

replicates rapidly and passes to the salivary glands and the infected animal starts to show

signs of disease. Time between the initial infection and death is variable among species and

the location or severity of wound when they were bitten by a rabid animal, but the infected

animal dies approximately one week after it shows the symptoms of disease.

Although rabies vaccinations have been available for domestic animals for many years,

until recently no preventive action existed to control the spread of rabies in wildlife. Wild

animals accounted for 93% of reported cases of rabies in 2001. In the United States, several

distinct rabies virus variants have been identified in wildlife such as raccoons, skunks, foxes,

coyotes and bats. Among these wild animals, raccoons have been the most frequently

reported rabid wildlife species (37.2% of all animal cases during 2001) and they are the

primary vector for rabies in the eastern United States [47].

As a measure of the importance of controlling the spread of rabies, currently 15 states

distribute oral rabies vaccination (ORV) for raccoons in the US. For raccoons, the vaccine

is encased within a plastic package coated in fish meal and oil. When the raccoon eats the
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bait, there is an immune response to the rabies antigen which creates antibodies to fight

off the disease. Baits are distributed by airplanes in rural areas and by hand in urban and

suburban areas. In 2003, more than 10 million baits were distributed in the United States

and Canada [58].

Analytic results for optimal control applied to a simple SIR epidemic model includ-

ing vaccination, quarantine and health promotion campaign were obtained by Behncke [2].

Greenhalgh considers control of an epidemic spreading in a homogeneously mixing popula-

tion, which is controlled by both immunizing susceptibles and isolating infecteds [25]. For

epidemics in heterogeneous populations in which the optimal vaccination policy is linked

to the changing growth rate, see the work by Cairns [5]. For deterministic and stochastic

models with discrete time describing an epidemic in an university setting, see the work

by Martin et.al.[? ]. Clancy treated optimal intervention policies for general stochastic

epidemic models [7]. See a paper by Francis [24] which gives an economic viewpoint for

a vaccination model in a flu season. See the works by Sethi, Morton and Wickwire for

some survey and fundamental work on control of epidemics [44, 60, 67]. Ögren and Martin

studied optimal vaccination patterns for a rapidly spreading disease in an urbanized highly

mobile population setting [48]. Their model is similar to ours but with a different spatial

arrangement.

The modeling of rabies spread and control has been widely studied by ecologists and

mathematical biologists. The paper by Murray, Stanley and Brown [45] studied the spa-

tial spread of rabies among foxes in England. In their PDE model, the fox population

was divided into three classes: susceptible, infected but non-infectious and infectious rabid

[45]. Evans and Pritchard extended this model as a nonlinear time-varying control system

described by partial differential equations (feedback control to drive the system toward a

desired profile [19]). Coyne, Smith and McAllister developed a model which makes explicit

the development of natural immunity to rabies and used this to evaluate culling and vac-

cination elimination strategies [11]. In this model, six classes are considered: susceptible

raccoons, infected but noninfectious raccoons that develop rabies, infected but noninfectious

raccoons that eventually develop immunity, rabid raccoons, raccoons that are immune as a
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result of natural infection, and vaccinated raccoons. Both discrete-time deterministic and

stochastic models were analyzed by Allen, Flores, Tatnayake and Herbold [1]. Their models

are structured with respect to space (m patches), age (juvenile and adults) and three disease

states: susceptible, infected and vaccinated. An SEIR (susceptible, exposed, infectious, and

recovered) model was developed to describe the spatial and temporal patterns of raccoon

rabies epizootic in [6]. Optimal control has not been previously applied to an epidemic

model for rabies in raccoons, thus this work is the first optimal control application in this

area.

Our goal is to investigate optimal vaccination strategies to control the spread of rabies

using a metapopulation SIR model with a system of ODEs. In Section 2, the assumptions

of our model and definitions of parameters are stated. Then we give a description of our

metapopulation SIR model and objective functional to be minimized. In Section 3, we

apply Pontryagin’s Maximum Principle to find the necessary conditions for the optimal

control. We show simulation results to illustrate the population dynamics with the rate of

vaccination as a control in Section 4.

3.2 Metapopulation Model

We consider a population consists of n subpopulations which are connected to each other

via immigration or emigration. Figure 3.1 represents the flow diagram of our model. Sub-

population i is divided into three classes; the susceptibles, Si, who can be infected with the

rabies; the infecteds, Ii, who are infected with rabies and can transmit the disease; and the

removed class, Ri, who are vaccinated and become immune to the rabies. Since we only

consider the population dynamics for a short time period, we assume that the individuals

in class Ri do not lose the immunity once they are vaccinated. Individuals in class Ri

are removed from the system only when they die, with mortality rate µR. The mortality

rate for the class Ii is much higher compared to the mortality caused by natural causes or

factors other than the disease. We only include the mortality due to rabies for the class

Ii. Moreover, since the rabid animals usually die within a few weeks after the symptoms of

the disease appear, individuals in Ii do not enter the class Ri. Only the individuals in Si
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Figure 3.1: Flow diagram

can enter Ri when they are vaccinated. We do not consider the case that infected animals

recover from the disease and become immune to it. Thus, once individuals are infected,

they die and are removed from the system. In Figure 3.1, the symbol aij represents the

rate of geographic movement of noninfecteds (susceptible and immune classes) and cij rep-

resents the rate of geographic movement of infecteds. Depending on the spatial orientation

of subpopulations, aij may not be the same as aji and similarly for cij and cji. The values

are assumed to be inversely proportional to the distance between the subpopulations i and

j. It has been observed that infected animals change their behavior and becomes aggressive

and move much more rapidly than uninfected ones. On the other hand, we assume the

vaccine does not alter the behavior of raccoons. The definition of the parameters used is

summarized in Table 3.1.

Key assumptions for our model are listed below.

Assumptions

• Infected animals move more actively than the animals in both susceptible and immune

classes, i.e., aij < cij .

• The mortality rates for susceptible and immune classes are the same, i.e., µS = µR.

• The magnitude of the rates of geographic movement, aij and cij , reflects the distance

between the subpopulations i and j. For instance, Figure 3.2 shows two examples
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Table 3.1: Nomenclature

Symbol Definition
aij the rate of geographic movement of noninfecteds (susceptible

and immune classes) from subpopulation i to subpopulation j
cij the rate of geographic movement of infecteds from subpopulation

i to subpopulation j
βi the rate of transmission in subpopulation i
µS , µI ,
µR

the mortality rate in each class: S, I and R

σi the rate of removal (control) of susceptibles from subpopulation
i due to vaccination

γ the efficacy of vaccination
Si the number of susceptibles in subpopulation i
Ii the number of infecteds in subpopulation i
Ri the number of individuals immune to the disease in subpopula-

tion i

(a) a12 = a13 = a14 (b) a12 > a14 > a13

Figure 3.2: Rate of geographic movement aij
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of possible spatial configurations of four subpopulations. In the first example shown

in Figure 3.2(a), the subpopulation 1 is located at the same distance from the other

subpopulations 2, 3 and 4. In this case, the rates of geographic movement from S1

to the other three, S2, S3 and S4 are the same. However, if the distance between the

subpopulation 3 and the subpopulation 1 is largest, as shown in Figure 3.2(b), then

the rate a13 is smallest.

• If raccoons consume the baits containing the vaccine and the vaccine is working, they

instantly become immune to the disease.

The state system is:

dSi

dt
= −βiSiIi − γσiSi +

n∑

j,j 6=i

ajiSj −
n∑

j,j 6=i

aijSi − µSSi

dIi

dt
= βiSiIi +

n∑

j,j 6=i

cjiIj −
n∑

j,j 6=i

cijIi − µIIi

dRi

dt
= γσiSi +

n∑

j,j 6=i

ajiRj −
n∑

j,j 6=i

aijRi − µRRi

(3.1)

S(0) = S0

I(0) = I0

R(0) = R0

S(T ), I(T ), R(T ) free.

(3.2)

The control set is defined as

U = {σ = (σ1, . . . , σn) | σi is Lebesgue measurable,

0 ≤ σi(t) ≤ σmax a.e. for i = 1, 2, . . . , n},

We wish to minimize the total number of infecteds and the cost associated with vacci-

nation. We consider the following optimal control problem, over σ ∈ U .

Minimize J(σ) =
n∑

i=1

T∫

0

(Ii +
α

2
σ2

i ) dt (3.3)
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where α > 0 is the weight factor in the cost of control. We choose a quadratic cost on

the control for analysis convenience for this prototype problem. One can easily choose a

combination of quadratic and linear cost, Aσi + Bσ2
i where A > 0, B > 0, or other convex

functions.

In next section, we show the existence and derive necessary conditions for the optimal

control.

3.3 Necessary Conditions for the Optimal Control

Theorem 7. There exists an optimal control σ in U that minimizes the objective functional

J(σ).

Proof. To prove the existence of an optimal control to our problem, we use a result from

[23]. By Lukes [42], note that solutions to the state system exist and are L∞ a priori

bounded (independent of the control).

For existence, the following required conditions are satisfied.

1. For each i = 1, ... n, the class of all initial conditions with a control σi such that σi is

a Lebesgue integrable function on [0, T ] with values in the admissible control set and

such that the state system is satisfied, is not empty.

2. The admissible control set U is closed and convex.

3. The right hand side of the state system is continuous and is bounded above by a sum

of the bounded control and the state, and can be written as a linear function of σi

with coefficients depending on time and the state variables.

4. The integrand of the objective functional is convex on the admissible control set. The

structure of the integrand of our objective functional gives a required bound of the

type:
n∑

i=1

[Ii +
α

2
σ2

i ] ≥ −c2 +
α

2

n∑

i=1

σ2
i
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By using Pontryagin’s Maximum Principle [51], we derive the necessary conditions

for optimality. We form the Hamiltonian with adjoint variables λ1 i, λ2 i and λ3 i for

i = 1, 2, ..., n.

H(t, S, I, R, σ) =
n∑

i=1

[Ii +
α

2
σ2

i + λ1 iS
′
i + λ2 iI

′
i + λ3 iR

′
i], (3.4)

where λ1i is multiplied by the right hand side of the Si ODE and similarly for λ2i and λ3i

Theorem 8. Given an optimal control σ = (σ1, σ2, ..., σn) and corresponding state solu-

tions S = (S1, S2, ..., Sn), I = (I1, I2, ..., In), and R = (R1, R2, ..., Rn), there exist λ1 =

(λ11, λ12, ...λ1n), λ2 = (λ21, λ22, ...λ2n) and λ3 = (λ31, λ32, ...λ3n) satisfying the adjoint sys-

tem:
λ′1i = −∂H

∂Si

= λ1i(βiIi + γσi +
n∑

k=1,k 6=i

aik + µS)− λ2iβiIi − λ3iγσi −
n∑

k=1,k 6=i

λ1kaik

λ′2i = −∂H

∂Ii

= −1 + λ2i(−βiSi +
n∑

k=1,k 6=i

cik + µI) + λ1iβiSj −
n∑

k=1,k 6=i

λ2kcik

λ′3i = − ∂H

∂Ri

= λ3i(
n∑

k=1,k 6=i

aik + µR)−
n∑

k=1,k 6=i

λ3kaik

and

λ1i(T ) = λ2i(T ) = λ3i(T ) = 0 for i = 1, 2, ..., n.

(3.5)

Furthermore we conclude

σ = (σ1, σ2, σi, ..., σn)

where

σi = min{max{0,
γSi(λ1i − λ3i)

α
}, σmax} for i = 1, 2, ..., n. (3.6)

Proof. Suppose σ = (σ1, σ2, ..., σn) is an optimal control and S = (S1, S2, ..., Sn), I =

(I1, I2, ..., In), and R = (R1, R2, ..., Rn) are corresponding solutions, Using the result of
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Pontryagin’s Maximum Principle [51], there exists adjoint variables λ3i, λ2i and λ1i satis-

fying: For i = 1, 2, · · · , n

λ′1i = −∂H

∂Si

λ′2i = −∂H

∂Ii

λ′3i = − ∂H

∂Ri

(3.7)

where H is the Hamiltonian, with the transversality conditions

λ1i(T ) = λ2i(T ) = λ3i(T ) = 0. (3.8)

For example, λ′1i for i = 1, . . . , n is given by

λ′11 = − ∂H

∂S1

= λ11(β1I1 + γσ1 +
n∑

k=2

a1k + µS)− λ21β1I1 − λ31γσ1 −
n∑

k=2

λ1ka1k

(3.9)

...
λ′1i = −∂H

∂Si

= λ1i(βiIi + γσi +
n∑

k=1,k 6=i

aik + µS)− λ2iβiIi − λ3iγσi −
n∑

k=1,k 6=i

λ1kaik

(3.10)

...
λ′1n = − ∂H

∂Sn

= λ1n(βnIn + γσn +
n−1∑

k=1

ank + µS)− λ2nβnIn − λ3nγσn −
n−1∑

k=1

λ1kank

(3.11)

Similarly, λ′2i and λ′3i are given by the following formulas:

λ′21 = −∂H

∂I1

= −1 + λ21(−β1S1 +
n∑

k=2

c1k + µI) + λ11β1S1 −
n∑

k=2

λ2kc1k

(3.12)
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...
λ′2i = −∂H

∂Ii

= −1 + λ2i(−βiSi +
n∑

k=1,k 6=i

cik + µI) + λ1iβiSj −
n∑

k=1,k 6=i

λ2kcik

(3.13)

...

λ′2n = −∂H

∂In

= −1 + λ2n(−βnSn +
n−1∑

k=1

cnk + µI) + λ1nβnSn −
n−1∑

k=1

λ2kcnk

(3.14)

λ′31 = − ∂H

∂R1

= λ31(
n∑

k=2

a1k + µR)−
n∑

k=2

λ3ka1k

(3.15)

...

λ′3i = − ∂H

∂Ri
= λ3i(

n∑

k=1,k 6=i

aik + µR)−
n∑

k=1,k 6=i

λ3kaik (3.16)

...
λ′3n = − ∂H

∂Rn

= λ3n(
n−1∑

k=1

ank + µR)−
n−1∑

k=1

λ3kank

(3.17)

The general form for the optimality condition is given by

∂H

∂σi
= ασi − γSi(λ1i − λ3i) = 0 , at σ∗i (3.18)

on the set {t| 0 < σ∗i (t) < σmax, i = 1, 2, ..., n}. By solving (3.18) for σ∗i (t) for i =

1, 2, · · · , n on the interior of the control set, we have

σ∗i (t) =
γSi(λ1i − λ3i)

α
(3.19)

Using the control bounds, we obtain the optimal characterization (3.6).
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Figure 3.3: Spatial arrangement of subpopulations used in numerical simulation

Since the solutions of the state and adjoint systems are L∞ bounded, the right hand

side of these ODEs are Lipschitz in the state and adjoint variables, which guarantees the

uniqueness of the optimality system consisting of (3.1), (3.2), (3.5) and (3.6). This Lipschitz

property implies, for T sufficiently small, the solutions of the optimality system are unique

[22].

3.4 Numerical Results

In this section, we consider a population consisting of 9 subpopulations whose geographical

orientation is given by Figure 3.3.

Since we have three state variables: susceptibles (Si), infected (Ii) and removed (im-

mune) (Ri) for each subpopulation i = 1, ..., 9, our state system given by (3.1) consists of

27 ODEs. There is a corresponding system of adjoint variable consisting of 27 ODEs.

We numerically solved the optimality system, consisting of 54 ODEs from the state

and adjoint equations. Each subpopulation and the optimal control (vaccination rate) have

been generated iteratively. First, we solve the state equations with a guess for the control,

the state system is solved forward in time with a fourth order Runge-Kutta method. Using

these state solutions, we solve the adjoint system backward in time. We repeat the iteration

with the updated control (convex combination of the previous control and the value from

the characterizations given by (3.6)) until the solutions converge.
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The following is the default setting for the values of initial condition and parameters.

We used these values unless specified. Note that

α = 100

βi = 0.01 for all i

γ = 0.122

µS = µR = 0.00236, µI = 0.1818.

Si(0) = 100 for i 6= 9, S9(0) = 90

Ii(0) = 0 for i 6= 9 I9(0) = 10

σmax = 1

A = (aij) = 10−4 ×




0 3.83 1.92 3.83 2.71 1.71 1.92 1.71 1.36

3.27 0 3.27 2.31 32.7 2.31 1.46 1.64 1.46

1.92 3.83 0 1.71 2.71 3.83 1.36 1.71 1.92

3.27 2.31 1.46 0 3.27 16.4 3.27 2.31 1.46

1.97 2.78 1.97 2.78 0 27.8 1.97 2.78 1.97

1.46 2.31 3.27 1.64 3.27 0 1.46 2.31 3.27

1.92 1.71 1.36 3.83 2.71 1.71 0 3.83 1.92

1.46 1.64 1.46 2.31 3.27 2.31 3.27 0 3.27

1.36 1.71 1.92 1.71 2.71 3.83 1.92 3.83 0




C = (cij) = 1.5A

where the element, (aij), in the matrix A is the rate of movement for non-infected (suscep-

tibles and removed (immune)) from subpopulation i to subpopulation j and similarly for

(cij) for the infecteds.

The A values were determined in the following way. First, we assume that the population

exponentially decay without birth. We determine the exponent for a simple decay model

such that approximately 50% of animals will move to another subpopulation in one year (=
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365 days). This can be done by solving the following equation for k.

0.5S1(0) = S1(0)e−365k

After simple calculation, we have

k =
ln2
365

≈ 1.899× 10−3. (3.20)

Next, we find the ratios of the spatial distances between subpopulation 1 and the others.

Let lij denote the spatial distance between subpopulation i and j. From Figure 3.3, the

ratios of spatial distances between subpopulation 1 and the rest of subpopulations are

l12 : l14 : l15 : l13 : l17 : l15 : l16 : l18 : 119

= 1 : 1 :
√

2 : 2 : 2 :
√

5 :
√

5 : 2
√

2.

The rates of geographic movement, aij (for noninfected), cij (for infected), are assumed to

be inversely proportional to the distances between the subpopulations i and j. The ratios

of a1j for j = 1, . . . , 9 are obtained by taking the reciprocal of the ratios for l1j above.

a12 : a14 : a15 : a13 : a17 : a16 : a18 : a19

= 1 : 1 : 1/
√

2 : 1/2 : 1/2 : 1/
√

5 : 1/
√

5 : 1/2
√

2.

(3.21)

For simplicity, we take the proportionality constant to be 1. Distributing the value of k in

(3.20) using the ratios in (3.21), we obtain

a12 : a14 : a15 : a13 : a17 : a16 : a18 : a19

= 10−4 × (3.83 : 3.83 : 2.71 : 1.92 : 1.92 : 1.71 : 1.71 : 1.36).

Note that
∑j=9

j=2 a1j = k ≈ 1.899 × 10−3. Note also that A is not necessarily symmetric

depending on the spatial configuration of each subpopulation with respect to each other.

By default, the initial fraction of infecteds is set to 10% of subpopulation. In other

words, if the total number in subpopulation 9 is 100, and the infection started from this
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subpopulation, I1(0) = 10 and S1(0) = 90. There are no removed (immune) individuals

present at the beginning.

First, we examine the outcome of changing the weight constant for the control, α, which

measures the cost of vaccination.

Example 1) α = 50. The numbers in each class (susceptibles (solid line), infected

(dotted line) and removed (dashed line)) are shown in Figure 3.4(a) and the optimal control

(vaccination rate) is shown in Figure 3.4(b). The numbers in each class for the whole

population are shown in Figure 3.5.

Example 2) α = 100 (default). The numbers in each class (susceptibles, infected and

removed) are shown in Figure 3.6(a) and the optimal control (vaccination rate) is shown in

Figure 3.6(b). The numbers in each class for the whole population are shown in Figure 3.7.

Example 3) α = 200. The numbers in each class (susceptibles, infected and removed)

are shown in Figure 3.8(a) and the optimal control (vaccination rate) is shown in Figure

3.8(b). The numbers in each class for the whole population are shown in Figure 3.9.

Due to the spatial symmetry of the subpopulations, both the final time population

distribution and the optimal control are symmetric. For example, the results for the sub-

populations 2 and 4 are the same. Similar results were found for the pairs of subpopulations

3 and 7, and subpopulations 6 and 8.

Larger values of α means the cost associated with vaccination is larger, thus we expect

that less control(vaccination) will be applied for larger α. In fact, the maximum control is

applied in the subpopulation 9 for the case α = 50 (see Figure 3.4(b)). For all three cases,

the infecteds in the subpopulation 1 die out, since there are not enough susceptible raccoons

present.

For reference, the numbers in the susceptible and infected classes starting with the same

initial populations without control is shown in Figure 3.10(a). The numbers in each class

for the whole population are shown in Figure 3.10(b). There are no removed in this case.

Without vaccination, rabies spreads quickly to wipe out the population.

Next, we examined varying the initial population as follows.
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(b) Optimal control α = 50

Figure 3.4: Population distribution and optimal control with α = 50, I9(0) = 10.
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Figure 3.5: Total population with α = 50, I9(0) = 10.
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(b) Optimal control α = 100

Figure 3.6: Population distribution and optimal control with α = 100, I9(0) = 10 (Example
2).
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Figure 3.7: Total population with α = 100, I9(0) = 10.
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(b) Optimal control α = 200

Figure 3.8: Population distribution and optimal control with α = 200, I9(0) = 10 (Example
3).
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Figure 3.9: Total population with α = 200, I9(0) = 10.
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(b) Total population distribution

Figure 3.10: Population distribution without control(Examples 1, 2 and 3) .
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Example 4) α = 100.

S1(0) = S6(0) = S9(0) = 100,

S2(0) = S5(0) = 50, S3(0) = 150, S4(0) = 45,

S7(0) = 250, S8(0) = 200,

I4(0) = 5.

The origin of the spread is the subpopulation 4. The numbers in each class (susceptibles,

infected and removed) are shown in Figure 3.11(a). The onset of the spread is much faster

in large populations. In this example, five infected are introduced in the subpopulation

4. The animals move out to either subpopulation 1 or subpopulation 7 with equal rates.

However, the number of infecteds in the larger subpopulation 7 started increasing earlier

than that in subpopulation 1. Moreover, subpopulation 5 is closer to the origin of the

spread, subpopulation 4, than the subpopulation 3, but the spread is faster in subpopulation

3, where more susceptibles are present. The numbers in each class for the whole population

are shown in Figure 3.12.

Now, when we examine the optimal control shown in Figure 3.11(b), more control (vac-

cination) is applied in larger subpopulations, such as subpopulations 3, 7 and 8. Almost

no control is applied for much smaller populations such as 2 and 5. The reference for this

setting (with no control) is given in Figure 3.13. As before, without control, the population

will eventually die out without any growth.

Example 5) α = 100. In this example, only the origin of the spread is changed. Instead

of subpopulation 4, we started with the infected individuals in subpopulation 7. Note that

the number of infected is 25 (10% of the total number). The only change from the last

example is the following.

S4(0) = 50, S7(0) = 225, I7(0) = 25.

The results are shown in Figures 3.14 and 3.15. As in the last example, the strategy to

minimize the objective functional is to vaccinate the populations large in size. In this
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(b) Optimal control α = 100

Figure 3.11: Population distribution and optimal control with α = 100, I4(0) = 5.
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Figure 3.12: Total population with α = 100, I4(0) = 5.
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(b) Total population distribution

Figure 3.13: Population distribution without control(example 4) .
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(b) Optimal control α = 100

Figure 3.14: Population distribution and optimal control with α = 100, I7(0) = 25.
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Figure 3.15: Total population with α = 100, I7(0) = 25
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example, the infection started in subpopulation 7, which is the largest of all. Since the

susceptibles in subpopulation 7 are quickly infected, the intensity of the control is much less

than that of the previous example. The reference for this setting (with no control) is given

in Figure 3.16. Again, if the population size is relatively large, the vaccination rate is very

high.

3.5 Conclusions

We constructed a metapopulation SIR (susceptible, infected and removed(immune)) model

to investigate optimal vaccination strategies to control rabies among raccoons for a short-

term time scale. It is a system of 3n ODEs (n is the number of subpopulations). While this

application to a rabies epidemic is new, this model and control techniques could easily be

adapted to other epidemic scenarios. This work provides a useful tool for analyzing optimal

control in metapopulation epidemic models.

We have shown the existence/uniqueness of the optimal control and the necessary con-

ditions for the optimal control using the Pontryagin’s Maximum Principle. Using the state

and adjoint system together with the characterization of the optimal control, we solved the

problem numerically with preliminary parameter values.

For the case of 9 subpopulations, the optimal strategy is to vaccinate at a larger rate

in larger populations. When the cost of applying the vaccine is higher, as expected, the

amount of effort devoted to vaccination is lower. This aspect can also be seen in the graphs

involving the total population. These control results illustrate how the spatial arrangement

and the location of the initial infecteds can affect the optimal vaccination strategy.

When we compare the numbers of each class for the whole populations in Examples 1

through 3 (different α values), the difference in the number of infecteds is not so significant

during the first 7-8 days. However, the number of infecteds increases more rapidly when

the cost of vaccinations is high (corresponds to the higher value of α).

When the initial number of each subpopulation is different (Examples 4 and 5), the

pattern of the change in the number of infecteds depends on the size of the subpopulation

where the initial infected animals were introduced. In Example 4 (see Figure 3.12), the
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(a) Population distribution
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(b) Total population distribution

Figure 3.16: Population distribution without control(example 5) .
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number of infecteds gradually increases as seen in Example 2 (see Figure 3.7). Even though

the initial number of infecteds in Example 4 is less than the one in Example 2, the rate of

increase in the number of infecteds is faster between the day 5 and day 10. When the initial

infecteds are placed in relatively large size subpopulation as in Example 5, the number of

infecteds increases quickly at the beginning and does not change much after that (see Figure

3.15).

Note also that convergence of the iterative method was quick (taking only a few seconds)

and this indicates that problems with even more refined spatial grids could be handled.

The following is a list of some features which can be added to our model in the future

to make it more realistic.

• Introduce another state variable to add the dynamics of the bait, since the baits are

delivered at different spatial locations and may decay over time or be consumed by

other animals.

• Add another class, exposed (latently infected), E, which represents the group of in-

dividuals who are infected but do not transmit the disease yet.

• Include birth and growth terms, including possibly a birth pulse function or maturity

movement function, in the state equations.

• Add more constraints such as a limit on the amount of vaccine to be used.

• Add age or gender structures(adult/juvenile/male/female).

• Use more realistic parameter values and geographic layout.
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Chapter 4

Eurasian Collared Dove Model

4.1 Introduction

The Eurasian collared dove’s place of origin is believed to be in south-central Asia (the

region of India, Sri Lanka, and Myanmar [13]. They spread across Europe from Turkey

and the Balkans during the 1920s. The collared dove now occupies most of Europe from

Turkey to Spain, as far west as Britain, and north to southern Scandinavia and parts of

Russia [28, 29]. The Eurasian collared dove has been introduced in the U.S. and continued

spreading across the U.S. In next section, we describe the history of collared dove invasion

in the U.S. in more detail.

Our main interest is how the difference in the breeding season affects the growth rate of

the collared dove and thus affects the spread. If the breeding season is too short, the doves

cannot produce successfully. On the other hand, if the breeding season is long enough, it

is possible that the dove can reproduce multiple clutches during the same breeding season.

Our goal is to construct a model which takes into account the spatial variation in the

breeding season length and investigate the effect of such variation on the spread of the

invasion. Using data on the number of frost free days provided by National Climatic Data

Center (NCDC) and data on the dispersal distance (banding data) from [29], we construct

an integrodifference equation model for the growth and the dispersal. The format of the

growth function uses ideas from [66].
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We describe when and where the collared dove was introduced in the U.S. in Section 2.

Then, we briefly describe dove ecology in Section 3. The general background on integrod-

ifference equations is addressed in Section 4. In Section 5, we give a detailed description

of our model. In Sections 6 and 7, we explain how we estimated our dispersal kernel and

the breeding season length function. In Sections 8 and 9, we describe various parameters

and bird data used in our model and simulation. In Sections 10 and 11, we present the

numerical results using our one spatial dimension model and provide conclusions.

4.2 History of Dove Invasion in the U.S.

The Eurasian collared dove (Streptopelia decaocto), a species that is raised and bred by dove

fanciers, was introduced to North America several times since the 1980s [56]. The source of

the earliest introduction is thought to be captives from the Bahama Islands that escaped or

were released in 1974. As the Bahama populations grew and expanded, they reached south-

ern Florida by the early 1980s without human assistance. Independent releases of captive

collared doves by local breeders have also been reported from California, Colorado, Mis-

souri, Tennessee, and Texas, and it is suspected to have been released in Illinois, Louisiana,

Maryland, and New Jersey [54, 56]. Since its earliest introduction to Florida, the collared

dove has spread rapidly, particularly along the eastern seaboard and Gulf of Mexico.

The independent releases of this species in different parts of the US makes it difficult

to determine the precise nature of its invasion dynamics. Each release potentially acts as

a separate satellite population that can speed the rate of invasion. However, the indepen-

dent releases that have occurred periodically represent small numbers of individuals (< 50),

whereas the movement of the doves from the Bahamas and surrounding islands represents

the expansion by dispersal of established populations. Therefore, we assume that the west-

ward and northward spread of the species from the southeastern US represents mainly the

expansion of the Florida population.

There is evidence that the spread of the collared dove in North America frequently in-

volves long-distance “jump” dispersal. In a series of papers, Romagosa and her colleagues
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describe in detail the biology and life history of the collared dove, and documents its colo-

nization and spread in North America. Using data from the Christmas Bird Count program

(National Audubon Society 2004), Romagosa describes the expansion of the collared dove

using annual distribution maps [54, 55, 56]. Their analysis indicates that the species can

travel long distances in a short amount of time. Banding studies in Europe also document

long-distance dispersal for the collared dove.

4.3 Dove Ecology

Eurasian collared doves form breeding pairs as soon as weather and food availability permit

reproduction. Breeding is year-round where weather permits, and as many as 6 broods

have been reported from a single pair during a single breeding season [12]. Pairs formed in

the beginning of the breeding season are maintained until the following winter, and may be

maintained over multiple years. Most often (97 percent in one study) the doves lay 2 eggs

per clutch but from 1 to 4 eggs per clutch have been recorded [12].

In its native range, the doves inhabit open arid country, including cultivated groves of

trees and natural acacia savanna from sea level to 2400 m or more [12]. However, doves in

Europe and the US are found nesting in buildings as well as trees. In northern temperate

areas the species tends to prefer cultivated areas where grain is available, and is therefore

found in association with agricultural, rural, and suburban settings [12].

4.4 Integrodifference Equations

A reaction-diffusion equation has been frequently used to model the spread of invasive or-

ganisms. Reaction-diffusion models are continuous in time and space. The growth and dis-

persal of a population take place simultaneously. They assume that dispersal distances are

normally distributed and predict a constant speed of traveling waves of invasion. Reaction-

diffusion models predict the rate of invasion quite well for certain organisms, however,

sometimes the speed of invading organisms is underestimated [33].

Integrodifference equation (IDE) models have been used to model the spread of invasive
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organisms as well. In IDE models, the time variable is discrete and the spatial variable

is continuous. IDE models are suitable for populations with distinct growth and dispersal

phases [39]. In our case, note that individuals produce offspring during each growth period

but the offspring do not start reproducing in the same growth period.

In next section, we describe our IDE model for Eurasian collared dove invasion in North

America.

4.5 Model Description

During each breeding season, individuals mate and produce offspring. At the end of the

breeding season, some individuals die but their offspring and surviving adults either stay

at the same location or move to a new location. Our integrodifference equation model for

the density of collared doves is

Nt+1(x) =
∫

Ω
k(x, y)f [Nt(y)]dy. (4.1)

The variable Nt(x) represents the density of potential breeders (adult individual doves) at

location x in year t. The functions f [Nt(y)] and k(x, y) represent the growth rate at location

y and the dispersal kernel, respectively. Our growth function f [Nt(y)] has two components.

f [Nt(y)] = sNt(y) + g(Nt(y)). (4.2)

The first term in the growth function (4.2) represents the fraction of the individuals who

survive until the next breeding season with the probability of survival s. The second term

represents the offspring produced during the breeding season in year t. By substituting

(4.2) into (4.1), we have

Nt+1(x) =
∫

Ω
k(x, y)[sNt(y) + g(Nt(y))]dy (4.3)
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Since the dispersal kernel, k(x, y) is a probability density function for the dispersal distance

z, we have ∫ ∞

−∞
k(x, y)dy = 1 for all x.

For simplicity, we assume that the dispersal kernel is symmetric, i.e., surviving individuals

and their offspring disperse in all directions with the same probability at the end of each

breeding season. For the one dimensional domain, we assume that the collared-dove disperse

either south or north. For a two dimensional domain, the dispersion is radially symmetric.

As we mentioned earlier in Sec 4.2, we assume that the westward and northward spread

of the collared doves from the southeastern US started mainly from the Florida population.

We assume that there is no dispersal toward either the Gulf of Mexico or the Atlantic Ocean.

Instead, we assume that once the birds dispersing toward the ocean reach the boundary,

they change direction and fly the same distance back toward the land. If we set the southern

most point of the one-dimensional domain to be our reference point(corresponding to x = 0),

then our dispersal kernel k(|x−y|) is defined on a semi-infinite domain (x, y ≥ 0). However,

this is mathematically equivalent to using the dispersal kernel k̂(|x − y|) defined on an

infinite domain with reflective boundary condition at x = 0.

Figure 4.1 shows a dispersal kernel with reflective boundary condition for two different

locations, x1 and x2. In Figure 4.1, the dashed curve represents the dispersal kernel k̂(|x−y|)
defined on an infinite domain and the dotted curve represents the reflection of k̂(|x − y|)
about the y-axis. The kernel k(|x − y|) used in our model is shown as the solid curve in

Figure 4.1. Notice the difference in the shape of two kernels corresponding to two different

locations, k(|x− x1|) and k(|x− x2|). Since the location x1 is closer to the boundary than

x2, the difference in the shape of the two curves, k(|x− x1|) and k̂(|x− x1|) is greater.

In order to choose an appropriate dispersal kernel, k̂(|x − y|), we analyzed European

banding data. We will describe in more detail how we estimated our dispersal kernel in

Section 4.6.

To derive the growth function in our model (4.2), we modified the model proposed by

Veit and Lewis [66] for the invasion of the house finch of Eastern North America. First,

we briefly describe their model. They consider density dependent competition among the
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breeding pairs for suitable breeding sites. In order to derive the density of pairs in each

breeding season, Veit and Lewis assumed that the sex ratio of a population is 1:1 and that

no pairs exist at the beginning of each breeding season, i.e., the density of birds that have

not found mates at the beginning of breeding season in year t is equal to Nt.

Unmated males (M) and females (F) mate randomly to form pairs (P) at a rate σ:

M + F
σ−→ P.

By applying the law of mass action, we have

−d[M ]
dτ

= σ[M ][F ] (4.4)

where [M ] and [F ] denote the density of unmated or unpaired males and females, respec-

tively. Let n(τ) be the density of unmated birds at time τ within a breeding season, where

τ is a time variable within a breeding season, i.e., 0 ≤ τ ≤ T , where T is the length of

breeding season at this location. Given a 1:1 sex ratio, we have

[M ] = [F ] =
1
2
n. (4.5)

By substituting equation (4.5) into equation (4.4),we get

d[12n]
dτ

= −1
4
σn2.

Solving for dn
dτ , the rate of change in the density of unmated birds is expressed as

dn

dτ
= −σ

2
n(τ)2, n(0) = Nt, 0 ≤ τ ≤ T. (4.6)

Using P (τ) = Nt−n(τ)
2 , the rate of change in the density of pairs is given by

dP

dτ
= −1

2
dn

dτ
, P (0) = 0, 0 ≤ τ ≤ T (4.7)
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By separation of variables, we can easily solve the equation (4.6) for n(τ), then use the

equation (4.7) to find the solution P (τ):

P (τ ;Nt) =
N2

t
4

στ + 2Nt
(4.8)

Veit and Lewis assumed constant breeding season length, say, T1, then the density of po-

tential breeding pairs at the end of breeding season of length T1 is simply a function of the

density of population, Nt:

P [Nt] =
N2

t
4

σT1
+ 2Nt

(4.9)

If all the pairs formed can successfully nest and breed, and all offspring survive, then the

growth function is obtained by equation (4.9) times the average number of offspring born

to a breeding pair. However, it is reasonable to consider the possibility that a breeding pair

may not find an appropriate nesting site due to limited availability of nests. For limited

numbers of nesting sites, Veit and Lewis considered density-dependent resource competition

among breeding pairs. Unless pairs find suitable breeding sites, they will not be able to

produce offspring.

To estimate the density of successful breeding pairs given the density of potential breed-

ing pairs, P (Nt), we want a function, h(P ), with the following properties. Here“successful”

means “finding a nest.”

lim
P→∞

h(P ) = δ (4.10)

h(P ) ≤ P for all P ≥ 0 (4.11)

dh

dP
≥ 0 and (4.12)

d2h

dP 2
≤ 0 for all P ≥ 0 (4.13)

where δ in (4.10) represents the density of available nesting sites at the current time. If

the number of pairs is sufficiently large, eventually all available nests will be occupied.

The second property (4.11) is required because the density of pairs finding nests is always

less than or equal to the density of potential breeding pairs. The third property (4.12) is
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Figure 4.2: Normalized Beverton-Holt function

obvious. The last property (4.13) means that the rate of change at which nests are occupied

is decreasing as the density of pairs increases. Suppose there are 30 nests available and 28

pairs are serially formed. For the first pair, it will take a relatively short time to find an

empty site. On the other hand, even though there are enough nesting sites for all pairs, it

will take more time for the last pair to find an unoccupied site.

Veit and Lewis used the normalized Beverton-Holt stock recruitment function, H(P ),

to estimate the density of successful breeding pairs. This function satisfies all properties

(4.10)-(4.13) and the formula for H(P ) is

H[P ] =
P

1 + P
δ

(4.14)

where the parameter δ represents the density of available nesting sites. A typical shape of

this curve with arbitrary parameter δ is given in Figure 4.2.

The Beverton-Holt stock recruitment function depicts density dependent resource com-

petition in which the resource is not shared equally. In this type of competition, each

individual gets some of the resources (e.g. nesting site), or not at all. By substituting the

equation (4.9) into (4.14), Veit and Lewis derived the function which estimates the density
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of offspring produced in year t :

g(Nt; x) =
cN2

t

4
σT1

+ 2Nt + N2
t

δ

(4.15)

where c is the average number of surviving offspring produced per pair.

In their model, the length of breeding period is considered to be spatially uniform.

However, the breeding season lasts longer at lower latitude or altitude regions due to the

warm climate. For example, breeding takes place almost year round in South Florida. The

longer the breeding period, T , the higher the possibility that pairs can produce more than

one clutch per breeding season. Moreover, more offspring are produced by pairs that mated

and found their nest at earlier times during breeding season than the ones mated at a time

close to the end of breeding season. However, the number of clutches a breeding pair can

produce in a finite period will be limited. We extend the Veit and Lewis model by adding

spatial variation in the length of breeding season and allow multiple clutches during one

breeding season. We take into account that both the number of clutches that a breeding pair

can produce and the number of available nests decreases as the time they start producing

offspring gets closer to the end of breeding season.

For example, suppose that a maximum of m clutches are possible per year and the

breeding season at some location x is T (x). Then, on average, it takes 1/m years to produce

a clutch. Therefore, at most k = [mT (x)] clutches can be produced at this location, where

[u] is the greatest integer which does not exceed u. At the end of the first time interval, the

first clutch is produced. By the end of the second time interval, τ = 2/m, the same pairs

can produce the second clutch and the ith clutch will be produced by the end of ith time

interval, τ = i/m for i = 1, 2, · · · , k. At the same time, new pairs are formed during each

time interval and they can produce offspring every 1/m years until the breeding season ends.

To estimate the total number of offspring produced in year t, we need to calculate carefully

how many and in which time interval pairs are formed and start producing offspring within

a breeding season.

Next, we derive our growth function which allows multiple clutches in one breeding
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season. Again, assume that the maximum number of clutches per year is m, and the length

of one breeding season is T (x) (spatially dependent). As described above, the number of

clutches a pair can produce during the breeding length of T (x) is at most k = [mT (x)].

Now, we partition each breeding season into k time intervals of length 1/m i.e.,

[0, T (x)) =
k⋃

i=1

Ii (4.16)

where

Ii = [
i− 1
m

,
i

m
)

for i = 1, 2, · · · , k.

Define:

Nt,i(x) the density of unmated adult birds at the beginning of each time interval Ii at

location x.

Pt,i(x) the density of potential breeding pairs newly formed in time interval Ii at location

x.

Qt,i(x) the density of pairs that nest and produce offspring during time interval Ii at loca-

tion x.

Rt,i(x) the density of pairs that have not found nests by the end of time interval Ii at

location x.

δt,i(x) the density of available nests in time interval Ii at location x.

Ot,i(x) the total number of offspring produced by pairs that started breeding in time interval

Ii at location x.

Ot(x) the total number of offspring produced in year t at location x.

Note Nt,1 = Nt.

First, consider the case i = 1. Since we assume that no pairs are formed at the beginning

of each breeding season, by using the formula (4.9) with T1 = 1/m and Nt(x) = Nt,1(x),
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the number of pairs formed during the first period is given by

Pt,1(x) = P [Nt,1(x)] =
N2

t,1
4m
σ + 2Nt,1

(4.17)

and by using the formula (4.14), the density of pairs that actually produce offspring is

Qt,1(x) = H[Pt,1(x)] =
Pt,1

1 + Pt,1

δt,1

=
N2

t,1

4m
σ + 2Nt,1 +

N2
t,1

δt,1

(4.18)

Since the pairs formed in time interval I1 can have the maximum number of clutches, m,

the total number of offspring by these pairs is

Ot,1(x) = mcQt,1(x) (4.19)

where c is the average number of surviving offspring.

We assume that once they form pairs, the doves remained paired during the entire

breeding season and continue looking for a suitable nest site during next time interval if

they could not find one during the first time interval. Therefore, the density of pairs that

have not found nests is

Rt,1(x) = Pt,1(x)−Qt,1(x). (4.20)

Similarly, in the next time interval I2, more pairs are formed and produce offspring.

However, at the beginning of next period, the number of unmated birds is reduced by twice

the number of pairs formed, and newly formed pairs must compete for nests with the pairs

that are formed earlier but still need to find a nest. Moreover, the density of available nests

is reduced by the number of nests occupied, so we need to update δ in (4.14) after each

time interval. Therefore, the expressions for Nt,2(x), Pt,2(x), Qt,2(x), Rt,2(x) and δt,2 are

Nt,2(x) = Nt,1(x)− 2Pt,1(x) (4.21)

Pt,2(x) = P [Nt,1(x)] (4.22)

Qt,2(x) = H[Pt,2(x) + Rt,1(x)] (4.23)
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Rt,2(x) = Pt,2(x)−Qt,2(x) + Rt,1(x) (4.24)

δt,2(x) = δt,1(x)−Qt,2(x) (4.25)

The pairs that started breeding during the second time interval can produce at most m− 1

clutches before the breeding season ends. The number of clutches produced by these pairs

is one less than that of the previous group of pairs, therefore

Ot,2(x) = (m− 1)cQt,2(x) (4.26)

In general, the formulas for Nt,i(x), Pt,i+1(x), Qt,i+1(x), Rt,i+1(x), δt,i+1(x) and Ot,i+1(x) for

1 ≤ i ≤ k − 1 are as follows.

Nt,i+1(x) = Nt,i(x)− 2Pt,i(x) (4.27)

Pt,i+1(x) = P [Nt,i+1(x)] (4.28)

Qt,i+1(x) = H[Pt,i+1(x) + Rt,i(x)] (4.29)

Rt,i+1(x) = Pt,i+1(x)−Qt,i+1(x) + Rt,i(x) (4.30)

δt,i+1(x) = δt,i(x)−Qt,i(x) (4.31)

Ot,i+1(x) = (k − i)cQt,i+1(x) (4.32)

In order to calculate the total number of offspring produced during the breeding season in

year t, we need to sum over Ot,i for i = 1, · · · , k, i.e.,

Ot(x) =
k∑

i=1

Ot,i(x) (4.33)

Our growth function, a modified version of the growth function of Veit and Lewis, is

spatially dependent:

f(Nt(x)) = sNt(x) + Ot(x). (4.34)
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The next step is to choose an appropriate dispersal kernel in our model (4.1).

4.6 Dispersal Kernel

In this section, we explain how we selected our dispersal kernel, k(x). We have data on the

dispersal distance of the collared doves (banding data) from North America provided by

USGS Pawtuxent Wildlife Research Center Bird Banding Lab. However, out of 117 birds

that were caught and banded between 1994-2004, only seven doves were recovered, which

is approximately a 6% recovery rate. Moreover, three of the captured doves did not move

from their initial banding site. Therefore, we decided to use the European banding data

(Table 4.1[29]) to find the best fitting kernel using the least-squares method. We are aware

that using European data for the dispersal in U.S. is a source of error. Table 4.1 shows

the number of ring recoveries in various distance classes from the place of marking for the

collared dove in Europe. Although there is evidence that once offspring disperse from their

parent’s nest, they tend to settle down [50], for simplicity, we assume that doves disperse

regardless of their ages. In Table 4.1, the number of ring recoveries is given for different

ranges of dispersal, but we used the lower bound of the range and corresponding number of

ring recoveries to find the best fitting curves. For example, we assume that 38 doves out of

72 did not disperse at all. Since there is evidence of long dispersal, we used a distribution

kernel with a fat-tail relative to a normal distribution. We also consider some combination

of two distributions to produce spread patterns to fit the data.

We found the best fitting kernel among those kernels in Table 4.2. Using the banding

data from Table 4.1, we estimated the parameters in the kernels.

The best parameter values with adjusted R2 (coefficient of determination) are given in

Table 4.3 and the corresponding curves with the data are shown in Figure 4.3 and Figure

4.4.

We chose the dispersal kernel with the highest R2 value, i.e., a combination of two

kernels, namely, Laplace and normal distributions, for our model and our simulation.
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Table 4.1: Number of ring recoveries for the Eurasian collared dove

Class boundary(km) Number of recoveries
0-50 38

50-100 8
100-150 5
150-200 3
200-250 6
250-300 1
400-450 1
450-500 1
550-600 1
600-650 2
total 72

Source: R. Hengeveld. Dynamics of Biological Invasions,1989

Table 4.2: Kernels used to estimate k(x)

Function Formula Parameters
Bivariate Student t K(x) = a

πb(1+|x|2/b)(a+1)
a, b

Cauchy K(x) = ab
b2+|x|2 a, b

Laplace(Double-Exponential) K(x) = abe−a|x| a, b

Normal(Gaussian) f(x) = ae−|
x
b
|2 a, b

Normal 1 + Normal 2 (combination) K(x) = a1e
−| x

b1
|2 + a2e

−| x
b2
|2

a1, a2, b1, b2

Laplace 1 + Laplace 2 (combination) K(x) = a1b1e
−a1|x| + a2b2e

−a2|x| a1, a2, b1, b2

Laplace + Normal K(x) = a1b1e
−a1|x| + a2e

−| x
b2
|2

a1, a2, b1, b2
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Table 4.3: Best fitting curves for dispersal kernels

Function Parameters Adjusted R2

Bivariate Student t a = 0.1815 0.9213
b = 0.1098

Cauchy a = 0.1585 0.9298
b = 0.3014

Laplace(Double-Exponential) a = 2.583, 0.9112
b = 0.2022

Normal(Gaussian) a = 0.5273 0.8907
b = 0.4039

Normal 1 + Normal 2 (combination) a1 = 0.08124 0.9708
a2 = 0.4365
b1 = 3.355
b2 = 0.0373

Laplace 1 + Laplace 2 (combination) a1 = −0.0002991 0.7897
a2 = 1.291
b1 = −20.74
b2 = 0.344

Laplace + Normal (combination) a1 = 0.3199 0.975
a2 = 0.4252
b1 = 0.3205
b2 = 0.2943
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Figure 4.3: Dispersal kernel using a single distribution
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Figure 4.4: Dispersal kernel using two distributions
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Since the dispersal kernel must satisfy the condition (4.5), our kernel used in the simu-

lation is given by

k(x, y) = k(|x− y|) =
1
A

K(|x− y|)

where A =
∫ ∞

−∞
K(|x− y|)dy and

K(|x− y|) = a1b1e
−a1|x−y| + a2e

−(x−y
b2

)2 with parameter values given in Table 4.3.
(4.35)

4.7 Breeding Season Length Function

In order to estimate the breeding season length, T (x), in our model, we use the data set

9712C (DSI-9712C) provided by National Climatic Data Center (NCDC). This is a collection

of data on probability levels for freeze dates and growing season lengths. The computations

of these statistics was performed for 4,346 weather stations in the United States (including

Alaska and Hawaii) for the 1971-2000 period. The number of frost-free days are computed

at different temperature thresholds with specified probability levels (10, 50 and 90 percent).

For example, suppose that at the 0.1 probability level, the frost-free days is computed to

be 250 days at the 32-degree Fahrenheit threshold. This means that the chance of having a

longer frost-free period than 250 days at this location is only ten percent. Since the length

of the breeding period is strongly influenced by the availability of resources such as food, it

is reasonable that the breeding season length is proportional to number of frost-free days.

Therefore, we used these data to estimate the breeding season length function, T (x), in our

model. We used the number of frost-free days computed at the 32-degree threshold with

the 0.1 probability level. First we converted the computed number of frost-free days into

years by dividing the number by 365. For some locations, the computed number of frost-free

days were not specified but it is only indicated that they are greater than 365 days. Since

the maximum breeding season length is one (i.e., breeding takes place year-round) in our

model, we set the breeding length to be 1 for such cases.

The number of frost-free days is likely to be affected by many factors including latitude,

elevation, cloud cover, humidity and the distance to bodies of large water (rivers, lakes,
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oceans). Across the US, we selected five vertical geographic zones with width 1.75 degrees

longitude (approximately 168.73 km) as shown in Table 4.4 and Figure 4.5. We chose the

southern most weather station located at 24◦33′N and 24◦33′W to be our reference location.

This station is the southern most of all weather stations listed in the data set 9712C (DSI-

9712C). To estimate the breeding length function in one dimension, we calculated the north-

south distance between each station and the reference latitudinal line at 24◦33′N using the

Great Circle formula. Note that this north-south distance is not the distance between two

weather stations.

Figures 4.6 through 4.10 show the change of the number of frost-free days (in years)

and the elevation level as we move toward north. In zones 1, 2 and 3, there is negative

correlation between the number of frost-free days and the distance. For zone 2 and zone

3, the elevational change across the domain is moderate, ranging from 0 to 0.75km (Figure

4.7 and Figure 4.8) On the other hand, for zone 4 and zone 5, the effect of the change in

elevation due to mountain ranges is strong (Figure 4.9 and Figure 4.10). Moreover, since the

stations in zone 5 are located very close to the Pacific ocean, the number of frost-free days

is significantly greater compared to other stations located at similar latitudinal distance but

further inland from the corresponding coastline.

For our one spatial dimension model, we consider the collared dove advances toward

north along the north-south latitudinal straight path from the origin of the spread in South

Florida. Moreover, as more points are available in zone 1, we used the frost-free days data

in zone 1 to estimate the breeding length function, T (x). We use the MATLAB curve fitting

toolbox to find the best fit curve using the least-squares method. The functions used to

estimate our T (x) and the results are shown in Table 4.5. We chose the exponential function

Table 4.4: Zone description for the frost-free days data

Zone Longitude(center) in degrees Number of data points
1 -81.5 179
2 -90.5 198
3 -98.25 220
4 -110 119
5 -121 144
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Figure 4.5: Zone map for the frost-free days data
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Figure 4.6: Frost-free days and elevation for zone 1
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Figure 4.7: Frost-free days and elevation for zone 2
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Figure 4.8: Frost-free days and elevation for zone 3
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Figure 4.9: Frost-free days and elevation for zone 4
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Figure 4.10: Frost-free days and elevation for zone 5
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Table 4.5: Best fit results for T (x) in zone 1

Function Formula Parameters Adjusted-R2

Rational 1 T (x) = p1
x+q1 p1 = 14.61 0.8729

q1 = 11.64
Rational 2 T (x) = p1

x2+q1x+q2
p1 = 343.1 0.8998
q1 = 7.664
q2 = 311.3

Exponential 1 T (x) = aebx a = 1.17 0.8929
b = −0.05222

Exponential 2 T (x) = aebx + c a = 01.105 0.8926
b = 0.05829
c = 0.07427

with least number of parameters (exponential 1 in Table 4.5) for our model.(Note the R2

values of the two exponential functions are close.) However, for small x, the function value

becomes larger than 1, which is the upper limit of breeding length function T (x), so we

truncated the function where the value exceeds 1. The growth function T (x) we used in

our simulation is:

T (x) = min(1.17e−0.05222x, 1) for x ≥ 0 (4.36)

Figure 4.11 shows the curve given by formula (4.36) along with the data points (zone 1).

4.8 Model Parameters

To determine empirical values for the demographic parameters of the model we surveyed

the literature on collared dove biology and natural history. Most of the information on

collared dove reproduction is from Great Britain and central Europe (Poland, Germany,

Hungary, and the Netherlands). Differences in climate and growing season length between

Europe and the southeastern US are likely to influence the values of model parameters.

These differences remain a source of error for our model. The survival rates are different for

adult and juvenile doves. For juveniles, it ranges from 25 to 50% and for adults, it ranges

from 45 to 77% [54]. Since we do not have age structure in our model, for survival rate, s,

we used the average of average rates for adults (birds > 1 year old) and for juveniles (birds

< 1 year old), 62.7%, and 34.2%, respectively [54]. Likewise a range of values is reported for
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Figure 4.11: Best fit T (x) in zone 1
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Table 4.6: Parameters of the model

Symbol Used in simulation
δ 1.5
σ 18.6(estimated using the Christmas bird count (CBC) data
c 0.558 (2 eggs/nest times 27.9 % survival rate)
s 0.4845
m 6

clutch size and reproductive success. However, the number of birds fledged is less than the

number of eggs. Nest success rate, defined as percentage of chicks fledged from eggs laid,

ranges from 29% in Manchester, England, 15.6% in India in the dry period, to 39% in India

in the monsoon period [54]. For our model, we used the average of these three numbers

(approximately 27.9%). The number of eggs laid is approximately 1-2 per nest. We assumed

that the number of eggs laid is two per nest per clutch and multiplied by the survival rate

of 27.9% to get our parameter value of c, the average number of offspring surviving to

fledging. The reported number of clutches per year is 3-6 for central European populations

[12]. The number of broods may be greater in warmer climates and longer growing seasons.

We defined the parameter m in our model to be the maximum number of clutches per year

and used 6, the largest number reported. For US data, we used the number of breeding pairs

observed as an estimate for the parameter, δ, the maximum density of nest sites available.

However, the number from south eastern United States ranges from 0.08-5.70 pairs per

square kilometer (median = 0.31). The corresponding value from Europe reported ranges

from 0.003-0.17 pairs per square kilometer [12]. We used 1.5 for our δ, which was the value

used by Veit and Lewis in their analysis [66]. The parameter values used in our simulation

are listed in Table 4.6.

4.9 Bird Data

We used abundance data for the Eurasian collared dove collected by the National Audubon

Society (NAS), the United States Geological Survey (USGS) and the Canadian Wildlife

Service (CWS). Specifically, we used data from the NAS Christmas bird count (CBC) and

the USGS/CWS North American breeding bird survey (BBS). The CBC and BBS generate
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Figure 4.12: Map for CBC data

annual abundance records at numerous survey locations for all bird species occurring in

North America. We used CBC records from 1971−2004, and BBS records from 1966−2004

which includes the period of introduction and invasion for the Eurasian collared dove. The

Eurasian collared dove appears in BBS records beginning in 1986 and in CBC records

beginning in 1987 (see Figure 4.12). The CBC and BBS data represent the number of birds

observed in one or more circular survey sites. A CBC survey site represents a single circle of

12km radius and is censused by one or more observers over a single 24 hour period sometime

within a two week window around Christmas [3]. The BBS survey is performed along a

39.2km linear route, with 50 separate survey circles located every 0.80km along each route

[16]. Each BBS site is surveyed during the peak of the breeding season (May-July depending

on location). The diameter of each BBS survey circle is approximately 0.80km, depending

on topography and vegetation cover. Thus the BBS data represent a linear transect 40km

long and 0.80km wide. During a BBS survey, each circle along the route is censused for a

3-minute period. The CBC and BBS data sets provide raw abundance data and the CBC

data also includes density data (birds per hour and birds per mile). We converted the CBC

birds per mile data to birds per km. To calculate the corresponding density (birds per km)

in BBS data, we divided the total number of birds seen along the route by the length of the
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sum of the diameters of the survey circles (40km).

4.10 Numerical Simulation - 1 Spatial Dimension Model

In our analysis, we used two different bird data sets (BBS and CBC) to estimate the bird

density. Since we estimated our breeding season length function, T (x) from the frost-free

days data in zone 1 (see Table 4.4), we only used the CBC and BBS data collected from

the sites located in zone 1. Table 4.7 shows the number of CBC and BBS sites in zone 1

and also the number of sites found within 10 miles of a weather station located in zone 1.

If we restricted the CBC and BBS sites located near weather stations in zone 1, the error

due to the variation in the breeding length might be small. However, there are only a small

number of data points available and this is also a possible cause of error. Therefore, we

included all CBC and BBS sites located in zone 1 without any restriction on the location

with respect to weather stations in zone 1.

With these bird data, we are almost ready to run a simulation with our model. However,

we needed to estimate the parameter σ, per capita rate of pair formation. The following is

the outline of the steps we used to estimate the parameter and to compare our model with

one of the bird data sets (BBS) and make a prediction of the spread of the doves.

Step 1 Estimate the wave front distance from the CBC data .

Step 2 Calculate the wave front distances from the simulation with different values of σ.

Step 3 Compare the sum of squared error between distances in Steps 1 and 2.

Step 4 Run the simulation with the best σ found in Step 3 and estimate the wave front

distances.

Step 5 Estimate the wave front distance from the BBS data.

Step 6 Compare the results in Steps 4 and 5.

In Step 1, we used the CBC data to estimate the wave front distance. Figures 4.13,

4.14, 4.15 and 4.16 show the CBC bird density (birds per km) from 1989 to 2004. For each
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Table 4.7: Number of CBC and BBS data points

Year CBC sites in
Zone 1

CBC sites
near weather
stations

BBS sites in
Zone 1

BBS sites
near weather
stations

1988 1 1
1989 2 1 1
1990 7 4 1
1991 8 6 1
1992 11 8 2
1993 13 9 4 1
1994 16 11 7 2
1995 18 14 8 3
1996 20 15 14 4
1997 19 16 16 4
1998 25 18 17 3
1999 29 19 23 5
2000 31 20 23 5
2001 32 21 31 8
2002 36 22 28 9
2003 35 22 32 10
2004 37 21 40 14
Total 390 227 249 68
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Figure 4.13: Bird density for year 1989-1992 (CBC)
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Figure 4.14: Bird density for year 1993-1996 (CBC)
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Figure 4.15: Bird density for year 1997-2000 (CBC)
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Figure 4.16: Bird density for year 2001-2004 (CBC)

127



year, we chose the CBC data point located furthest from the reference point. For example,

the furthest data point is approximately at 650km for year 1992 in Figure 4.13. Then,

we estimated the wave front distance for year 1992 is to be 650km. Note the distance is a

south-north distance measured from our the reference latitudinal line at 24◦33′N . In Figure

4.17 the CBC wave front distance is plotted each year from year 1989 (t = 0) to 2004 (t =

15). We can see that the collared dove reaches approximately 1000 km by the year 1999 (t

= 10) from the Figure 4.17. Note we only used the data from year 1990 to 2004 (15 data

points) for our estimate of σ described in the next step.

In Step 2, we ran the simulation with different values of σ starting with the initial

population calculated by applying the kernel to the graph given in Figure 4.18. The other

parameter values are given in Table 4.6. We calculated the bird density at each location

for every year. We used the threshold density value of 0.03 to determine the wave front

distance. This means the point where the density (birds per km) falls below 0.03 is the

wave front distance for that year.

In Step 3, we compare the results obtained in Steps 1 and 2 and calculated the sum of

the squared error. We determined the value of σ which minimized the error. We found the

best value of σ is 18.6 and used this σ to run our simulation.

In Step 4, we ran the simulation with our growth function (4.15), dispersal kernel (4.35),

and the breeding season length function estimated using the frost-free days data in zone 1

(4.36). In our program, we used 215 grid points for our spatial domain of [0, 35](corresponds

to the one dimensional domain from 0 to 3500km). To compute the integral in our model

efficiently, we used the Fast Fourier Transform (FFT) [4]. Given initial population density,

the density curve is plotted each year after the growth stage. In other words, if we start with

the initial population N0, the first plot represents the bird density after the birds disperse

and grow.

We calculated the bird density for 45 years starting with the same initial density given

in Figure 4.18. The bird density curve is plotted each year (see Figure 4.19). Note that

each bird density was plotted after the growth period, so each curve is not smooth. Because

the number of clutches is discrete, i.e., it takes on a nonnegative integer, there is a jump in
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Figure 4.17: Wave front location (CBC)
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Figure 4.19: Simulation result for population density (zone 1)
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the number of offspring at the border where the number of clutches changes. For example,

there is a big step at the location approximately 300km from the origin. Up to this point,

the breeding season length is long enough to produce 6 clutches. Just after this point, the

breeding season length is a little short to produce 6 clutches but can produce at most 5

clutches.

The wave front distance generated in our simulation for 45 years with σ = 18.6 is given

in Figure 4.20 with t = 1 corresponding to the year 1990, using the threshold value 0.03

again.

In Step 5, we estimated the wave front distance using the Breeding Bird Survey data

(BBS). Figures 4.21, 4.22, 4.23 and 4.24 show the bird density (birds per km) from year

1989 to 2004. The BBS wave front distance was calculated in the same way as CBC data

(see Step 1) and the wave front distance from year 1989 (t = 0) to 2004 (t = 15) is shown

in Figure 4.25.

In the last step, we compared our simulated estimate of the Eurasian collared dove along

a south to north corridor with the BBS data. Figure 4.26 shows the wave front location

estimated from the BBS data and the corresponding wave front location generated using
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Figure 4.20: Wave front distance (zone 1)
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Figure 4.21: Bird density for year 1989-1992 (BBS)
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Figure 4.22: Bird density for year 1993-1996 (BBS)
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Figure 4.23: Bird density for year 1997-2000 (BBS)
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Figure 4.24: Bird density for year 2001-2004 (BBS)
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Figure 4.25: Wave front location (BBS)
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(a) Wave front location (BBS)
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Figure 4.26: Wave front locations from BBS data and simulation result.
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our model.

4.11 Conclusions

We constructed a model for the spread of Eurasian collared dove in the United States. Our

novel contribution is the use of a growth function explicitly dependent on the habitat. Our

model takes into account the fact that the breeding season length is not constant. We used

the data on the number of frost free days to estimate the length of the breeding season.

The number of frost free days is affected by not only the latitude but also the altitude,

humidity and other factors. Generally, the number of frost free days gets smaller as you

move north. The growth function in our model includes the difference in the maximum

number of clutches depending on the length of breeding season.

When we compare our simulation result with the BBS data in terms of the wave front

distance, there is a similarity in the pattern of the change in the distance. At the beginning,

the rate of change is slow but it gradually increases. Since we have only 15 points (corre-

sponds to the time interval of 15 years) of data from the BBS bird data, our prediction and

the data did not match very well. Specifically, our simulation results provide the faster rate

of spread at the beginning than the data indicate. According to the BBS data, the doves do

not seem to spread much during the first five years. It is possible that some environmental

differences, such as habitat quality affected the spread. Doves might stay near farms rather

than disperses to a less suitable habitat. Since we don’t know the exact initial population

density, this error might have caused the difference between our result and the BBS data.

Also, error in the estimation of the parameter σ might have caused a difference. When we

determined the best value of σ, we used the threshold value 0.03 to determine the wave

front distance. At a different threshold level, the error between our simulated wave front

distance and the CBC data might be minimized at different value of σ. However, for the

last 8 years, our result seems to be a good estimate.

From the simulation result shown in Figure 4.20, the spread of the collared dove gradu-

ally increases and then again starts slowing down. This is because the doves cannot produce

enough offspring to sustain the population when the breeding season length is too short. In
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Figure 4.20, the limit of the wave front distance is approximately 2630km from the origin.

This distance corresponds to approximately 48◦N latitudinal line (the US-Canadian border

in the North West America).

In this dissertation, we presented a model in one spatial dimension, which represents

the spread of the doves to north. We plan to extend our model to two spatial dimen-

sions. For the dispersal kernel, we may assume the dispersal of doves is radially symmetric.

Also, we can estimate the breeding season length, T (x, y), where x and y represent the

north-south distance and east-west distance from the same reference point used in our one

dimension model in a similar manner using all the data points of frost-free days which are

well distributed across the states.

Also, we can add an age structure (juveniles and adults) to take into account the differ-

ences in the rate of survival, s, and the dispersal behavior.
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