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Abstract 
 

A survey of gastro-intestinal parasites was conducted on faecal samples collected from 

379 feral cats and 851 native fauna from 16 locations throughout Western Australia.  

The prevalence of each parasite species detected varied depending upon the sampling 

location.  Common helminth parasites detected in feral cats included Ancylostoma spp. 

(29.8%), Oncicola pomatostomi (25.6%), Spirometra erinaceieuropaei (14%), Taenia 

taeniaeformis (4.7%), Physaloptera praeputialis (3.7%) and Toxocara cati (2.6%).  The 

most common protozoan parasites detected in feral cats were Isospora rivolta (16.9%) 

and I. felis (4.5%).  The native mammals were predominately infected with unidentified 

nematodes of the order Strongylida (59.1%), with members of the orders Rhabditida, 

Spirurida and Oxyurida also common.  Oxyuroid nematodes were most common in the 

rodents (47.9%) and western grey kangaroos (27.8%).  Several species of Eimeria were 

detected in the marsupials whilst unidentified species of Entamoeba and coccidia were 

common in most of the native fauna. 

 

Primers anchored in the first and second internal transcribed spacers (ITS1 and ITS2) of 

the ribosomal DNA (rDNA) were used to develop a polymerase chain reaction-linked 

restriction fragment length polymorphism (PCR-RFLP) technique to differentiate the 

species of Ancylostoma detected in feral cats.  Amplification of the ITS+ region (ITS1, 

ITS2 and 5.8S gene) followed by digestion with the endonuclease RsaI produced 

characteristic patterns for A. tubaeforme, A. ceylanicum and A. caninum, which were 

detected in 26.6%, 4.7% and 0% of feral cats respectively. 

 

Giardia was detected in a cat, dingo, quenda and two native rodents.  Sequence analysis 

at the small subunit rDNA gene (SSU-rDNA) identified the cat and dingo as harbouring 
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G. duodenalis infections belonging to the genetic assemblages A and D respectively.  

Subsequent analysis of the SSU-rDNA and elongation factor 1 alpha (ef1α) identified a 

novel species of Giardia occurring in the quenda.  Attempts to genetically characterise 

the Giardia in the two native rodents were unsuccessful. 

 

Serological detection of Toxoplasma gondii was compared to a one tube hemi-nested 

PCR protocol to evaluate its sensitivity.  PCR was comparable to serology in detecting 

T. gondii infections, although PCR was a much more definitive and robust technique 

than serology for large numbers of samples.  Amplification of T. gondii DNA detected 

infections in 4.9% of feral cats and 6.5% of native mammals.  The distribution of T. 

gondii does not appear to be restricted by environmental factors, which implies that 

vertical transmission is important for the persistence of T. gondii infections in Western 

Australia. 

 

These results demonstrate that cats carry a wide range of parasitic organisms, many of 

which may influence the survival and reproduction of native mammals.  As such, the 

large-scale conservation and reintroduction of native fauna in Western Australia must 

not disregard the potential influence parasites can have on these populations. 
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Chapter 1 – General Introduction 

 

1.1 INTRODUCED ANIMALS IN AUSTRALIA 

Humans have the innate ability to alter their surrounding habitat through a variety of 

ways, not least of which includes the introduction of non-native organisms to new 

environments.  This anthropogenic form of invasion, also known as “biological 

pollution”, is increasing global biogeographical homogeneity, resulting in a global loss 

of biodiversity (Daszak et al., 2000).  In Australia this process of homogenisation is 

thought to have first begun when dingoes (Canis familiaris dingo) were imported from 

South East Asia approximately 4000 years ago (Low, 1999; Breckwoldt, 1988). 

 

Since European colonisation of the Australian continent a veritable flood of exotic 

organisms has been introduced to Australia and many of our offshore islands.  Each of 

these introduced organisms present their own unique suite of problems for the 

Australian environment, and have managed to establish a feral population in some part 

or parts of Australia (Freeland, 1994).  However, only one introduced animal is to be 

found throughout the entire continent of Australia including Tasmania and most of our 

off shore islands.  That animal is the cat (Felis catus). 

 

 

1.2 THE CAT 

There are three categories assigned to describe the structure of the cat population in 

Australia: 
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Domestic - refers to pet or house cats that are housed, fed and generally cared for by 

human “owners”.  During periods of daytime or nocturnal freedom however, these pets, 

though well fed, still engage in predatory capture, play and killing behaviours. 

 

Stray - refers to street, alley, farm or semi dependent cats that may or may not receive 

some food directly from humans, however they do so indirectly by scavenging scraps 

from rubbish bins, dump sites or from slaughter remains on farms.  No attempt is made 

to house these animals yet they may inhabit man made structures such as farm 

buildings, factories, wharves or abandoned vehicles. 

 

Feral - refers to true feral, bush or wild cats that have no reliance whatsoever on human 

contact for their survival and obtain all their food and shelter requirements from the 

natural environment.  They may however, have indirect contact with human activity 

through the predation or scavenging of livestock and refuse. 

 

These three categories are not well defined nor easily identifiable and individuals may 

vary their status due to factors such as the availability of food, group pressure and the 

migration of humans (Izawa and Doi, 1993; Izawa et al., 1982).  Visual differentiation 

between the categories cannot be easily accomplished.  In general, true feral cats in 

good condition show greater muscle development around the head, neck and shoulders, 

giving the animal a more robust appearance.  However, this is a generalisation and 

exceptions to this rule are common. 
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1.2.1 The Feline Advantage 

Cats differ from canids in that they have the added advantage of an arboreal dimension, 

with retractable claws aiding their ability to climb as well as run, jump, dig and stalk.  

Unlike canids, cats also have a well developed tapetum lucidum in their eyes which 

gives cats excellent night vision (May and Norton, 1996; Jones, 1988).  A unique aspect 

of the cat is that they do not require water where live prey is readily available 

(Newsome, 1991; Jones, 1988).  Adequate moisture is provided by blood and other 

bodily fluids of prey species caught, with the cat able to exist in almost total isolation of 

water, with perhaps the exception of females suckling young and individuals in poor 

condition (Cross, 1990).  Cats also appear to be much more selective in their choice of 

prey species than canids and are generally not scavengers unless adverse environmental 

conditions dictate such behaviour (Read and Bowen, 2001; Jones and Coman, 1981; 

Bayly, 1978). 

 

1.2.2 Feline Social Structure 

The feral cat has been most commonly described as a solitary species, with non-

overlapping female ranges included within the larger ranges of one or more males 

(Newsome, 1991; Brothers et al., 1985; Jones and Coman, 1982).  This exclusively 

solitary social system is true to most felids and is attributed to their stealth and ambush 

hunting strategy (Izawa and Doi, 1993).  However, the lion (Panthera leo), cheetah 

(Acinonyx jubatus) and the domestic cat are the only members of the Felidae that exhibit 

group formation (Denny et al., 2002; Izawa and Doi, 1993). 

 

Worldwide, cat densities vary from less than one to more than 2000 cats km-2 and 

appear to be dependant on food supply (Liberg and Sandell, 1994).  However, a rich 
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food supply does not necessarily decrease the size of a cat’s home range (Yamane et al., 

1994; Dards, 1978).  Whilst these home ranges are maintained, they often overlap with 

those of other cats and are generally not defended, rather the sharing of an area is 

temporal with different cats utilising the same area at different times (Dards, 1983; 

Izawa et al., 1982; Laundre, 1977; Leyhausen, 1965). 

 

Studies of groups of cats exploiting resource-rich sites (e.g. rubbish tips) have suggested 

that rather than being ad hoc collections of animals, they are structured and functional 

populations of group-living cats (Denny et al., 2002; Mirmovitch, 1995; Yamane et al., 

1994; Dards, 1983).  Rubbish tips are a ubiquitous feature throughout much of rural 

Australia and are associated with most towns, mining sites, tourist resorts and 

homesteads, and are known to support high densities of cats (Denny et al., 2002; Wilson 

et al., 1994). 

 

1.2.3 The Feral Cat Diet 

The feral cat’s diet is as wide and varied as the habitats it has colonised.  Feral cats are 

known to prey upon 186 species of native bird, 64 species of native mammal (in 

addition to introduced mammals), 87 species of reptiles, 10 species of amphibians and 

numerous invertebrates (Barratt, 1997; Paltridge et al., 1997; Martin et al., 1996; Paton, 

1993; Jones and Coman, 1981; Bayly, 1978).  Along with the introduced red fox, feral 

cats are at least partially responsible for the extinction and decline of many species of 

Australian wildlife (Dickman, 1996a; Gibson et al., 1994; Morton, 1990; Burbidge and 

McKenzie, 1989).  Ground nesting birds on islands and small to medium sized 

mammals have been particularly vulnerable to these exotic predators (Burbidge and 

McKenzie, 1989; Brothers, 1984; Taylor, 1979). 
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Recent studies on the impact of feral cats on native fauna suggest that they may play a 

far more destructive role than has previously been assumed and indeed appear to be a 

considerably greater menace to native fauna than the fox (Risbey et al., 2000; Risbey et 

al., 1999; Christensen and Burrows, 1994; Gibson et al., 1994).  Studies on feral cats 

and foxes in arid environments show many similarities in their respective diets (Read 

and Bowen, 2001; Catling, 1988), however the fox is typically an opportunist relying 

predominantly on rabbits and carrion (Risbey et al., 1999; Bayly, 1978; Croft and Hone, 

1978; Coman, 1973a).  In contrast, the feral cat appears to be a selective feeder that can 

readily adapt to different prey items (Read and Bowen, 2001; Risbey et al., 1999; 

Paltridge et al., 1997; Martin et al., 1996; Catling, 1988; Triggs et al., 1984; Bayly, 

1978, 1976).  The ability of the cat to effectively switch prey species depending on their 

relative abundance allows it to avoid population declines in unfavourable seasons, 

unlike the fox (Read and Bowen, 2001). 

 

 

1.3 DECLINE OF NATIVE SPECIES IN AUSTRALIA 

Australian native species have accounted for 50% of all the mammal species that have 

become extinct worldwide (Short and Smith, 1994).  The majority of these extinctions 

and declines have come from two taxonomic groups, the marsupials and the rodents 

(Smith and Quin, 1996; Short and Smith, 1994), however not all species in these two 

taxonomic groups appear to be as equally vulnerable to decline or extinction.  The most 

affected species fall into the weight range of 35 g to 5500 g; denoted as being the 

“critical weight range” by Burbidge and McKenzie (1989).  The two areas of Australia 

most affected by these extinctions are the southern arid zone and the wheat belt of 
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Western Australia (Short and Smith, 1994).  In fact, Australian arid zone mammals have 

suffered extinctions and contractions of range to a far greater degree than any other 

vertebrate group in Australia (Morton, 1990). 

 

A potential explanation may have its basis in the long biogeographical isolation of the 

Australian land mass and the resultant evolution of its diverse and different fauna, 

unusually vulnerable to whatever the cause(s) of extinction may be (Freeland, 1994).  

Australia’s native fauna has been subjected to a series of significant ecological 

disturbances over the past 200 plus years of European settlement including: hunting; 

habitat clearing and fragmentation; grazing by introduced livestock; altered fire 

regimes; as well as increased predation from introduced foxes and cats (Smith and Quin, 

1996; Short and Smith, 1994; Morton, 1990; Lunney and Leary, 1988).  Each of these 

disturbances has had varying levels of impact on the native fauna, however more 

recently disease has been considered as a potential factor in the decline and extinction of 

the Australian native fauna. 

 

 

1.4 PARASITES AND DISEASE 

1.4.1 Pathogens and Food Webs 

There are three potentially density dependent factors regulating populations and food 

webs: nutrient limitation; predators; and parasites (Freeland, 1994).  Of these three 

factors it is the parasites that have the greatest capacity for stabilising natural 

communities (Freeland, 1994; Freeland and Boulton, 1992).  Indeed, pathogens have 

been the dominant selective forces in human populations for the last 10,000 years and 

are still the main cause of the dramatic differences of survivorship curves in both 
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developed and developing countries today (May, 1988; Bradley, 1974).  Because of 

their profound influence on individual fitness, parasites are a major evolutionary force 

and an important factor in the maintenance of biodiversity (Gulland, 1995; May, 1988; 

Scott, 1988).  The consequences of parasites may well be as important at the immediate 

level of the individual as at the level of the population (Lyles and Dobson, 1993), whilst 

the effects of a parasite on one species may also have an impact on other species via 

direct or indirect interactions (Cunningham, 1996). 

 

This complexity of interaction led to the notion that the stability of nature was in some 

way related to the species-richness of communities; the more complex the system, the 

greater the stability (Freeland, 1994).  We now know that the reverse of this is true and 

that the simpler the system the more likely it is to be able to persist without loss of 

species (Freeland, 1994).  However, complex communities such as the species-rich 

rainforests and coral reefs do exist and appear to exhibit a relatively high level of 

stability.  If these systems are to be preserved for posterity, it is important that our 

understanding of their population dynamics does not disregard the involvement of 

parasites as a potential regulatory force. 

 

The large number of parasite species in natural food webs and the existence of parasitic 

life cycles that link host species of different trophic levels indicates their importance as 

agents of community structure and stability (Daszak et al., 2000; Freeland, 1994).  

Indeed, Freeland and Boulton (1992) working with experimentally constructed food 

webs showed that the addition of parasites to these systems resulted in higher levels of 

stability, indicating a greater capacity for them to recover from perturbation.  It has also 

been demonstrated that the removal of parasites from natural systems may generate 
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instability (loss of species), and increase the potential for alien parasites to disrupt 

communities where they do not have co-evolved relationships with their hosts (Freeland 

and Boulton, 1992). 

 

1.4.2 Impact of Parasites on Populations 

The impact of parasites on the survival, reproduction or dispersal of host individuals 

will depend upon the virulence of the parasite, the infective dose and the resistance of 

the host to infection (Gulland, 1995; Anderson and May, 1978).  These parameters can 

be modified by a number of factors such as malnutrition, overcrowding, stress and 

multiple parasitism that complicate the dynamics of the host-parasite interaction 

(Gulland, 1995).  Parasites may also indirectly affect the survival of the host by 

increasing their susceptibility to predation or by reducing their competitive fitness 

(Webster, 2001; Berdoy et al., 1995; Scott, 1988). 

 

Parasites that influence survival, reproduction, or dispersal of the host may also 

influence the genetic structure of the local host population (Scott, 1988).  Conservation 

biologists hypothesize that endangered species are especially vulnerable to infectious 

disease due to their low numbers leading to reduced genetic diversity and a reduced 

ability of the host to respond to pathogens in an evolutionary sense (Lyles and Dobson, 

1993; O'Brien and Evermann, 1988).  A lack of genetic variability in a population 

significantly improves the odds of an infectious disease causing devastating effects, 

because when it overcomes one individual defence system it more likely than not will 

overcome the others in a genetically uniform population (O'Brien and Evermann, 1988; 

Ralls et al., 1979).  This is exemplified by the high susceptibility and subsequent 

mortality rates of cheetahs to feline infectious peritonitis, due to their lack of genetic 
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variability resulting from a severe population bottleneck in the cheetah’s recent 

evolutionary history (O'Brien et al., 1985; O'Brien et al., 1983). 

 

1.4.3 Impact of Introduced Pathogens 

Transmission of pathogens by an introduced species to susceptible natives can have a 

more profound impact on the native species than any direct impact of the introduced 

species itself (Freeland, 1994).  Well known examples of the devastating impact 

introduced disease can have on native fauna include the decimation of the native 

lowland bird fauna of Hawaii by avian malaria (van Riper and van Riper, 1986), the 

impact of air-sac mite on Australia’s Gouldian finch (Tidemann et al., 1992) and the 

virus mediated relationship between native red squirrel and introduced grey squirrel in 

the United Kingdom (Vizoso, 1968).  Recently, the first definitively proven example of 

extinction by infection was reported and involved the extirpation of the captive remnant 

population of the Polynesian tree snail (Partula turgida) by a microsporidian parasite 

(Cunningham and Daszak, 1998). 

 

Host population size has a profound effect on the dynamics of a pathogen as every 

parasite requires a minimum density of hosts whereby it can maintain itself, known as 

the threshold population size (HT) (Lyles and Dobson, 1993; Dobson and May, 1986; 

Bartlett, 1960).  If the host population exceeds HT, the parasite is able to maintain itself 

within the population (Dobson and May, 1986).  This is exemplified by the emergence 

of brucellosis in bison in the Yellowstone National Park, which occurs whenever the 

herd size exceeds approximately 200 animals (Dobson and Meagher, 1996). 
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For any pathogen, prevalence falls to zero in susceptible host populations that are 

smaller than HT, unless they are maintained by another source (Lyles and Dobson, 

1993).  Ironically, the presence of a threshold for establishment suggests that 

endangered species are relatively protected from virulent pathogens as their population 

sizes may be too small to continuously support an infection (Lyles and Dobson, 1993).  

However, this perceived level of protection actually increases the susceptibility of 

endangered species to catastrophic disease outbreaks, as small populations of species 

are at a greater risk from non-specific pathogens than host specific pathogens. 

 

Thus, the movement of pathogens to new locations poses a serious threat to global 

biodiversity due to the potential for the catastrophic depopulation of new and naïve host 

populations (Daszak et al., 2000).  When introduced diseases become enzootic, initial 

declines in host populations may be followed by chronic population depression, and if 

the threshold host density for disease transmission is lowered, local extinctions may also 

occur (Daszak et al., 2000). 

 

1.4.4 Emergence of Disease 

Human environmental modification is suggested as the primary driving force for the 

emergence of human, domestic animal and wildlife infectious diseases (Daszak et al., 

2001; Schrag and Wiener, 1995).  In particular, the continued expansion of human 

populations brings us into contact with a large pool of known and unknown zoonotic 

pathogens (Mahy and Brown, 2000).  The threat of emerging infectious disease 

outbreaks in wildlife populations leads to complicated (and costly) conservation issues, 

whilst threatening biodiversity, human health and wellbeing in a complex, inter-related 

manner.  Loss of biodiversity itself has economic ramifications (Costanza et al., 1997), 
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and its conservation is of increasing economic interest and ethical concern (Myers et al., 

2000). 

 

The key event in the emergence of most infectious diseases is a change in host–parasite 

ecology resulting from changes in human demography, behaviour or social structure 

(Dobson and Carper, 1996; Garnett and Holmes, 1996).  These changes allow an 

increase in transmission between individual hosts, new host populations or species and 

selection pressure, leading to the dominance of pathogen strains adapted to these new 

conditions (Daszak et al., 2001).  Wildlife populations have long been considered a link 

in the chain of pathogen emergence, by forming the reservoirs from which zoonotic 

pathogens may emerge (Daszak et al., 2001).  However, wildlife populations are seldom 

the guilty party in the event of a disease outbreak, though more often than not they bear 

the brunt of its effects. 

 

Emerging infectious wildlife diseases have been responsible for mass mortalities as well 

as local (population) extinctions and global (species) extinctions (Daszak and 

Cunningham, 1999; Cunningham and Daszak, 1998).  This direct loss of biodiversity 

due to infectious disease may lead to further impacts on ecosystems via ‘knock-on’ 

effects.  For example, the introduction of rinderpest into Africa in the late 19th century 

resulted in massive changes in grazing pressure and a perturbation of succession in the 

savannah flora that persists to date (Dobson and Crawley, 1994).  Such knock-on effects 

may lead to the extinction of species further up the food chain that remain uninfected by 

the pathogen.  Hence, apart from the immediate direct and indirect effects on individual 

animal species, the introduction of disease may also have broad, long-term, and 

unforeseeable effects on ecosystems (Cunningham, 1996). 
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A number of high-impact wildlife diseases have also emerged due to ‘spill-over’ of 

pathogens from domestic animals into wildlife populations.  Because domestic animals 

often outnumber the wildlife hosts of shared pathogens, they act as maintenance hosts, 

enabling the pathogen to avoid the threshold density effect and drive the smaller 

population of wild animals to virtual extinction (Cleaveland and Dye, 1995).  Generally 

it is only when these pathogens threaten to ‘spill-back’ into domestic animals that these 

issues may become politically charged as conservationist and commercial interests clash 

(Dobson and Meagher, 1996).  However, a more common factor driving the emergence 

of wildlife disease is the anthropogenic movement of pathogens into new geographic 

locations – a phenomenon termed ‘pathogen pollution’ (Daszak et al., 2000; 

Cunningham, 1996). 

 

1.4.5 Pathogen Pollution and Apparent Competition 

Pathogen pollution is rooted in the unprecedented globalisation of agriculture, 

commerce, human travel and the transport of domestic animals and their products 

(Daszak et al., 2001).  Human landscape changes that remove portions of host 

populations, alter host migration patterns or increase host density are also likely to 

increase the risk of pathogen emergence (Dobson and May, 1986).  Pathogens may also 

be spread or amplified following the introduction of uninfected hosts into new 

geographic areas (Daszak et al., 2001).  Pathogen introductions have a particularly high 

impact when naïve host populations are involved and introduced pathogens may 

contribute to the competitive success of the invading carrier hosts by the process of 

‘apparent competition’ (Hudson and Greenman, 1998). 
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Apparent competition is mediated via a shared pathogen, where one species can be a 

superior competitor simply by harbouring and transmitting this pathogen to a more 

vulnerable species (Hudson and Greenman, 1998; Bonsall and Hassell, 1997; Holt and 

Lawton, 1994).  This is exemplified by the helminth parasite Parelaphostrongylus 

tenuis and its suggested role as the agent that allows white-tailed deer to prevent moose 

and caribou from establishing in larger areas of the eastern United States (Schmitz and 

Nudds, 1994; Anderson, 1972).  Competition is widely accepted as a major force 

influencing biodiversity, so it stands to reason that apparent competition could play a 

significant role in shaping community structures (Hudson and Greenman, 1998). 

 

1.4.6 Parasites in Small Populations 

Endangered species generally have small populations and as such are at a much greater 

risk of being adversely affected by the loss of a given percentage of the population, or 

even individuals, from disease (Cunningham, 1996).  Diseases and parasites pose 

particularly severe problems in captive or managed populations in which animals are 

held at high densities (McCallum and Dobson, 1995).  As animals are forced to exist at 

these higher densities, virtually every aspect of the life and health of the animals will be 

affected (Scott, 1988).  Stress associated with captivity may also increase the 

pathological effect of common infectious agents and further debilitate animals already 

compromised by their containment (Viggers et al., 1993).  Animals held in captivity are 

also at an increased risk of exposure to infection from foreign parasites. 

 

The susceptibility of small populations to pathogens may be enhanced by the loss of 

endemic diseases once the population size falls below the critical levels required for the 

maintenance of such diseases (Cunningham, 1996).  These populations risk becoming 
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immunologically naïve as most individuals within a small population are never exposed, 

resulting in low levels of acquired immunity within these populations (Cunningham, 

1996; Viggers et al., 1993).  Without this level of exposure, these populations are at an 

increased risk of being adversely affected by epidemics of what were previously 

endemic diseases, as well as new and emerging diseases (McCallum and Dobson, 

1995). 

 

Additionally, due to their small population sizes, endangered species will tend to 

acquire virulent infections only after exposure to infected hosts of another more 

common and widespread species (McCallum and Dobson, 1995).  These more common 

and widespread species are defined as reservoir and/or maintenance hosts, and are 

capable of independently maintaining the pathogen as well as acting as a source of 

infection to other species.  The presence of a maintenance host enables a pathogen to 

avoid the threshold density effect and can drive the smaller population of susceptible 

animals to virtual extinction (Cleaveland and Dye, 1995).  Thus, when an epidemic does 

occur it tends to infect a large proportion of the susceptible population and mortality 

levels may be high (McCallum and Dobson, 1995).  A prime example of this 

phenomenon was the rinderpest epizootic in East Africa during the 1890’s which 

decimated 95% of the wildebeest and cape buffalo populations though was relatively 

benign to its domestic cattle hosts (McCallum and Dobson, 1995; Dobson and Crawley, 

1994). 

 

Likewise, introduced or translocated animals may be susceptible to parasites that are 

relatively non-pathogenic in their primary host(s), whilst animals released into 

previously unoccupied areas may be exposed to new parasites and vectors of disease 
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(Cunningham, 1996; Viggers et al., 1993).  The translocation of animals to new or 

existing habitats can also import new parasites with them that may primarily affect other 

hosts (Viggers et al., 1993), this risk is increased if the animals have been held in 

captivity prior to release (Cunningham, 1996).  In these ways, parasites are not only 

capable of nullifying the potential benefits of captive breeding programs, but they can 

also have an overall negative effect on wildlife conservation where translocations have 

been carried out (Cunningham, 1996; Viggers et al., 1993; May, 1988; Scott, 1988). 

 

1.4.7 Conservation and Disease 

Extinction is a natural process, but the current rate of loss of genetic variability of 

populations and of species is ongoing and far above background rates, representing an 

irreversible global change (Vitousek et al., 1997).  The Earth’s most vulnerable 

terrestrial species can be identified within 25 “biodiversity hotspots” that individually 

occupy no more than 2% of the ice-free land surface (Myers et al., 2000).  As such, 

introduced species are a serious threat to global biodiversity, second only to habitat loss 

(Vitousek et al., 1997; Vitousek et al., 1996), whilst the introduction of their pathogens 

to new areas is of worldwide concern given the potential for pathogens to reduce host 

abundance (Hudson and Greenman, 1998; Bonsall and Hassell, 1997; Lyles and 

Dobson, 1993). 

 

Along with the increasing pace of habitat destruction, there has been an increase in 

captive breeding and translocation programs for endangered species (Abbott, 2000; 

Fischer and Lindenmayer, 2000; Short and Turner, 2000).  Although the primary 

objectives of these programs revolve around the requirement to maintain local and 

global genetic diversity within the species of interest, little regard has been given to the 
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role of their pathogens (Cunningham, 1996; Lyles and Dobson, 1993; Viggers et al., 

1993; Scott, 1988).  However, as we set about attempting to conserve the last vestiges of 

our remaining natural habitats and the species within them, parasites will play an 

increasingly important role in our management of species.  Abnormally high population 

densities that may arise when species are crowded into improperly managed wildlife 

reserves can facilitate the establishment of pathogens which may result in the reduced 

survival and reproduction of host species (Scott, 1988; Dobson and May, 1986). 

 

Many attempts are made at keeping animals free from infection, especially in zoos and 

captive breeding facilities.  In many ways this is a sensible strategy for it should enable 

animals to survive and reproduce at rates close to maximum which would have to be 

good for the conservation of the species.  However, protecting animals from disease 

may do more to weaken a population and increase its susceptibility to infection than it 

does to improving survivorship (Cunningham, 1996; Lyles and Dobson, 1993; Scott, 

1988).  For example, a study on the lungworm-pneumonia complex in bighorn sheep in 

western Canada found that the “fittest” bighorn sheep population was also the one with 

the highest level of lungworm infection (Uhazy et al., 1973). 

 

Establishment of disease-free wild populations is unnatural and overall not a feasible 

ideal.  To attempt to eliminate parasites and the role they play in host population 

ecology and evolution, for the “good” of captive, reintroduced and wild populations 

would be short sighted indeed to say the least.  Infectious disease is a normal, constant 

and continuing feature in the lives of most animals and plants.  Parasites have the ability 

to regulate the growth of host populations even in the complete absence of other 

influences such as predation or intraspecific competition (May and Anderson, 1978).  
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Pathogens can and do exert important effects on host population dynamics both as 

endemic and epidemic infections (Gulland, 1995). 

 

There is little point in conserving animal populations unless those animals are kept in 

conditions that promote their health and continued wellbeing (Scott, 1988).  

Recognition of the potential impact of disease in wild animal populations is the first step 

in prevention.  Even non-pathogenic parasites may become important when animal 

populations are malnourished or stressed, and the combined effects may predispose 

animals to other population pressures.  It must be remembered however, that a disease-

free wild population is unnatural and policies of keeping managed populations parasite 

free should mostly be replaced with maintaining moderate levels of infection for the 

long-term benefit of those populations (Lyles and Dobson, 1993). 

 

1.4.8 The Role of Disease in Australian Extinctions 

The argument regarding declines in range and abundance of populations of native 

mammals in Australia due to disease has mainly been based on evidence considered to 

be anecdotal (How et al., 1987; Archer, 1984; White, 1952).  Burbidge & McKenzie 

(1989) argue that if disease was a primary cause of extinction or decline in mammal 

species it is unlikely that it would have selectively affected the “critical weight range” 

species, which also come from a number of unrelated groups.  However, Freeland 

(1994) argues that declined species of dasyurid are larger than those that have not 

declined, bandicoot and macropod species that have declined are smaller than other 

members of their taxa, and that there is no difference between the mean body sizes of 

rodents that have and have not declined.  This apparent lack of a single critical size class 

indicates that it might be a combination of body size and taxonomic affinity that is 
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associated with the probability of species extinction or decline.  Freeland (1994) also 

suggests that the mammal species suffering the greatest declines (and extinction) 

following European colonisation of Australia are those most likely to acquire parasites 

from introduced animals. 

 

However, any hypothesis sufficient to explain the high rate of extinction of Australian 

mammals must provide a causal mechanism as well as account for the unusual 

vulnerability of Australian mammals.  Freeland (1994) proposes that the high rate of 

extinction of Australian mammals reflects the instability of ecosystems that have a 

paucity of coevolved, host-parasite relationships resulting from an unusually severe 

extinction of Australia’s Pleistocene predators and their parasites.  Freeland (1994) also 

suggests that the recent imposition of alien parasites on the mammalian fauna, the 

extinction of Australian parasites that colonise introduced hosts and a paucity of 

parasites among introduced mammals have further perturbed the instability of 

Australia’s ecosystems. 

 

1.4.9 Australia’s Historical Ecosystem Restructuring 

The Australian continent, along with all the other continents except Africa, suffered 

major losses of mammals, large birds and large terrestrial reptiles during and following 

the Pleistocene era (Horton, 1984).  Reasons for these extinctions include hunting 

pressure from invasive humans and a combination of climate change and human use of 

fire in the modification of environments (Owen-Smith, 1987; Guthrie, 1984).  In North 

and South America the net result of the Pleistocene extinctions was the development of 

a relatively rich fauna of predatory mammals whilst Australia appears to have retained 

only the thylacine (Thylacinus cyanocephalus), the relatively small Tasmanian devil 
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(Sarcophilus harrisi) and the even smaller tiger quoll (Dasyurus maculatus) (Freeland, 

1994).  This relatively poor survival of large mammals may have been due to 

Australia’s limited topographic diversity, resulting in fewer refugia during periods of 

dramatic climate change (Freeland, 1994). 

 

The loss of Australia’s large predators and many herbivores together with their parasites 

during the Pleistocene may have resulted in species communities with lower levels of 

stability (Freeland, 1994).  Although the Australian fauna continues to maintain 

parasites with complex life cycles involving reptiles, birds and small mammals as 

ultimate hosts, the Tasmanian devil is perhaps the only “large” mammalian predator to 

host such parasites.  The thylacine is known to have had parasites, but these have 

presumably become extinct along with the animal itself (Sprent, 1970; Ransom, 1907).  

Ironically, introduced pathogens have been convincingly portrayed as the cause for the 

thylacine’s extinction (Guiler, 1961), however this hypothesis is yet to be proven and 

definitive proof might be difficult to obtain. 

 

1.4.10 Introduction of Pathogens to Australia 

Inevitably, the introduction of animals to the Australian environment has nonetheless 

resulted in the introduction of new parasites that have colonised the native fauna.  The 

introduced dog, cat and fox support a total of nine helminth species whose intermediate 

or paratenic stages now infest the Australian fauna (Coman et al., 1981a; Coman, 

1972b, a).  Examples of introduced parasites colonising Australia’s native animals 

include the cestode Echinococcus granulosus, common in kangaroos and other 

macropods of south eastern Australia (Grainger and Jenkins, 1996; Lymbery et al., 

1990; Howkins, 1966b), as well as the protozoan Toxoplasma gondii, which is known to 
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occur in numerous marsupial species (Canfield et al., 1990; Johnson et al., 1989; 

Johnson et al., 1988).  These parasites, like many introduced parasites, have 

intermediate life history stages that are relatively non host-specific, increasing the 

potential for their transmission to both wild and domestic populations of animals (Pozio, 

2000; Baldock et al., 1985; Howkins, 1966b, a). 

 

Whilst the introduction of potential hosts into new geographic locations without the co-

introduction of their pathogens can result in disease emergence (Daszak et al., 2000), 

the parasites of Australia’s kangaroos and wallabies do not appear to present any such 

problem for introduced herbivorous mammals (Freeland, 1994).  Likewise, the majority 

of our native frog parasites have failed to colonise the introduced cane toad (Bufo 

marinus) (Delvinquier and Freeland, 1988; Freeland et al., 1986), and there appears to 

be only one helminth parasite of Australian dasyurids (Cyathospirura dasyuridis) that 

has successfully colonised the feral cat and fox (Coman et al., 1981a; Coman, 1972b, a).  

Freeland (1994) theorised that it was the unusual phylogenetic composition of the 

Australian fauna combined with its loss of parasites and predators during the 

Pleistocene, that has resulted in introduced animals having no or little in the way of a 

“parasitological” barrier to overcome prior to successful invasion. 

 

Unfortunately the reverse is not true and the incorporation of the Australian native fauna 

into the life cycles of introduced parasites is a common occurrence.  This may be 

considered by some as constituting the beginnings of evolutionary re-establishment of 

density dependent controls on the stability of Australian ecosystems, however the 

transfer of parasites from introduced to native species cannot be regarded as invariably 

benign or positive (Daszak et al., 2001; Freeland, 1994).  The destabilisation of food 
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webs resulting from the introduction of alien parasites may result in extinctions or an 

increased probability of extinctions during periods of environmental perturbation 

(Freeland, 1994).   

 

The more subtle and sinister threat pathogens pose to Australia’s biodiversity is only 

now gaining recognition and understanding as a serious global threat (Pimm and Raven, 

2000; Cassis, 1998; Vitousek et al., 1997; Vitousek et al., 1996).  However, our 

incredible lack of knowledge of the Australia fauna and the ecosystems in which they 

dwell is a major stumbling block for the progression of any research into this relatively 

new field, which is further complicated by the large number of feral pests and their 

parasites in Australia.  As such, the study of these effects requires sensitive techniques 

for the detection and identification of pathogens in both the native and introduced fauna. 

 

 

1.5 PARASITE DETECTION 

1.5.1 The Importance of Taxonomy 

Knowledge of taxonomic relationships and the phylogeny of parasite species and their 

variants provides a better understanding of infections and is crucial for the development 

of vaccines and new diagnostic methods (McManus and Bowles, 1996).  Unfortunately, 

traditional approaches have often been of limited use for parasite taxonomy or 

identification, due in some cases to a lack of morphological variation in parasites either 

because of constraints caused by specialised body-plans or because species are too 

closely related (Monis, 1999).  Despite the increasing use of electron microscopy, the 

range of morphological features is limited in many parasitic organisms and 

morphologically indistinguishable sibling species are common (McManus and Bowles, 
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1996).  A prime example of this is the protozoan parasite Neospora caninum, which was 

only identified as being distinct from Toxoplasma gondii in 1988 (Dubey et al., 1988), 

and whose “correct” taxonomy is still a contentious issue today (Dubey et al., 2002).  

For the effective diagnosis, treatment and control of parasitic diseases, it is essential that 

parasite isolates can be accurately and reliably identified (McManus and Bowles, 1996). 

 

1.5.2 Molecular Detection of Parasitic Infections 

The differentiation and detection of parasites as well as the diagnosis of parasitic 

infections can be achieved by a variety of methods, however molecular techniques are 

becoming increasingly more important as a dearth of biological data on the mode of 

reproduction, ploidy, host range and/or life cycle of parasite species limits progress 

(Zarlenga and Higgins, 2001; Monis, 1999).  Direct testing for the presence of parasites 

through molecular assays can avoid many of the ambiguities associated with indirect 

detection methods and help improve our understanding of parasite epidemiology 

(Zarlenga and Higgins, 2001).  Molecular markers provide valuable tools for the study 

of disease transmission and diagnosis which require simple, reproducible and practical 

methods for accurate identification (Monis and Andrews, 1998; McManus and Bowles, 

1996).  The nature of the polymerase chain reaction (PCR) makes it an ideal tool for 

parasite identification, especially in a diagnostic context as it is technically simple to 

use, rapid, sensitive and specific (Monis and Andrews, 1998). 

 

PCR has provided the basis for the development of a new generation of tools that are 

increasingly being used for diagnosis and epidemiology in both veterinary and human 

parasitology (Morgan and Thompson, 1998).  PCR-based diagnostic assays are able to 

detect multiple genotypes of infectious agents directly in clinical or environmental 
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samples without the need to produce large quantities of the agent by in vitro or in vivo 

laboratory amplification (Monis and Andrews, 1998; Morgan and Thompson, 1998).  

Direct sequence analysis of the amplified DNA can also be used for the characterisation 

of distinct species, subspecies and/or strain groups of parasite, or to infer their 

phylogenetic relationships and thus identify routes of disease transmission (Monis and 

Andrews, 1998; McManus and Bowles, 1996).  

 

The relatively stable nature of DNA, particularly in comparison to enzymes, allows the 

collection and storage of material for molecular techniques to be less stringent than that 

required for many other identification methods (McManus and Bowles, 1996).  The 

ability to rapidly select, isolate, amplify and sequence parasite DNA from small 

amounts of tissue applies itself to the screening of crude material, which is important for 

the detection of infectious agents that are refractory to culture and hence, unlikely to be 

detected by traditional methods (Monis and Andrews, 1998; McManus and Bowles, 

1996).  Additionally, for the purposes of identification and phylogenetic study, it is not 

necessary that genetic characters are directly related to functional or other phenotypic 

differences between forms, it is sufficient that they consistently act as markers of 

particular known epidemiological types (McManus and Bowles, 1996). 

 

1.5.3 Molecular Systematics and Parasitology 

The control and prevention of many pathogenic infections depends upon knowledge of 

how the aetiological agents survive and are transmitted in different environments 

(Morgan and Thompson, 1998).  Molecular epidemiology of pathogenic organisms 

allows the distinction of closely related infectious agents and the documentation of the 

mechanisms by which they are transmitted between hosts, and how these mechanisms 
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may affect their dispersal both within and between populations of hosts (Monis and 

Andrews, 1998; Thompson et al., 1998).  Thus, molecular techniques provide predictive 

and quantifiable tools not previously available, allowing precise determinations to be 

made about aetiological agents, their characteristics and source of infection (Thompson 

et al., 1998).  However, DNA characterisation methods still need to be combined with 

traditional techniques and matched by appropriate methods of analysis and 

interpretation to achieve the greatest benefit (Thompson et al., 1998). 

 

The phylogenetic benefit of using DNA based approaches is that they focus on genes 

rather than gene products and so avoid problems of life cycle stage variation, 

environmentally and host-induced modification, and post translational modification 

(McManus and Bowles, 1996).  Except in extremely rare instances, the content and 

integrity of parasite DNA is essentially invariant throughout its many life-cycle stages 

and does not succumb to short term environmental stress factors, thus molecular based 

identification methods are generally not limited to any particular developmental stage 

(Zarlenga and Higgins, 2001).  Additionally, the level of variability detected can be 

extremely sensitive and depends on the technique used as well as the region of DNA 

examined, since even “silent” nucleotide positions can be compared (Thompson et al., 

1998; McManus and Bowles, 1996). 

 

However, there is a tendency to refer to groups characterised by molecular methods as 

“strains” or “variants” – terms that are not taxonomically valid (Hyde, 1990).  At 

present, there is no universally accepted criterion to allow the identification of species 

from such data due to the lack of appropriate models for defining populations and 

species of parasitic protozoans (Monis, 1999).  This is an issue that needs to be resolved 
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as not only have molecular methods in many cases enhanced the sensitivity and 

specificity of the detection process, but they have also reduced much of the subjectivity 

inherent in interpreting morphological and biological data (Zarlenga and Higgins, 

2001). 

 

 

1.6 INTRODUCED PARASITES OF INTEREST 

Introduced animals to Australia not only bring with them the added pressures of 

competition, habitat alteration and predation they also bring new parasites.  Invariably, 

animals introduced by humans to new environments bring only a minority of their 

natural parasites, however this does not make them any less potent in their effect upon 

the native fauna.  Detailed surveys of introduced pathogens are not available for all 

groups of native vertebrates and records are particularly lacking for reptiles and 

amphibians, however sharing of both external and internal parasites between cats and 

the Australian native fauna appears to occur most in the marsupials (Dickman, 1996b). 

 

Whilst 38 helminth species, 10 protozoan species, two flagellates and one blood-borne 

parasite have been reported from the cat in Australia (Prescott, 1984), only two 

helminths, Cyathospirura dasyuridis and Anoplotaenia dasyuri, have been acquired 

from the Australian fauna (Coman et al., 1981a).  Conversely, introduced dogs, cats and 

foxes support at least nine helminth species and an unknown number of protozoan 

parasites whose intermediate life history stages are known to infest the Australian fauna 

(Coman et al., 1981a; Coman et al., 1981b; Coman, 1972b, a).  Particular interest has 

been given to the investigation of Ancylostoma, Giardia and Toxoplasma gondii 
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infections in the current study due to their cosmopolitan distribution and potential 

impact on host species. 

 

1.6.1 Hookworms 

Hookworms are parasitic helminths belonging to the order Strongylida (family 

Ancylostomatidae), and are typically harboured in the small intestine, where they attach 

to the mucosa and feed on blood (Monti et al., 1998).  The most outstanding symptom 

of hookworm infestation is anaemia, with a burden of 1000 adult worms able to draw 

almost a cup of blood from their host each day (Hotez and Pritchard, 1995).  As such, 

hookworm disease remains one of the most important and widespread helminth 

infections world-wide with roughly one fifth of the world’s human population infected 

(Monti et al., 1998; Hotez and Pritchard, 1995).  Despite their medical and economic 

significance world wide, hookworms are one of the least well represented parasite 

groups in the Australian fauna (Beveridge, 2002).  This poor representation is probably 

a reflection of the fact that they are primarily parasites of eutherian groups which are 

either absent from the Australian fauna or which have only recently arrived in Australia 

(Beveridge, 2002). 

 

The majority of the hookworm species in Australia have been introduced by humans 

and the importation of domestic animals within the last 200 years (Beveridge, 2002).  

The only known native species of hookworm in Australia occur in seals and sea-lions 

(Uncinaria hamiltoni), and in the small intestine of the Australian water rat (U. 

hydromyidis) (Beveridge, 1980).  The isolation of the Australian continent is the 

principal reason for the relative paucity of ancylostomatoid species present (Beveridge, 
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2002; Beveridge and Spratt, 1996), however feline hookworm infections are particularly 

common in the northern regions of Australia (Prescott, 1984). 

 

1.6.2 Giardia 

Species of the flagellated protozoan parasite Giardia, inhabit the intestinal tracts of 

virtually all classes of vertebrates (Thompson, 2000), however Giardia duodenalis (syn. 

G. intestinalis; G. lamblia) is the only recognised species found in most mammals 

including dogs, cats, cattle, pigs, sheep and horses (O'Handley et al., 2000; Thompson 

et al., 2000b; Thompson et al., 1998; Thompson et al., 1993b).  The close association 

between humans and domestic animals, particularly pets, has been suspected as a means 

whereby zoonotic giardiasis occurs (Healy, 1990). 

 

While it has been shown that Giardia of human origin can infect animals and vice versa 

(Bettiol et al., 1997; Majewska, 1994), many epidemiological details still require 

clarification.  Molecular characterisation of Giardia recovered from domestic and wild 

animals is helping to improve our understanding of the aetiological agents that are 

responsible for causing giardiasis in mammals as well as the dynamics of both endemic 

and zoonotic transmission. 

 

1.6.3 Toxoplasma gondii 

Toxoplasma gondii is a ubiquitous, obligate intracellular coccidian parasite that is 

capable of infecting an unusually wide range of hosts (Dubey et al., 1998; Dubey and 

Beattie, 1988).  T. gondii is of both veterinary and medical importance worldwide due 

to its implication in abortion and congenital disease in its intermediate hosts.  T. gondii 

infects virtually all species of warm-blooded animals including humans, though only 
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cats and other members of the family Felidae are the definitive hosts (Dubey and 

Lappin, 1998).  In Australia the only definitive host is the domestic or feral cat (with the 

exception of those felids in zoos). 

 

T. gondii tissue cysts have a high affinity for neural and muscular tissues, being located 

predominantly in the central nervous system, the eye as well as skeletal and cardiac 

muscles and infected animals may exhibit pathology including obscured vision, 

difficulty in walking and calcification of the heart (Tenter et al., 2000; Dubey and 

Beattie, 1988).  Australian marsupials have been reported in the wild as being blinded, 

stumbling and dying from toxoplasmosis (Patton et al., 1986; Ashton, 1979).  Deaths 

from toxoplasmosis may constitute a major form of mortality for some native mammals, 

though T. gondii has also been implicated in increasing the susceptibility of the 

intermediate host to predation (Berdoy et al., 2000; Webster, 1994a; Webster et al., 

1994). 

 

The epidemiology of T. gondii infections in the Australian native fauna is poorly 

understood.  The cat is believed to be essential for the maintenance of T. gondii in 

endemic areas and is theorised to be the main source of infection for wildlife (Obendorf 

et al., 1996; Hartley and Munday, 1974).  Given that the cat has successfully colonised 

the entire continent of Australia, and that Australia possesses approximately 90% of the 

world’s marsupial species (Strahan, 1983), toxoplasmosis can be considered one of the 

most potentially threatening diseases facing Australia’s marsupial fauna and a very real 

threat to global biodiversity. 
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1.7 OBJECTIVES 

The potential exists for parasites carried by introduced animals, such as the cat, to be 

responsible for the extinction of native species throughout Australia.  Indeed most 

mammal species that have become extinct following European colonisation of Australia 

appear to have been those most likely to acquire parasites from introduced animals 

(Freeland, 1994).  In some rare cases introduced parasites may have the potential to 

ultimately stabilise Australian ecosystems, though in the vast majority of cases the 

native mammals’ physiological susceptibility to introduced parasites is such that rather 

than aiding the stabilisation of these newly created food webs, the introduced parasite(s) 

further perturb an already destabilised situation.  Although feral cats may contribute to 

the dissemination or maintenance of some pathogens in populations of native fauna, 

impacts are difficult to discern and to date have been little studied.  Therefore the aims 

of this study were to: 

1) Identify the common protozoan and helminth parasites occurring in the gastro-

intestinal tract of both feral cats and selected native mammals throughout 

Western Australia; 

2) Develop molecular tools to identify between species of hookworm occurring in 

feral cats from Western Australia; 

3) Identify the occurrence of any uncommon parasites occurring in either feral cats 

and/or native mammals, and determine the potential risk they may pose to 

conservation and reintroduction programs; 

4) Determine, by the use of molecular detection methods, the prevalence of T. 

gondii infections in feral cats throughout Western Australia and the reservoir 

potential of both feral cat and native fauna populations in the spread and 

persistence of this parasite in the environment. 
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Chapter 2 – Epidemiological Survey of Gastro-

intestinal Parasites of Feral Cats and Native 

Fauna in Western Australia 

 

2.1 INTRODUCTION 

Investigations into species interaction and community structure have historically been 

dominated by studies involving competitive interactions between predators and their 

prey.  In recent years the role of pathogens in host populations and the structure of 

biological communities has become much more of a focus of attention, not only from an 

ecological perspective (Hudson et al., 1998; Hudson and Greenman, 1998; Grenfell and 

Harwood, 1997; Schrag and Wiener, 1995; Holt and Lawton, 1994), but also from a 

conservational one as well (Cleaveland et al., 1999; Viggers et al., 1993; May, 1988; 

Scott, 1988).  Whilst the objectives of animal conservation programs need not be 

preoccupied with parasites, at the same time they must not disregard them either, as it is 

widely recognised that parasites have a considerable impact on host population 

dynamics resulting in their regulation and stabilisation (Anderson and May, 1979; May 

and Anderson, 1979; Anderson and May, 1978; May and Anderson, 1978).  Indeed, an 

increasing number of studies have shown that parasites also have the potential to 

structure species assemblages as well as entire ecosystems (Tompkins and Begon, 1999; 

Hudson et al., 1998; Bonsall and Hassell, 1997; May, 1988; Scott, 1988). 

 

Sound, long-term disease management approaches for the conservation and 

management of most species requires a level of knowledge of the dynamic relationships 
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between animals and their parasites that is seldom achieved or available.  Therefore, an 

understanding of the endemic as well as the introduced parasites that occur within host 

populations should be a high priority if they are to be cared for or managed properly.  

With this in mind, the aims of this research were to: 

1) Conduct an epidemiological survey of the gastro-intestinal parasites occurring in 

both feral cats and selected native mammal species throughout different 

geographical and climatic regions of Western Australia; 

2) Investigate the potential of parasite transfer between feral cats and the native 

fauna and identify any possible threats. 
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2.2 MATERIALS AND METHODS 

2.2.1 Sampling Locations 

2.2.1.1 Feral Cats 

A total of 379 faecal samples and 23 intestinal tracts were obtained from feral cats over 

a two and a half year period from 1999 to 2001.  These animals were collected from 

eleven different geographical regions throughout Western Australia, including the 

southwest, coastal northwest and arid interior of the state as well as the Montebello and 

Cocos Islands (Figure 2.1).  The specimens were collected in conjunction with ongoing 

feral cat control programs around Western Australia, initiated by the Department of 

Conservation and Land Management (DCLM).  Cats were caught using Victor ‘Soft 

Catch’No. 2 leg hold traps (Algar et al., 1999; Meek et al., 1995), and euthanased 

humanely in accordance with the guidelines set out by the Murdoch University Ethics 

Committee (permit # 820R/00).  Samples were collected from each cat and preserved 

and stored for later screening.  Twentythree feral cat stomachs and intestines were also 

collected for examination, primarily from Shark Bay.  In all collection areas care was 

taken to ensure that only feral animals were collected, with the exception of stray cats 

collected from metropolitan and rural tips, as well as from the Cocos Islands. 

 

2.2.1.2 Native Fauna 

A total of 851 native mammals were captured during the same two and a half year 

trapping period as the feral cats for comparative parasitological examination.  Native 

fauna samples were collected from many of the same sample regions as the feral cats 

were, however it was not always possible to combine a comprehensive trapping
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Figure 2.1 Location of sampling sites within Western Australia showing mammal 
species collected from each site.  Key to sampling site abbreviations: BA = Batalling; BB = Bungle 
Bungles; CI = Cocos Islands; CO = Collie; DR = Dragon Rocks; GD = Gibson Desert; LA = Lake 
Argyle; MI = Montebello Islands; MJ = Manjimup; MK = Mount Keith; NW = Newman; PM = Perth 
Metropolitan Region; RA = Ravensthorpe; SB = Shark Bay; WG = Wongawol Station; WP = Walpole.  
Key to species abbreviations: BTP = Brushtail Possum (Trichosurus vulpecula); FC = Cat (Felis catus); 
CHU = Chudich (Dasyurus geoffroii); HM = House Mouse (Mus musculus); QUE = Quenda (Isoodon 
obesulus); SHM = Spinifex Hopping Mouse (Notomys alexis); SIM = Sandy Inland Mouse (Pseudomys 
hermannsbergensis); TW = Tammar Wallaby (Macropus eugenii); WBB = Western Barred Bandicoot 
(Perameles bougainville); WGK = Western Grey Kangaroo (Macropus fuliginosus); WOY = Woylie 
(Bettongia penicillata). 
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program for both cats and native mammals.  As such, both native mammal and feral cat 

data are not available for all of the sampling sites (Figure 2.1).  Native animals were 

live-trapped using wire cage or Elliot traps as well as pit fall traps.  Trapping of native 

animals was performed in conjunction with the DCLM’s ongoing fauna monitoring 

programs throughout the state.  Trapping sessions were typically run over three 

successive nights, with the predominant species caught being brushtail possums 

(Trichosurus vulpecula), woylies (Bettongia penicillata), quenda (Isoodon obesulus) 

and chudich (Dasyurus geoffroii) from the southwest region, and various species of 

native mice as well as introduced house mice (Mus musculus) from the northern regions.  

Due to the monitoring nature of the DCLM trapping programs and the endangered 

status of the majority of the fauna being trapped, catch and release protocols only 

allowed the collection of faeces.  Western barred bandicoot (Perameles bougainville) 

samples were sourced from the captive breeding colony run by the DCLM as part of 

Project Eden at Shark Bay.  Samples from kangaroos (Macropus fuliginosus and M. 

rufus) were collected with the assistance of professional shooters operating in the south 

western and central interior regions of Western Australia. 

 

2.2.2 Faecal Samples 

Faecal samples of both feral cats and native fauna were preserved in three different 

solutions: 10% Formalin, for the identification of eggs of helminth parasites; 2% 

potassium dichromate, for the identification of cyst stages of protozoan parasites; and 

20% dimethyl sulphoxide (DMSO) in saturated salt solution, for future molecular based 

screening. 
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Parasite eggs and other stages were isolated from preserved faecal samples via three 

methods.  Cryptosporidium oocysts were detected via light microscopy by staining with 

5% malachite green stain and visually scanning microscope slides at ×10 and ×40 

magnifications.  Other protozoan and helminth parasites were detected using both 

Fecalyzer (Evsco Pharmaceuticals, NJ, USA) and zinc sulphate flotation (Bartlett et al., 

1978) methods to concentrate eggs and cysts and viewed via light microscopy at ×10 

and ×40 magnification.  Identification of parasite species was performed based on egg 

and cyst morphology for the well documented species (Soulsby, 1982).  Eggs for 

wildlife hosts could only be identified to family or order level in most cases. 

 

2.2.3 Tissue Samples 

As mentioned in section 2.2.1.2, the collection of tissue samples from native mammals 

was limited due to ethical considerations regarding the threatened status of many of the 

species sampled, with the majority of tissue samples collected being from feral cats.  

Tissue samples collected primarily consisted of brain, muscle, liver, spleen and whole 

blood.  Tissue samples were preserved in 20% DMSO in saturated salt solution to 

facilitate the extraction of DNA for the application of molecular testing.  A limited 

number of samples involved the collection of serum, lymph nodes, spinal cord and 

tongue, however the collection of these, as well as the standard tissue samples was 

predominantly concerned with the detection of the parasite Toxoplasma gondii, which 

will be further discussed in Chapter 5. 

 

2.2.4 Gastro-Intestinal Tracts 

Cat stomachs and intestines were opened and the contents examined for the presence of 

visible parasites.  Suspected tumours/cysts were cut out and preserved in 10% formalin 
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for later dissection and examination under a dissecting microscope.  Intestinal tracts 

were removed and perforated along their length prior to placing in 10% formalin to 

facilitate the “fixing” of the intestinal contents.  Preserved intestines were externally 

washed in distilled water and allowed to soak for up to 12 hours to remove excess 

formalin prior to examination.  Intestines were cut open along their length and the 

intestinal walls as well as any material present within the intestines was examined 

closely using a dissecting microscope for the presence of small or immature parasites.  

All observed parasites were removed and collected for identification. 
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2.3 RESULTS 

2.3.1 Prevalence of Intestinal Parasites in Feral Cats 

Parasites were detected in faecal samples in 76.8% of the 379 cats examined.  No 

particular species of parasite was present across all eleven sampling regions.  Thirteen 

helminth species and five protozoan genera were identified as occurring in feral cats 

throughout Western Australia.  Ancylostoma spp. and Oncicola pomatostomi were the 

most common helminth parasites occurring among all cats, whilst Isospora rivolta and 

I. felis were the most commonly occurring protozoan parasites detected (Table 2.1).  

Twentythree gastro-intestinal tracts were collected from cats, predominantly from Shark 

Bay, to facilitate and confirm the identification of similar helminth parasites such as 

taeniid cestodes. 

 

2.3.1.1 Age Distribution of Feral Cats 

Exact determination of the age of cats caught was not performed, however body 

measurements (weight and size) were used to classify cats as either: kittens; juveniles; 

sub-adults; or adults.  Cats were predominantly either juvenile/sub-adult or adult cats, 

with kittens only rarely being caught. 

 

2.3.1.2 Helminth Parasites 

Ancylostoma spp. were the most common parasites occurring in feral cats even though 

they were present in only five of the eleven different regions sampled, being most 

prevalent in cats from the Cocos Islands (89.5%) and Walpole (80%).  Three species of 

Ancylostoma are known to occur in cats in Australia: A. tubaeforme; A. ceylanicum; and 

A. caninum.  No Uncinaria stenocephala infections were observed in any cats.  Other 

nematodes encountered were Toxocara cati, Aelurostrongylus abstrusus, Cyathospirura 
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dasyuridis, Cylicospirura felineus, Gnathostoma spinigerum and Physaloptera spp. 

(Table 2.1). 

 

T. cati was present at moderate levels in the south west regions (10%-15%), with three 

cats from the Shark Bay region also infected.  All three infected cats were collected 

from Dirk Hartog Island, whilst none of the cats from the Peron Peninsula or Faure 

Island were infected (Figure 2.2).  The cat lungworm A. abstrusus was found in two 

stray cats from the Perth metropolitan region.  Two nodules in the stomach wall of a 

feral cat from Walpole contained a total of 12 specimens of both C. dasyuridis and C. 

felineus worms, with each nodule containing representatives of both species.  

Additionally, two cats from Lake Argyle were diagnosed with infections of G. 

spinigerum. 

 

The occurrence of a Physaloptera species in cats from the Mount Keith and sub tropical 

northern regions as well as the Cocos Islands was presumed to be P. praeputialis.  Eggs 

identified as an Abbreviata sp. which were found in the faeces of one cat from the 

Gibson Desert, are presumed to be A. hastaspicula. 

 

Taeniid eggs were present in feral cats from Walpole, Mount Keith and Shark Bay at 

moderate levels (10%, 11.3% and 7.7% respectively).  Taenia taeniaeformis is the most 

common Taenia species recorded in cats in Australia.  However, differentiation between 

species of Taenia or Echinococcus granulosus cannot be achieved based solely on egg 

morphology, although the examination of gastro-intestinal tracts collected from feral 

cats detected only T. taeniaeformis.  Whilst no specimens of T. ovis, T hydatigena, T. 

pisiformis or E. granulosus were detected, their absence from feral cats in this study
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Figure 2.2 Map of Shark Bay region indicating location of Dirk Hartog Island and 
Faure Island relative to the Peron Peninsula. 
 

cannot be guaranteed.  Only one case of Dipylidium caninum was found in a cat from 

Shark Bay.  Spirometra erinaceieuropaei was present in cats from Lake Argyle 

(79.4%), the Bungle Bungles (75%), Perth (40%), Walpole (30%), Manjimup (13.3%), 

Mount Keith (9.1%) and Shark Bay (1.5%).  S. erinaceieuropaei infections from the 

Shark Bay region only occurred in three cats from Faure Island (Figure 2.2). 

 

An acanthocephalan worm was highly prevalent in feral cats from the more arid regions, 

particularly Mount Keith, the Gibson Desert and Shark Bay.  Acanthocephalan parasites 
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occurring in feral cat populations, commonly referred to as Oncicola sp., have since 

been identified as Oncicola pomatostomi (O'Callaghan and Beveridge, 1996; Schmidt, 

1983). 

 

2.3.1.3 Protozoan Parasites 

Protozoan oocysts were found in all sampling regions with the exception of the Cocos 

Islands and the Bungle Bungles (Table 2.1).  I. felis and I. rivolta were the most 

common protozoan parasites found in feral cats, with Sarcocystis spp. occurring at 

moderate to low prevalence only in the more arid regions as well as at Lake Argyle.  T. 

gondii oocysts were not found in any of the 379 feral cat faecal samples examined.  An 

unidentified Entamoeba sp. was found in only three cats from Shark Bay, whilst 

Giardia was found in one cat from Dragon Rocks Nature Reserve situated in the 

southeast wheat belt of the state.  Cryptosporidium was detected in three cats from 

Mount Keith, one cat from Manjimup and one cat from Shark Bay.  Cryptosporidium 

was believed to have been detected in three cats from Mount Keith, one cat from 

Manjimup and one cat from Shark Bay, however due to the degraded nature of the 

samples identification could not be confirmed.  Further attempts at isolation and 

identification of all five samples proved unsuccessful. 

 

2.3.2 Prevalence of Intestinal Parasites in Native Fauna 

A total of 851 faecal samples from native (and some introduced) mammals were 

examined for intestinal parasites, comprising: 249 Trichosurus vulpecula; 238 Bettongia 

penicillata; 77 Isoodon obesulus; 65 Dasyurus geoffroii; 42 Notomys alexis; 36 

Macropus fuliginosus; 35 Macropus eugenii; 35 Perameles bougainville; 18 Pseudomys 

hermannsbergensis; 13 Mus musculus; 8 Pseudomys nanus; 8 Lagostrophus fasciatus; 6  



 42 

Table 2.1 Regional and overall parasite occurrence and prevalence in feral cats throughout Western Australia based on the examination of 379 faecal 
samples and 23 gastro-intestinal tracts. 
 

Regional Prevalencea,b 
Parasite 

PMc (20) WP (20) MJ (15) DR (6) MK (44) SB (194) GD (20) LA (34) BB (4) MI (3) CI (19) 

Total 
Prevalence 

Toxocara cati 15.0% 10.0% 13.3% 0.0 0.0 1.5% 0.0 0.0 0.0 0.0 0.0 2.6% 
Ancylostoma spp. 0.0 80.0% 0.0 0.0 13.6% 34.5% 0.0 26.5% 0.0 0.0 89.5% 29.8% 
Aelurostrongylus abstrusus 10.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.53% 
Cyathospirura dasyuridis 0.0 5.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.25% 
Cylicospirura felineus 0.0 5.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.25% 
Gnathostoma spinigerum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.9% 0.0 0.0 0.0 0.53% 
Physaloptera sp. 0.0 0.0 0.0 0.0 15.9% 0.0 0.0 8.8% 75.0% 0.0 5.3% 3.7% 
Abbreviata sp. 0.0 0.0 0.0 0.0 0.0 0.0 5.0% 0.0 0.0 0.0 0.0 0.25% 
             

Dipylidium caninum 0.0 0.0 0.0 0.0 0.0 0.5% 0.0 0.0 0.0 0.0 0.0 0.25% 
Taenia taeniaeformis 0.0 10.0% 0.0 0.0 11.3% 7.7% 0.0 0.0 0.0 0.0 0.0 4.7% 
Spirometra erinaceieuropaei 40.0% 30.0% 13.3% 0.0 9.1% 1.5% 0.0 79.4% 75.0% 0.0 0.0 14.0% 
             

Oncicola pomatostomi 0.0 0.0 0.0 16.6% 43.2% 33.5% 40.0% 0.0 75.0% 33.3% 0.0 25.6% 
             

Isospora felis 5.0% 10.0% 6.6% 0.0 11.3% 3.6% 10.0% 2.9% 0.0 0.0 0.0 4.5% 
Isospora rivolta 5.0% 10.0% 0.0 33.3% 18.2% 20.1% 20.0% 23.5% 0.0 33.3% 0.0 16.9% 
Sarcocystis spp. 0.0 0.0 0.0 0.0 11.3% 0.5% 5.0% 2.9% 0.0 0.0 0.0 2.1% 
Entamoeba sp. 0.0 0.0 0.0 0.0 0.0 1.5% 0.0 0.0 0.0 0.0 0.0 0.79% 
Giardia 0.0 0.0 0.0 16.6% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.25% 
Cryptosporidium 0.0 0.0 6.6% 0.0 6.8% 0.5% 0.0 0.0 0.0 0.0 0.0 1.3% 
             

Unidentified Spiruroid 0.0 0.0 0.0 0.0 4.5% 2.0% 20.0% 23.5% 100.0% 33.3% 5.3% 6.3% 
Eimeria spp. 0.0 5.0% 0.0 0.0 18.2% 2.0% 30.0% 23.5% 0.0 0.0 0.0 7.1% 

aNumbers in parentheses denote sample size. 
bPM = Perth Metropolitan region, WP =Walpole, MJ = Manjimup, DR = Dragon Rocks Nature Reserve, MK = Mount Keith, SB = Shark Bay, GD = Gibson Desert Nature Reserve, 
LA = Lake Argyle, BB = Bungle Bungles, MI = Montebello Islands, CI = Cocos Islands. 
cIncludes cats from Leonora Tip (n=3), Harvey Tip (n=2), Canning Dam (n=2) and Rottnest Island (n=3). 
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Bettongia lesueur; 6 Leporillus conditor; 5 Rattus tunneyi; 5 Canis lupus dingo; 3 

Pseudomys deliculatus; 1 Macropus rufus; and 1 Ningaui ridei.  The majority of 

animals trapped appeared to be in good health with no visible signs of disease detected.  

A cross section of all age groups was sampled, though no attempt was made to group 

the animals relative to their age due to the low numbers of some species sampled.  Of 

the 851 native (and introduced) animals sampled, 71.9% were infected with one or more 

parasite species.  To aid in the analysis and comparison of parasitological results with 

published studies, only the ten most commonly sampled host species (comprising 807 

individuals) will be discussed. 

 

2.3.2.1 Helminth Parasites 

The marsupial helminth fauna was dominated by nematodes of the order Strongylida, 

which were present in 59.1% of all animals examined, with nematodes of the order 

Rhabditida, Spirurida and Oxyurida also common (Table 2.2).  D. geoffroii were 

predominantly parasitised by strongyle nematodes (89.2%), with only a single animal 

being infected with a Spiruroid nematode whilst two others were found to have an 

oxyuroid nematode present in their faeces.  T. vulpecula were found to have a lower 

helminth infection rate than most of the other host species with less than half of 

them(46.6%) harbouring strongyle nematodes and 9.6% harbouring unidentified 

nematodes.  Similarly, the parasite fauna of M. eugenii, M. fuliginosus and B. 

penicillata were dominated by strongylid nematodes, however only B. penicillata were 

infected by Strongyloides sp., spiruroids and unidentified nematodes, whilst 27.8% of 

the M. fuliginosus sampled were infected with oxyuroid nematodes.  The bandicoots 

appeared to be parasitised by the widest range of nematode parasites of all the host 

species sampled, and strongyle nematodes were again the most common group of 
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Table 2.2 Prevalence of common helminth parasite groups in selected mammal species 
from Western Australia based on the examination of faecal samples. 
 
 

Nematodes Oxyuroid 
Nematodes  

 Strongyle eggs 

Strongyloides 
sp. 

Spiruroid 

Trichuris sp. 

Linstow
inem

a 
sp. 

U
nidentified 
N

em
atode 

U
nidentified 
O

xyuroid 

U
nidentified 

Syphacia sp. 

Syphacia 
obvelata 

Trem
atode 

CHU* (n = 65) 89.2% 0.0 1.5% 0.0 0.0 1.5% 3.1% 0.0 0.0 3.1% 

QUE (n = 77) 68.8% 3.9% 3.9% 11.7% 37.7% 5.2% 0.0 0.0 0.0 0.0 

WBB (n = 35) 60.0% 0.0 25.7% 22.9% 11.4% 11.4% 2.9% 0.0 0.0 0.0 

WOY (n = 238) 76.5% 5.0% 2.5% 0.0 0.0 10.1% 0.0 0.0 0.0 0.0 

BTP (n = 249) 46.6% 0.0 0.0 0.0 0.0 9.6% 0.0 0.0 0.0 0.0 

TW (n = 35) 82.9% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

WGK (n = 36) 88.9% 0.0 0.0 0.0 0.0 0.0 27.8% 0.0 0.0 0.0 

SHM (n = 42) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 40.5% 0.0 0.0 

SIM (n = 18) 0.0 0.0 5.6% 0.0 0.0 5.6% 0.0 44.4% 0.0 0.0 

HM (n = 13) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 46.2% 30.8% 0.0 

*CHU: Chudich (Dasyurus geoffroii), QUE: Quenda (Isoodon obesulus), WBB: Western Barred 
Bandicoot (Perameles bougainville), BTP: Brushtail Possum (Trichosurus vulpecula), WOY: Woylie 
(Bettongia penicillata), TW: Tammar Wallaby (Macropus eugenii), WGK: Western Grey Kangaroo 
(Macropus fuliginosus), SHM: Spinifex Hopping Mouse (Notomys alexis), SIM: Sandy Inland Mouse 
(Pseudomys hermannsbergensis), HM: House Mouse (Mus musculus). 
 

parasites detected in these species.  A single P. bougainville was found to be harbouring 

oxyuroid nematodes though none were detected in any of the I. obesulus.  Both I. 

obesulus and P. bougainville were the only native fauna sampled to be parasitised by 

Trichuris and Linstowinema species.  An unidentified species of Syphacia was the most 

commonly occurring nematode in each of the three murid species sampled, whilst four 

M. musculus were also harbouring infections of Syphacia obvelata.  An unidentified 

spiruroid nematode was detected in a single P. hermannsbergensis whilst a second was 

found to be harbouring an unidentified nematode.  Trematode eggs were detected in two 
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D. geoffroii collected from Manjimup, but were not detected in any other host species 

sampled.  Cestode parasites were not detected in any of the faecal samples collected. 

 

2.3.2.2 Protozoan Parasites 

Protozoan infections in the native fauna sampled consisted primarily of unidentified 

coccidia, Eimeria and Entamoeba species (Table 2.3).  Unidentified coccidia were 

detected in all host species sampled except for D. geoffroii and M. musculus.  The 

occurrence of unidentified coccidia was significantly higher in M. eugenii (74.3%) than 

in I. obesulus, which had the second highest prevalence (27.9%) whilst their occurrence 

in all other host species was relatively low, with none detected in D. geoffroii or M. 

musculus.  Entamoeba infections were most common in N. alexis (14.3%) and T. 

vulpecula (7.2%), with additional infections detected in only one D. geoffroii, two I. 

obesulus and one P. bougainville.  Eimeria species were detected in M. fuliginosus, B. 

penicillata, T. vulpecula and both species of bandicoot sampled.  Whilst unidentified 

species of Eimeria were detected in each of these host species, B. penicillata also 

harboured infections of E. gaimardi, E. potoroi and E. aepyrmni.  Giardia was detected 

in only one I. obesulus collected from Manjimup.  Additional cases of Giardia were 

detected in one pale field rat (Rattus tunneyi), one western chestnut mouse (Pseudomys 

nanus) and one dingo (Canis lupus dingo) which were all collected from Lake Argyle 

(results not shown). 
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Table 2.3 Prevalence of common protozoan parasite groups in selected mammal species 
from Western Australia based on the examination of faecal samples. 
 
 

Protozoa 

 U
nidentified 

Entam
oeba 

U
nidentified 

Eim
eria 

Eim
eria 

gaim
ardi 

Eim
eria 

potoroi 

Eim
eria 

aepyrm
ni 

G
iardia 

U
nidentified 

C
occidia 

CHU* (n = 65) 1.5% 0.0 0.0 0.0 0.0 0.0 0.0 

QUE (n = 77) 2.7% 4.5% 0.0 0.0 0.0 0.9% 27.9% 

WBB (n = 35) 2.9% 2.9% 0.0 0.0 0.0 0.0 14.3% 

WOY (n = 238) 0.0 4.6% 2.5% 1.3% 0.4% 0.0 0.8% 

BTP (n = 249) 7.2% 2.4% 0.0 0.0 0.0 0.0 2.4% 

TW (n = 35) 0.0 0.0 0.0 0.0 0.0 0.0 74.3% 

WGK (n = 36) 0.0 16.7% 0.0 0.0 0.0 0.0 5.6% 

SHM (n = 42) 14.3% 0.0 0.0 0.0 0.0 0.0 4.8% 

SIM (n = 18) 0.0 0.0 0.0 0.0 0.0 0.0 11.1% 

HM (n = 13) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

*CHU: Chudich (Dasyurus geoffroii), QUE: Quenda (Isoodon obesulus), WBB: Western Barred 
Bandicoot (Perameles bougainville), BTP: Brushtail Possum (Trichosurus vulpecula), WOY: Woylie 
(Bettongia penicillata), TW: Tammar Wallaby (Macropus eugenii), WGK: Western Grey Kangaroo 
(Macropus fuliginosus), SHM: Spinifex Hopping Mouse (Notomys alexis), SIM: Sandy Inland Mouse 
(Pseudomys hermannsbergensis), HM: House Mouse (Mus musculus). 
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2.4 DISCUSSION 

2.4.1 Parasites of Feral Cats 

The general consensus regarding feral cats is that they are largely solitary in their habits 

and population densities are low (Jones and Coman, 1982).  Therefore, the probability 

of transmitting infections between feral cats would be reduced, which has been used to 

describe the fact that many parasite infections occur at lower rates in feral cats than in 

domestic cats (Coman et al., 1981a).  However, the prevalence and occurrence of 

parasite infections of feral cats found in this study provides evidence that parasite 

burdens of feral cats from different environments throughout Western Australia are not 

necessarily lower than in domestic cats. 

 

The range of helminth and protozoan species found in feral cats was generally similar to 

that reported in earlier surveys of both feral and domestic cats in Australia (Milstein and 

Goldsmid, 1997; O'Callaghan and Beveridge, 1996; O'Callaghan et al., 1984; Wilson-

Hanson and Prescott, 1982; Coman et al., 1981a; Coman et al., 1981b; Gregory and 

Munday, 1976; Ryan, 1976a; Kelly and Ng, 1975; Coman, 1972b).  However, 

prevalence figures for particular parasite species differed greatly from many of these 

earlier surveys.  Regional variation in the prevalence of some parasite species is 

explicable in terms of dietary and environmental differences between cats and sampling 

areas.  The feral cat is an opportunistic predator and the composition of its diet typically 

reflects the relative availability of different prey species (Read and Bowen, 2001; 

Risbey et al., 1999; Catling, 1988; Jones and Coman, 1981; Coman and Brunner, 1972). 
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2.4.2 Nematode Parasites of Feral Cats 

2.4.2.1 Toxocara cati 

Toxocara cati is a large roundworm found in the small intestine of the cat and other 

wild Felidae, with heavy infections most commonly reported from catteries with poor 

hygiene conditions (Prescott, 1984).  T. cati has a cosmopolitan distribution and occurs 

in 35-85% of young adult cats and about 60% of kittens (Bowman et al., 2002; Prescott, 

1984).  Rabbits and small rodents may act as facultative intermediate or paratenic hosts 

with the larvae becoming distributed in somatic tissues, whilst earthworms, 

cockroaches, chickens and other animals may act as transport hosts (Prescott, 1984; 

Coman et al., 1981a).  Additionally, Swerczek et al. (1971) showed that transmammary 

passage of T. cati is common in the cat. 

 

Ryan (1976a) theorised that T. cati was better adapted to the cooler climates of Victoria 

than the drier regions of New South Wales.  Likewise, Coman (1972a) and Coman et al. 

(1981a) found T. cati to be more prevalent in the cooler sampling areas (85.1%, 86.4% 

and 50%, 53% respectively) as opposed to the drier sampling area (0% and 6% 

respectively) in their surveys of feral cats from Victoria.  Similarly, Gregory and 

Munday (1976) detected T. cati in 86% and 90.5% of feral cats from Tasmania whilst 

only 1% of feral cats from the Northern Territory were infected (O'Callaghan and 

Beveridge, 1996), providing further evidence of the effect of climate on the distribution 

and prevalence of T. cati as hypothesised by Ryan (1976a). 

 

The occurrence of T. cati in this study was predominantly limited to the three most 

southern sampling regions (Perth metropolitan area 15%, Walpole 10%, Manjimup 

13.3%), although three cats from Shark Bay were also infected.  All three cats from the 
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Shark Bay region infected with T. cati were collected from Dirk Hartog Island (Figure 

2.2), which provided a localised prevalence of 42.9%.  The absence of T. cati in cats 

from the Peron Peninsula and Faure Island indicates that this parasite became 

established on Dirk Hartog Island after the initial colonisation of this region by cats.  

The likelihood of this occurring is extremely high given the pastoral history of the 

island. 

 

At the time of sampling Dirk Hartog Island was an active pastoral lease and supported a 

population of feral cats sharing a limited number of focal resources (mainly food and 

shelter).  These conditions are conducive to the formation of structured populations of 

cats centred around food-rich areas such as livestock watering points, grain storage 

areas and refuse dumps (Denny et al., 2002; Izawa and Doi, 1993; Dards, 1983; Izawa 

et al., 1982).  These populations of group-living cats are considered to be true social 

groups that are dominated by related females, which provide communal care and 

defence of kittens (Denny et al., 2002; Liberg and Sandell, 1994).  Therefore, given that 

transmammary transmission of T. cati commonly occurs in cats (Swerczek et al., 1971), 

the communal nursing of kittens by related females in a social group may be responsible 

for maintaining a relatively high prevalence of T. cati in an otherwise unfavourable 

environment. 

 

2.4.2.2 Ancylostoma 

Ancylostoma tubaeforme is the common hookworm of cats and is frequently found in 

domestic cats from Brisbane (Prescott, 1984; Wilson-Hanson and Prescott, 1982) and 

Sydney (Kelly and Ng, 1975).  The occurrence of A. tubaeforme in cats appears to be 

more prevalent in the warmer northern parts of Australia (O'Callaghan and Beveridge, 
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1996; Meloni et al., 1993; Thompson et al., 1993a; Wilson-Hanson and Prescott, 1982).  

Several studies have failed to detect A. tubaeforme in cats in the southern states or in the 

southwest of Western Australia (O'Callaghan et al., 1984; Shaw et al., 1983; Gregory 

and Munday, 1976; Ryan, 1976a; Coman, 1972b), however the present study detected 

Ancylostoma infections in feral cats from Walpole, Shark Bay, Lake Argyle and Mount 

Keith. 

 

Both feral and domestic cats are known to harbour A. caninum and U. stenocephala 

infections in Australia (Bowman et al., 2002; Setasuban and Waddell, 1973), however 

both these species are relatively uncommon parasites of cats, being much more common 

in dogs (Johnston and Gasser, 1993; O'Callaghan et al., 1984; Blake and Overend, 

1982; Kelly and Ng, 1975; Gardiner and Fraser, 1960; Pullar, 1946).  Cats are also 

known to harbour A. braziliense and A. ceylanicum, two closely related hookworms that 

are commonly responsible for infecting humans (Schad and Banwell, 1990), though 

unlike A. braziliense, A. ceylanicum is able to mature in humans (Schad, 1991).  There 

are no published reports of A. braziliense occurring in Australia, though A. ceylanicum 

appears to be common among cats in north Queensland (Stewart, 1994).  The 

distribution, occurrence and characterisation of hookworm infections in feral cats from 

Western Australia is discussed in further detail in Chapter 3. 

 

2.4.2.3 Aelurostrongylus abstrusus 

The cat lungworm Aelurostrongylus abstrusus has been reported as occurring in cats 

from all states of Australia (Prescott, 1984).  True intermediate hosts for A. abstrusus 

include slugs and snails, though rodents and birds that ingest these infected molluscs 

can serve as paratenic hosts (Bowman et al., 2002; Prescott, 1984).  Therefore, cats 
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most probably become infected through the ingestion of infected rodents and small 

birds.  A study of gastro-intestinal parasites in 726 urban and 30 rural cats from Perth 

found the occurrence of A. abstrusus as “occasional”, though no further data were 

provided (Shaw et al., 1983).  Only two cats from the Perth metropolitan region were 

infected with A. abstrusus in the present study, though the lack of infections from other 

regions could be a reflection of the timing of the sampling regimes, the majority of 

which took place when A. abstrusus infections are apparently at their lowest level in 

Australia (between August and February) (Wilson-Hanson and Prescott, 1982).  

Intermediate stages and hosts of A. abstrusus generally require a moist conditions which 

may influence the seasonal and regional variation in prevalence of this parasite observed 

in previous studies (Coman et al., 1981a; Gregory and Munday, 1976; Kelly and Ng, 

1975).  Thus, the absence of A. abstrusus infections in feral cats from the arid and 

northern regions of Western Australia cannot be confirmed without a sampling regime 

that would detect any such variation. 

 

2.4.2.4 Cyathospirura dasyuridis and Cylicospirura felineus 

The spiruroid nematodes Cyathospirura dasyuridis and Cylicospirura felineus have 

been reported as occurring in feral cats from New South Wales (Ryan, 1976a), Victoria 

(Coman et al., 1981a; Coman, 1972b), Tasmania (Gregory and Munday, 1976), the 

Northern Territory (O'Callaghan and Beveridge, 1996) and South Australia 

(O'Callaghan et al., 1984).  C. dasyuridis has also been reported as occurring in foxes in 

New South Wales (Ryan, 1976b) and Victoria (Coman, 1973b) as well as dingoes and 

feral dogs in Victoria (Coman, 1972a).  Very little is known in regard to the life cycle of 

these two parasites, though arthropods are suspected of being intermediate hosts whilst 

lizards may act as paratenic hosts (Bowman et al., 2002).  Neither C. dasyuridis nor C. 
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felineus have been previously reported in feral cats from Western Australia (Thompson 

et al., 1993a; Shaw et al., 1983). 

 

C. dasyuridis is a native Australian parasite which occurs in Dasyurus viverrinus 

(eastern quoll ) and D. maculatus (tiger quoll) (Mawson, 1968), and is one of the few 

native parasites to have successfully colonised the introduced cat, fox, dingo and dog.  

The adult worms of C. dasyuridis commonly occur in the lumen of the stomach whilst 

C. felineus encysts in the stomach wall, though both are commonly associated with 

nodular lesions in the stomach (Beveridge et al., 1978).  The occurrence of these two 

species co-existing within the one stomach nodule has previously been reported in feral 

cats (Gregory and Munday, 1976) and appears to be common.  Whilst C. felineus occurs 

in both feral and domestic cats (Pavlov and Howell, 1977), C. dasyuridis has only been 

reported from feral cats (O'Callaghan and Beveridge, 1996; O'Callaghan et al., 1984; 

Coman et al., 1981a; Gregory and Munday, 1976; Ryan, 1976a; Coman, 1972b). 

 

The localisation of C. dasyuridis and C. felineus in tumour-like lesions or nodules in the 

stomach wall means that their prevalence cannot be accurately determined without 

proper examination of the stomach, particularly as the shedding of eggs is not constant.  

As previously mentioned, the regular removal of cat stomachs for a separate dietary 

analysis greatly reduced the sensitivity of detecting parasites located in the stomach in 

the current study.  Consequently, it is probable that the prevalence and distribution of 

these two parasites in feral cats throughout Western Australia is greater than reported 

here. 
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2.4.2.5 Gnathostoma spinigerum 

The parasite Gnathostoma spinigerum is considered rare in Australia with reports of it 

occurring in only two feral cats from New South Wales (Coman et al., 1981a; 

Beveridge et al., 1978) and several cases reported from domestic cats in Queensland 

(Wilson-Hanson and Prescott, 1982; Trueman and Ferris, 1977; Olds, 1952; Heydon, 

1929).  The occurrence of G. spinigerum infections in only two feral cats from the Lake 

Argyle region in the present study suggests that this parasite is equally as rare in 

Western Australia.  G. spinigerum encysts in the stomach wall of the definitive host 

which includes cats and dogs as well as several other wild carnivores (Prescott, 1984).  

The life cycle of this parasite involves two intermediate hosts: the first is a cyclopoid 

copepod of the genus Cyclops, Eucyclops, Mesocyclops or Thermocyclops; whilst the 

second intermediate host can include a wide variety of animals (e.g. fish, frogs, reptiles, 

birds and rodents) (Bowman et al., 2002).  Paratenic hosts play an important role in the 

persistence of G. spinigerum and the advanced third-stage larvae can be transferred by 

feeding from one host to a second host (Bowman et al., 2002).  When a cat ingests an 

infected host the cycle is completed and the worm penetrates the stomach wall where it 

becomes encapsulated and reaches maturity in three to seven months (Miyazaki, 1960; 

Prommas and Daengsvang, 1937). 

 

The pathogenesis of G. spinigerum is not well defined, though Gnathostoma was once 

considered to be the most pathogenic parasite to occur in cats (Chandler, 1925).  

However, the spontaneous cure of both natural and experimental infections of G. 

spinigerum in cats has since been reported (Daengsvang et al., 1969).  Likewise, both 

fatal and non-fatal cases of G. spinigerum infections have been reported in cats from 

north Queensland (Trueman and Ferris, 1977; Olds, 1952).  The pathological effect of 
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G. spinigerum on the two infected cats from Lake Argyle was not determined as no 

clinical examination was performed on either cat. 

 

The global distribution of G. spinigerum suggests that it is a tropical/sub-tropical 

parasite and the environmental conditions at Lake Argyle would facilitate the 

completion of the parasite’s life cycle (Trueman and Ferris, 1977).  However, as 

infected cats do not constantly shed eggs, the accurate diagnosis of G. spinigerum 

infections requires the examination of the stomach wall for adult worms and their 

associated cysts.  Therefore, as with C. dasyuridis and C. felineus, the removal of cat 

stomachs for a separate dietary analysis during this study may have resulted in an 

underestimation of G. spinigerum infections in feral cats from Lake Argyle and other 

sampling regions within Western Australia. 

 

2.4.2.6 Physaloptera and Abbreviata 

Nematodes of the genus Physaloptera are commonly found in goannas (Varanus spp.) 

throughout Australia (Pichelin et al., 1999), and the occurrence of Physaloptera species 

in feral cats has generally been attributed to their predation of reptiles (Strong and Low, 

1983; Ryan, 1976a).  Indeed, Ryan (1976a) detected an unidentified Physaloptera sp. in 

the intestines of three feral cats from New South Wales and attributed its occurrence to 

the predation of V. gouldii, as one of the cats contained a V. gouldii that was heavily 

infected with Physaloptera.  However, P. praeputialis is a common parasite of cats in 

most parts of the world (Bowman et al., 2002), and a number of cases of P. praeputialis 

have been found in feral cats from the Northern Territory (O'Callaghan and Beveridge, 

1996; Barton and McEwan, 1993), suggesting it is a common parasite of feral cats in 

central Australia. 
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Arthropods are known intermediate hosts for P. praeputialis, though cats are considered 

to most likely become infected through the ingestion of paratenic hosts such as lizards 

(Bowman et al., 2002).  Studies on the dietary composition of feral cats from arid 

regions of Australia have shown that both reptiles and invertebrates are frequently 

predated by feral cats, though neither are considered a to be a major prey item (Read 

and Bowen, 2001; Paltridge et al., 1997; Martin et al., 1996).  Therefore, both 

intermediate and paratenic hosts may be important sources for the transmission of P. 

praeputialis to feral cats in arid regions. 

 

Although not identified to species level in this study, the Physaloptera species detected 

in feral cats from Mount Keith, Lake Argyle, the Bungle Bungles and the Cocos Islands 

is believed to be P. praeputialis.  The prevalence of P. praeputialis in the present study 

is much lower than the 40.4% prevalence recorded by O’Callaghan and Beveridge 

(1996) in feral cats from the Northern Territory.  Likewise, the lack of any P. 

praeputialis infections from the Gibson Desert contradicts Barton and McEwan (1993), 

who considered it to be a common parasite of feral cats in central Australia.  However, 

due to storage conditions and the length of time some faecal samples spent in 

preservative, not all samples collected in the present study allowed accurate 

identification of parasite eggs.  Indeed, some of the unidentified spiruroid eggs that 

were found in cats from all of the central and northern sampling areas (Table 2.1), could 

well be P. praeputialis or even Abbreviata species that were not identified as such. 

 

Species of nematode in the genus Abbreviata are also common parasites of V. gouldii 

and occur throughout Australia, although A. hastaspicula occurs most commonly in 
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Western Australia (Pichelin et al., 1999; Jones, 1983).  A. hastaspicula has previously 

been found in a single feral cat and a dog from an Aboriginal settlement in the Northern 

Territory (Barton and McEwan, 1993).  In these two cases, despite recovering A. 

hastaspicula worms attached firmly to the mucosa of the stomach of both animals, the 

infections were considered to most likely be adventitious.  However, the study by 

O’Callaghan and Beveridge (1996) showed that A. hastaspicula occurred in 4.3% of 

feral cats sampled from the Northern Territory and is apparently able to develop in the 

stomach of cats.  Therefore, the occurrence of an unidentified Abbreviata species in a 

feral cat from the Gibson Desert may be A. hastaspicula. 

 

2.4.2.7 Ollulanus tricuspis 

Ollulanus tricuspis is an extremely small nematode (0.7-1.0 mm long) that occurs in the 

stomach of the cat, dog and fox (Bowman et al., 2002; Prescott, 1984).  There are no 

known intermediate or paratenic hosts for this nematode and transmission from cat to 

cat is believed to be direct through the consumption of vomitus (Bowman et al., 2002).  

Gregory and Munday (1976) found O. tricuspis in 11.4% and 4.8% of feral cats from 

the Tasmania Midlands and King Island respectively, whilst Shaw et al. (1983), Wilson-

Hanson and Prescott (1982) and Kelly and Ng (1975) did not detect any cases in their 

surveys of cats in Perth, Brisbane or Sydney respectively.  O. tricuspis was not detected 

in any cats in this survey due to the removal of cat stomachs for separate dietary 

analysis and the small size of the adult worms, although a single case of O. tricuspis has 

previously been detected in a dog presented to the Murdoch University Veterinary 

Hospital in 1993 (Hobbs, pers. comm.). 
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2.4.3 Cestode Parasites of Feral Cats 

2.4.3.1 Dipylidium caninum 

Dipylidium caninum is the most common tapeworm of cats, and also occurs dogs 

dingoes and foxes in Australia (Ryan, 1976b; Coman, 1973b, 1972a).  The transmission 

potential of D. caninum is a function of the density of the flea intermediate host 

(Bowman et al., 2002).  Indeed, Wilson-Hanson and Prescott (1982) observed a 

seasonal prevalence of D. caninum infections in cats from Brisbane, which they 

attributed to the fluctuation of the flea population.  Ryan (1976a) detected a greater 

prevalence of D. caninum in feral cats from New South Wales (11.6%) than Coman et 

al. (1981a) and Coman (1972a) detected in feral cats from Victoria (2.0% and 2.4% 

respectively), whilst Shaw et al. (1983) found a higher prevalence of D. caninum in 

domestic cats (33.7%) than rural cats (11.5%) in their survey in Perth. 

 

The detection of only a single case of D. caninum in a feral cat from Shark Bay is most 

likely an underestimation, due to the reduced sensitivity of the faecal flotation method 

used in the current study for detecting eggs shed in gravid segments such as for D. 

caninum.  Kelly and Ng (1975) detected D. caninum in 39.4% of cats in Sydney, though 

only 0.25% of those infected showed eggs in their faeces.  Likewise, Shaw et al. (1983) 

did not detect eggs of D. caninum in any of the cat faeces they examined using a 

flotation technique.  This lack of sensitivity could easily be responsible for the detection 

of only one case of D. caninum infection out of 379 faecal samples examined. 

 

2.4.3.2 Anoplotaenia dasyuri 

The native cestode Anoplotaenia dasyuri is typically a parasite of the Tasmanian Devil 

(Sarcophilus harrisi) and the Tiger Quoll (Dasyurus maculatus), though it has been 
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found to infect feral cats and dogs (Gregory et al., 1975).  The occurrence of immature 

A. dasyuri in six cats from the Tasmanian Midlands by Gregory and Munday (1976) 

were considered to be accidental parasites resulting from the use of wallaby meat as 

bait.  A. dasyuri was not detected in any of the cats in this survey which is not surprising 

given its natural hosts are restricted to Tasmania and the eastern coast of Australia. 

 

2.4.3.3 Taeniids 

Morphological examination of taeniid eggs does not permit the identification of species 

of Taenia and Echinococcus due to the eggs being largely indistinguishable.  However, 

cats are not usually considered to be definitive hosts for T. hydatigena, T. pisiformis or 

T. serialis, instead these parasites are more commonly found in feral dogs and foxes, 

and to a lesser extent domestic dogs (Ryan, 1976b; Kelly and Ng, 1975; Coman, 1973b, 

1972a).  A single feral cat from New South Wales has been recorded as being infected 

with T. serialis (Ryan, 1976a), whilst T. pisiformis has been found in one domestic 

kitten from Brisbane (Wilson-Hanson and Prescott, 1982).  T. ovis was found in a single 

cat from South Australia (O'Callaghan et al., 1984), though the feral or domestic status 

of this cat was not mentioned.  Although feral cats predate rabbits, T. hydatigena, T. 

pisiformis and T. serialis have not been reported in cats despite numerous surveys 

throughout Australia (Milstein and Goldsmid, 1997; O'Callaghan and Beveridge, 1996; 

Shaw et al., 1983; Coman et al., 1981a; Gregory and Munday, 1976; Coman, 1972b). 

 

Similarly, the hydatid tapeworm Echinococcus granulosus has not been found to occur 

in feral cats in Australia (Milstein and Goldsmid, 1997; O'Callaghan and Beveridge, 

1996; Shaw et al., 1983; Coman et al., 1981a; Gregory and Munday, 1976; Ryan, 

1976a; Coman, 1972b).  The definitive hosts for E. granulosus in Australia are the dog, 
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dingo and red fox, with two cycles that may interact; a dog-sheep cycle and a 

macropod-dingo cycle (Thompson, 2001).  However, as with T. pisiformis and T. 

serialis, the feral cat appears to be an unsuitable host for E. granulosus. 

 

The examination of a number of gastro-intestinal tracts collected from feral cats from 

Shark Bay identified the presence of adult T. taeniaeformis worms though no other 

taeniid parasites were detected.  Therefore, based on this result and the corroboration of 

previous surveys of feral cat parasites (Milstein and Goldsmid, 1997; O'Callaghan and 

Beveridge, 1996; Shaw et al., 1983; Coman et al., 1981a; Gregory and Munday, 1976; 

Coman, 1972b), it was presumed that the presence of taeniid eggs in the faeces of feral 

cats indicated a T. taeniaeformis infection. 

 

The prevalence of T. taeniaeformis was much lower in this survey than recorded in 

previous surveys of feral cats from Victoria, New South Wales and the Northern 

Territory (O'Callaghan and Beveridge, 1996; Coman et al., 1981a; Ryan, 1976a; 

Coman, 1972b).  This may be a reflection of the decreased sensitivity of faecal 

examination in detecting T. taeniaeformis infections, as Kelly and Ng (1975) found only 

10.7% of cats infected with T. taeniaeformis in Sydney showed eggs in their faeces.  

Despite the decreased sensitivity, T. taeniaeformis was detected in cats from Walpole, 

Mount Keith and Shark Bay at similar levels (10%, 11.3% and 7.7% respectively).  

These rates are significantly higher than those recorded for feral cats by Gregory and 

Munday (1976) from the Tasmanian Midlands (2.3%), though much lower than they 

found on King Island (42.9%). 
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The cystic stage of T. taeniaeformis develops in the liver of the intermediate hosts 

which are most commonly rodents (mainly rats and mice) (Bowman et al., 2002; 

Prescott, 1984).  The prevalence of this cestode parasite in feral cat populations has 

been shown to correlate with the importance of mice and small rodents in their diet 

(Gregory and Munday, 1976).  Likewise, rodents were a common prey item of cats 

collected from Walpole, Mount Keith and Shark Bay where T. taeniaeformis was also 

detected. 

 

2.4.3.4 Spirometra erinaceieuropaei 

Spirometra erinaceieuropaei, like G. spinigerum, requires at least two intermediate 

hosts to complete its life cycle, the first being a fresh-water crustacean of the genus 

Mesocyclops or Eucyclops, whilst the second may include frogs, snakes or mammals 

rather than fish (Bowman et al., 2002; Sandars, 1953; Bearup, 1948).  However, unlike 

G. spinigerum, S. erinaceieuropaei does not require a tropical/sub-tropical climate and 

is equally widespread in the temperate southern states of Australia as it is in the 

northern regions, particularly around wetlands (Beveridge et al., 1998; Gordon et al., 

1954; Bearup, 1948).  S. erinaceieuropaei occurs in cats throughout Australia, generally 

with a higher prevalence in adult and stray/feral cats that reflects the increased success 

and reliance upon hunting in these cats (Shaw et al., 1983; Wilson-Hanson and Prescott, 

1982). 

 

S. erinaceieuropaei infections were detected in cats from all sample regions in the 

present study except Dragon Rocks, the Gibson Desert, the Montebello Islands and the 

Cocos Islands.  The occurrence of S. erinaceieuropaei in cats from the southern, coastal 

and northern sampling regions of Western Australia is expected as the environmental 
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conditions in these areas are conducive to completion of the parasite’s life cycle 

(Bowman et al., 2002; Prescott, 1984; Coman et al., 1981a).  The occurrence of S. 

erinaceieuropaei in cats from the Perth Metropolitan area (40%) and Manjimup (13.3%) 

indicates that these cats, which were predominantly sourced from tips, were actively 

predating intermediate hosts as well as scavenging.  Additionally, the incidence of S. 

erinaceieuropaei in feral cats from Walpole (30%) emphasises the availability of 

intermediate hosts as well as the diverse nature of the feral cat diet in this region.  

Gregory and Munday (1976) found a strong correlation between S. erinaceieuropaei 

infections and the presence of frogs and lizards in the stomachs of feral cats from 

Tasmania. 

 

The prevalence of S. erinaceieuropaei in cats from Lake Argyle (79.4%) and the Bungle 

Bungles (75%) is much higher than the 14.7% reported in cats from Aboriginal 

communities in the northwest of Western Australia by Thompson et al. (1993b) and 

Meloni et al. (1993).  However, Thompson et al. (1993b) observed that although these 

cats exhibited hunting and scavenging behaviour, they were still treated as pets and 

spent much of their time inside houses.  This decreased reliance upon hunting would 

explain the lower levels of S. erinaceieuropaei observed in these cats compared to the 

feral cats from Lake Argyle and the Bungle Bungles which have much higher levels of 

exposure. 

 

The occurrence of S erinaceieuropaei (albeit at low prevalence) in feral cats from 

Mount Keith and Shark Bay is of interest as both these areas experience an arid climate 

where the availability of surface water is limited.  However, both the Mount Keith and 

Shark Bay regions have a pastoral history, with mining also occurring at Mount Keith.  
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Features such as livestock watering points and waste water discharge from mine 

processes as well as human dwellings present in these areas clearly provide conditions 

that allow the persistence of intermediate hosts required by S. erinaceieuropaei within 

these arid landscapes. 

 

However, the only cats infected with S. erinaceieuropaei from Shark Bay were 

collected from Faure Island (Figure 2.2), even though similar environmental conditions 

conducive to the persistence of this parasite would be expected to occur on both Dirk 

Hartog Island and the Peron Peninsula given their similar pastoral history.  The 

anthropogenic movement of cats onto Faure Island could explain this, as the 

introduction of a single infected cat would be sufficient to establish an infection of S. 

erinaceieuropaei on the island.  Much like the occurrence of T. cati in cats from Dirk 

Hartog Island (section 2.4.2.1), the isolated nature of the Faure Island cats indicates that 

S. erinaceieuropaei became established in these cats via anthropogenic means some 

time after the initial colonisation of this region by cats. 

 

2.4.4 Acanthocephalan Parasites of Feral Cats 

2.4.4.1 Oncicola pomatostomi 

Acanthocephalan parasites occurring in feral cats throughout Australia have previously 

been referred to as Oncicola sp. (Coman et al., 1981a; Ryan, 1976a; Coman, 1972b).  

However, Schmidt (1983) identified the species as Oncicola pomatostomi based on both 

juvenile and adult worms collected from feral cats.  Both the dingo and the feral cat act 

as definitive hosts (Schmidt, 1983), though Coman (1972b) failed to detect O. 

pomatostomi in any of the 204 dingoes and feral dogs he surveyed in Victoria.  The 

intermediate host (presumed to be an arthropod) of O. pomatostomi is not known, 
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though cats are considered to become infected through the ingestion of birds which act 

as paratenic hosts (Bowman et al., 2002; Schmidt, 1983). 

 

Foxes do not appear to harbour O. pomatostomi (Ryan, 1976b; Coman, 1973b), this 

may be due to the fact that birds are a more important food item of feral cats than of 

foxes, particularly in arid regions (Read and Bowen, 2001; Risbey et al., 1999; Bayly, 

1978).  As such, O. pomatostomi infections are most commonly detected in cats from 

the arid regions of Australia (O'Callaghan and Beveridge, 1996; Coman et al., 1981a; 

Ryan, 1976a), although the parasite has been found in feral cats from Kangaroo Island 

in South Australia (O'Callaghan et al., 1984), as well as wetter regions of New South 

Wales (Ryan, 1976a).  O. pomatostomi infections were prominent in feral cats collected 

from the arid regions in the present study and absent in those from the wetter southwest 

regions. 

 

Whilst birds were a rare occurrence in the stomachs of feral cats from the arid sampling 

areas in the present study, grasshoppers, insects and other arthropods were frequently 

encountered.  It may be that the frequent occurrence of arthropods as well as birds in the 

diet of feral cats from arid regions accounts for the increased prevalence of O. 

pomatostomi in cats from these areas and its absence from the wetter climates, at least in 

Western Australia. 

 

2.4.5 Protozoan Parasites of Feral Cats 

Estimates of the total number of protozoan species present in the Australian vertebrate 

fauna range from 1306 to 3194 species (Adlard and O'Donoghue, 1998).  So far only 

488 species have been identified, with 255 of these being recorded from the 35% of the 
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Australian mammal fauna that has been investigated (Adlard and O'Donoghue, 1998).  

This dearth of information on Australian protozoa is due not only to a lack of 

investigation, but also to a lack of distinguishing morphological characteristics and the 

availability of appropriate tools for studying them (Monis, 1999; McManus and Bowles, 

1996).  As such, surveys of the protozoan parasites of feral cats in Australia are few. 

 

2.4.5.1 Isospora felis and I. rivolta 

The coccidian parasites Isospora felis and I. rivolta were the most common protozoan 

parasites detected in feral cats for this study.  At least one of these two parasite species 

was present in cats from all except two sample regions throughout Western Australia: 

the Bungle Bungles and the Cocos Islands.  Whilst the absence of I. felis and I. rivolta 

in cats from the Bungle Bungles may be due to the small sample size (n = 4), the lack of 

any protozoan parasites from the Cocos Islands cannot be explained.  The introduction 

of cats to this island environment may have resulted in a protozoan-free population, 

though this is unlikely. 

 

Like most coccidian parasites, the life cycle of I. felis and I. rivolta is typically direct, 

although rodents have been shown to act as paratenic hosts for both these species 

(Dubey and Frenkel, 1972b; Frenkel and Dubey, 1972).  However, it is unclear whether 

cats are infected more commonly by oocysts or by the ingestion of paratenic hosts 

(Bowman et al., 2002).  The prevalence of coccidian parasites in cats appears to be at 

least partially age dependent with kittens typically having a higher infection rate than 

adults (Prescott, 1984; Collins et al., 1983; Dubey, 1973), though a study of 1,294 cats 

in 1978 found no relation between age and prevalence of coccidia (Visco et al., 1978). 
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Collins et al. (1983) found only four of 71 cats examined from Sydney to be infected 

with enteric protozoa, whist Coman et al. (1981b) detected I. rivolta in 3% and I. felis in 

4% of feral cats from Victoria and western New South Wales.  Likewise, Gregory and 

Munday (1976) found I. rivolta in 5.4% and I. felis in 12.7% of feral cats from 

Tasmania.  This is not unusual as I. felis is reported to occur more frequently in cats 

than I. rivolta (Prescott, 1984), although the overall prevalence of I. rivolta (16.9%) was 

higher than I. felis (4.5%) in the present study.  This difference in prevalence of I. 

rivolta and I. felis in feral cats from Western Australia may be due to a climatic 

influence, as I. rivolta was most prevalent in cats collected from drier regions. 

 

2.4.5.2 Sarcocystis 

The life cycle of Sarcocystis is indirect and requires two hosts, a herbivorous and/or 

omnivorous intermediate host and a predatory or scavenging definitive host (Buxton, 

1998; Savini et al., 1992a).  Sarcocystis causes disease in the intermediate host and 

appears to have little or no pathogenicity in the definitive host carnivores (Prescott, 

1984).  Whilst cats are known to harbour two species of Sarcocystis infectious to sheep 

(Savini et al., 1993), dogs, dingoes and red foxes are more often responsible for the 

transmission of Sarcocystis to both sheep and cattle (Savini et al., 1993, 1992b). 

 

Studies on Sarcocystis infections in Australia have predominantly been concerned with 

those species infecting sheep and cattle due to their potential economic impact, however 

Sarcocystis spp. have been shown to occur in numerous species of Australian wildlife 

(Munday and Mason, 1980; Munday et al., 1980; Munday et al., 1979; Munday et al., 

1978).  Despite these investigations, the cat has only been identified as a definitive host 

for Sarcocystis in rabbits (Munday et al., 1980). 
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A survey of protozoan parasites in feral cats from Victoria and western New South 

Wales failed to detect Sarcocystis in any of the 300 cats examined (Coman et al., 

1981b).  Additionally, a survey by Gregory and Munday (1976) of feral cats from 

Tasmania found Sarcocystis in only one of 55 cats examined and tentatively attributed 

the presence of this infection to the possible scavenging of dead sheep or offal.  The 

occurrence of Sarcocystis in feral cats from Western Australia was similarly uncommon 

with an overall prevalence of only 2.1%, with a single case of Sarcocystis detected from 

Shark Bay, the Gibson Desert and Lake Argyle, whilst five cats from Mount Keith were 

infected. 

 

Savini et al. (1992a) reported a low prevalence (9%) of Sarcocystis infections in cattle 

from arid regions of Western Australia, and concluded that aridity coupled with low 

densities of both definitive and intermediate hosts are the factors most likely to limit the 

prevalence of Sarcocystis in an area.  However, the results from the present study seem 

to show a preference for Sarcocystis infections in cats from dryer areas, which may 

reflect a seasonal or opportunistic infection source for these areas. 

 

2.4.5.3 Toxoplasma gondii 

None of the 379 cats examined in this study were found to be shedding Toxoplasma 

gondii oocysts in their faeces.  Cats collected for this study were predominantly adults 

and as older cats are less likely to harbour active infections of T. gondii in the gut, the 

fact that this parasite was not detected in faeces is not surprising.  Therefore, further 

investigation into the occurrence of T. gondii in feral cats was performed using more 

sensitive detection methods, which is presented in greater detail in Chapter 5. 
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2.4.5.4 Giardia 

Species of the flagellated protozoan Giardia inhabit the intestinal tracts of virtually all 

classes of vertebrates, however G. duodenalis is the only recognised species to occur in 

most mammals (O'Handley et al., 2000; Thompson et al., 2000b; Thompson et al., 

1998; Thompson et al., 1993b).  A single Giardia infection was detected in a cat from 

the Dragon Rocks Nature Reserve.  Molecular analysis of the purified oocysts revealed 

the isolate to be G. duodenalis of the genotype belonging to the zoonotic genetic 

Assemblage A, which is most commonly found in humans.  This finding is further 

discussed in Chapter 4. 

 

2.4.5.5 Cryptosporidium 

Cryptosporidium was found in a total of four cats, however the oocysts were in poor 

condition and speciation was not possible.  Further attempts to purify and characterise 

the parasite using molecular procedures proved unsuccessful.  The poor quality of the 

oocysts may have been due to the preservative they were stored in or an effect of 

passing through the feline digestive tract if the oocysts originated from an infection 

source other than the cat.  Given the wide host range and zoonotic potential of this 

parasite (Nizeyi et al., 1999; Graczyk et al., 1998; Olson et al., 1997b), it is impossible 

to determine if the Cryptosporidium detected in these cats were due to active infections 

or passive transfer without applying the proper diagnostic techniques. 

 

2.4.5.6 Eimeria 

Cats and other carnivorous vertebrates are not known to harbour any infections of 

Eimeria spp.  The presence of Eimeria in cats from several different sampling regions, 
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often at high levels, is considered to originate from ingested prey infected with Eimeria.  

This is supported by the damaged condition of most Eimeria oocysts detected, which 

indicated that they were merely being passed through the cat intestine and did not 

represent an active infection.  These artefact infections are believed to be a result of cat 

depredation of lizards and rodents with prevalence levels generally indicating the 

importance of these animals in the diet of feral cats. 

 

2.4.6 Parasites of Native Fauna 

Australian marsupials are parasitised by a broad range of helminth parasites which 

constitute 24% to 50% of the helminth families known from mammals (Beveridge and 

Spratt, 1996).  The Trematoda is represented by nine families, the Cestoda by five 

families, the Acanthocephala are represented by two genera, whilst the Nematoda are by 

far the most numerous helminths with 20 families (Beveridge and Spratt, 1996).  These 

major groups of parasites are similar to those that you would expect to find in eutherian 

mammals occupying similar ecological niches on other continents (Beveridge and 

Spratt, 1996).  Thus, it appears that the convergent evolution of marsupials and their 

analogous eutherian mammals on other continents and the overall similarity between 

them, extends to the types of helminth parasites they harbour (Beveridge and Spratt, 

1996).  Whilst Australian marsupials harbour a relatively cosmopolitan range of 

helminth families, their species of helminths are highly endemic due to the prolonged 

period of isolation during which they evolved (Beveridge and Spratt, 1996). 

 

Due to the destructive techniques of collecting and identifying internal parasites, most 

investigations have focussed on the study of helminths in the more common native 

species (Spratt et al., 1990).  Some comprehensive reviews of marsupial diseases have 
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previously been published (Munday, 1988; Arundel et al., 1977), though these focus 

primarily on disease and their symptoms rather than parasites.  More recently, 

O’Donoghue and Adlard (2000) compiled a catalogue of recorded protozoan parasites 

occurring in the Australian vertebrate fauna.  However, systematic surveys of native 

species are rare and many studies still rely upon opportunistic sampling methods such as 

the collection of road-kill or professional shooters (Oakwood and Spratt, 2000; 

Beveridge et al., 1992; Barker et al., 1989; Arundel et al., 1979; Beveridge and 

Arundel, 1979). 

 

The present study is in no way intended to be a comprehensive survey of the parasites 

present in Western Australia’s wildlife.  Instead, it is a preliminary investigation into the 

basic composition of the parasite fauna of selected native mammal species based 

primarily on the examination of faecal samples collected from different regions of 

Western Australia. 

 

2.4.7 Native Fauna Parasite Communities 

Dominance of helminth communities by the strongyloid nematodes is common in 

marsupials (Beveridge and Spratt, 1996; Spratt, 1987), and was observed for all species 

of marsupials examined in the present study (Table 2.2).  It appears that this general 

dominance of strongyle nematodes in helminth communities occurs not only in 

macropods where it has been most commonly reported (Beveridge et al., 1992; 

Beveridge and Arundel, 1979), but also in the dasyurids, peramelids, phalangerids, and 

potoroidids as well (Spratt, 1987). 

 



 70

The protozoan parasite communities of Australian marsupials are less well known than 

the helminth communities, presumably due to the lack of appropriate diagnostic 

(molecular) tools which means that traditionally complex biological parameters such as 

host range, growth characteristics or serology are required for their identification and 

speciation (Monis, 1999).  Many species of Australian marsupials have no protozoan 

parasites recorded for them. 

 

2.4.7.1 Dasyurus geoffroii 

The dasyurids typically harbour the widest range of helminth families of any group of 

marsupials including helminths from the three parasite phyla: Platyhelminthes; 

Acanthocephala; and Nemathelminthes (Beveridge and Spratt, 1996).  Within the 

dasyurid marsupials, the families of cestode parasites and their life cycle patterns 

parallel those found in comparable eutherian mammals.  However, the two 

cyclophyllidean genera Anoplotaenia and Dasyurotaenia that occur in the larger 

carnivorous dasyurids are enigmas (Beveridge and Jones, 2002).  Although both genera 

were originally placed in the family Taeniidae, they have since been removed and left as 

genera of indeterminate affinities within the Cyclophyllidea (Jones and Bray, 1994; 

Khalil et al., 1994; Rausch, 1994, 1985). 

 

Interestingly, D. geoffroii had the highest prevalence of strongyles (89.2%) of all the 

marsupials examined for this study despite previous studies reporting higher 

prevalences in macropodids.  Beveridge and Spratt (1996) reported a frequency of 

occurrence of strongyle nematodes in members of the Dasyuridae as approximately 

50% whilst members of the Macropodidae typically experienced frequencies of 60% or 

more.  However, research on the helminth fauna of dasyurids is far from 
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comprehensive, and the majority has been based on those species occurring in the 

northern, eastern and southern regions of Australia (i.e. D. hallucatus, D. maculatus and 

D. viverrinus) (Oakwood and Spratt, 2000; Spratt et al., 1990).  Only three species of 

nematode have been recorded for D. geoffroii (Mackerrastrongylus mawsonae, 

Sprattellus waringi and Woolleya cathiae) (Spratt et al., 1990), all belonging to the 

order Strongylida.  Similarly, the recorded helminth fauna of other dasyurids (e.g. D. 

albopunctatus, D. hallucatus and D. maculatus) is also dominated by nematodes, many 

of which are strongyles (Oakwood and Spratt, 2000; Spratt et al., 1990). 

 

One possible explanation for the high prevalence of strongyle nematode eggs detected 

in the faeces of D. geoffroii in the present study may be that they are passing strongyle 

nematode eggs originating from ingested prey species.  The presence of oxyuroid eggs 

in two D. geoffroii samples adds support to this hypothesis, as this nematode group 

normally parasitises herbivorous and folivorous marsupials (Spratt et al., 1990) as well 

as reptiles (Pichelin et al., 1999).  Similarly, Oakwood and Spratt (2000) deemed that 

the occurrence of an oxyuroid nematode in the stomach of a D. hallucatus in the 

Northern Territory originated from the ingestion of invertebrate or vertebrate prey, and 

as such was not an active infection.  The occurrence of artefact parasites was also 

observed in feral cats, with the presence of unidentified spiruroid and Eimeria species in 

numerous faecal samples (section 2.4.5.6).  However, without proper speciation of the 

helminths occurring in both dasyurids and other marsupials, the status of these parasites 

as active or artefact infections cannot be confirmed nor disproved, though the majority 

of these strongyle eggs would be expected to belong to the Trichostrongyloidea, which 

commonly occur in dasyurids. 
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Two D. geoffroii were the only marsupials sampled found to be infected with a 

trematode parasite.  This low prevalence appears somewhat uncommon, as there are 

several genera of trematode reported to occur in dasyurids, many of which are 

undescribed (Spratt et al., 1990).  However, Oakwood and Spratt (2000) detected a 

single echinostomatid trematode in only one of 62 D. hallucatus autopsied for internal 

parasites in the Northern Territory.  This low frequency of occurrence of trematode 

parasites may be common in dasyurids.  Additionally, Oakwood and Spratt (2000) 

found only a single species of cestode (S. erinaceieuropaei) occurring inter-muscularly 

and in the peritoneal cavity of three D. hallucatus.  The nature and location of these 

infections means that they would not have been detected in D. geoffroii in the present 

study. 

 

Protozoan parasites recorded for species of the genus Dasyurus consist of unidentified 

Sarcocystis sp., Toxoplasma and Hepatozoon dasyuri, though there are no protozoan 

parasites specifically recorded for D. geoffroii (O'Donoghue and Adlard, 2000).  The 

majority of coccidia reported as occurring in the Dasyuridae have not been described, 

though Entamoeba has not previously been recorded for any species of Dasyurus 

(O'Donoghue and Adlard, 2000).  However, the limited information available for 

dasyurids does not necessarily mean that the detection of an unidentified Entamoeba 

species in a single D. geoffroii is an uncommon occurrence.  This was the only 

protozoan parasite detected from D. geoffroii in the present study.  Similarly, Oakwood 

and Spratt (2000) detected only a single protozoan parasite (unidentified Sarcocystis 

sp.) in their survey of D. hallucatus.  As such, it appears that members of the genus 

Dasyurus may harbour a restricted fauna of protozoan parasites. 
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2.4.7.2 Isoodon obesulus and Perameles bougainville 

The diversity and range of helminth parasite groups represented in the peramelids 

resembles that of dasyurids in many ways.  The major groups of nematodes in these 

marsupials consist of the superfamilies Trichostrongyloidea, Metastrongyloidea and 

superfamilies of the order Spirurida (Beveridge and Spratt, 1996).  Additionally, a range 

of trematode parasites have been recorded whilst cestodes consist of the families 

Hymenolepididae, Dilepididae and Linstowiidae (Beveridge and Jones, 2002), all of 

which generally have insects as intermediate hosts (Beveridge and Spratt, 1996).  

However, no trematode or cestode parasites were detected in I. obesulus or P. 

bougainville for this study, which was most likely due to the use of a flotation technique 

for the examination of faecal samples. 

 

Strongyle nematodes were detected in the faeces of I. obesulus and P. bougainville at 

similar prevalences (68.8% and 60.0% respectively) despite the P. bougainville being 

sourced from a captive breeding colony.  Trichostrongyloid nematodes constitute the 

most diverse helminth superfamily in the bandicoots comprising three families; 

Mackerrastrongylidae; Dromaeostrongylidae and Herpetostrongylidae (Beveridge and 

Spratt, 1996).  The peramelids are typically dominated by the family 

Mackerrastrongylidae which is represented by the three genera: Asymmetracantha; 

Mackerrastrongylus; and Tetrabothriostrongylus (Beveridge and Spratt, 1996; Spratt et 

al., 1990).  Each of these genera has been recorded from I. obesulus but not from P. 

bougainville, however they have been recorded in other species of Perameles (Spratt et 

al., 1990).  Additionally, the representative genera of the Dromaeostrongylidae and 

Herpetostrongylidae families have also been recorded from I. obesulus (Spratt et al., 

1990). 
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Three I. obesulus from Manjimup were found to have Strongyloides-like eggs or L1 

larvae though none were detected in any of the P. bougainville.  A single species, 

Parastrongyloides australis, has been recorded as occurring in I. obesulus (Mawson, 

1960).  Parasites of the family Strongyloididae typically have direct life cycles and 

involve a free-living stage where infection of the host occurs via ingestion or skin 

penetration of L3 larvae.  The sourcing of P. bougainville from a captive breeding 

colony may explain the absence of these parasites, as the management of this P. 

bougainville population included periodic anthelminthic treatment which could have 

broken the life cycle and contributed to the elimination of these parasites from these 

animals.  However, the prevalence of these parasites in the wild I. obesulus populations 

sampled was still low (3.9%). 

 

The occurrence of spiruroid nematodes in only three of the 77 wild I. obesulus (3.9%) 

appears to be significantly lower than its occurrence in nine of the 35 captive P. 

bougainville (25.7%).  These parasites typically have an indirect life cycle involving 

arthropods as intermediate hosts and spiruroid larvae have previously been reported to 

occur in I. obesulus, though none have been identified to species level (Spratt et al., 

1990).  The higher prevalence of spiruroid nematodes in P. bougainville as opposed to I. 

obesulus in the present study could be related to their captivity.  The constant presence 

of a readily accessible food source would be expected to attract numerous insects and 

enhance the transmission of spiruroid nematodes among P. bougainville, resulting in the 

higher prevalence observed. 
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Similarly, the difference in prevalence of Trichuris between I. obesulus (11.7%) and P. 

bougainville (22.9%) may also be due to the influence of captivity.  Whilst Trichuris 

species have direct life cycles, periodic anthelminthic treatment would most likely not 

be intensive enough to control infections.  Therefore, the captive bandicoots would be 

continuously exposed to infective stages, which would be exacerbated by the movement 

of both animals and soil/bedding.  Although the species of Trichuris in the bandicoots 

was not determined, T. peramelis is the only species of this cosmopolitan genus 

described from marsupials (Beveridge and Spratt, 1996), and has been reported in 

several species of the bandicoot genera Isoodon and Perameles. 

 

The parasite genus Linstowinema is represented by four species and is endemic in 

Australian marsupials (Beveridge and Spratt, 1996).  This nematode genus is commonly 

found in peramelids (Beveridge and Spratt, 1996), and was present in 37.7% of I. 

obesulus and 11.4% of P. bougainville sampled.  Only one species of Linstowinema (L. 

cinctum) has previously been recorded for P. bougainville, though in the present study 

all four infected P. bougainville were identified as harbouring L. inglisi.  Five of the 29 

infected I. obesulus were harbouring L. inglisi, whilst the remaining infections were an 

unidentified species of Linstowinema.  Two species (L. inglisi and L. meridionalis) as 

well as a third unidentified species of Linstowinema have previously been identified in 

I. obesulus (Spratt et al., 1990). 

 

The detection of oxyuroid nematodes in a single P. bougainville is unusual as these 

nematodes typically occur in herbivorous and/or folivorous diprotodonts (Beveridge and 

Spratt, 1996), whilst several species of lizard are also parasitised by oxyuroid 

nematodes (Pichelin et al., 1999).  The occurrence of this parasite in only a single P. 
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bougainville suggests that this is an accidental infection, most likely resulting from the 

ingestion of soil contaminated with oxyuroid eggs or an infected lizard attracted to the 

readily available food in the breeding pens. 

 

Both I. obesulus and P. bougainville had the widest range of protozoan parasites of the 

host species sampled in the present study.  Unidentified species of Entamoeba and 

Eimeria species were present in both I. obesulus and P. bougainville at similar 

prevalences.  Whilst these two parasite genera have previously been recorded in I. 

obesulus, there are no records for P. bougainville and neither of these protozoan 

parasites have been recorded for other members of the genus Perameles (O'Donoghue 

and Adlard, 2000).  Giardia was detected in only a single I. obesulus from Manjimup, 

though Bettiol et al. (1997) found Giardia in 62% of bandicoots examined from 

Tasmania. Giardia was also detected in a dingo (Canis lupus dingo), a pale field rat 

(Rattus tunneyi) and a western chestnut mouse (Pseudomys nanus), all collected from 

Lake Argyle (results not shown).  These results, along with that of the Giardia found in 

the I. obesulus, are further discussed in Chapter 4. 

 

2.4.7.3 Bettongia penicillata 

Knowledge of the helminth fauna of the potoroid marsupials is relatively sparse as 

many of them are endangered and few have been examined extensively for parasites 

(Beveridge and Spratt, 1996).  The helminth fauna of potoroids appears to be quite 

limited, with small numbers of species of trichostrongyloid, strongyloid and oxyuroid 

nematodes and a few cestodes having been reported (Beveridge and Spratt, 1996), 

whilst the recorded helminth fauna for B. penicillata consists of a single cestode, an 
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acanthocephalan, and six nematodes (only three described to species) (Spratt et al., 

1990). 

 

The occurrence of Rhabditida nematodes in B. penicillata has not been previously 

reported, though such a low occurrence of these parasites as observed in the present 

study (5.0%) may have contributed to their previous lack of detection.  Additionally, 

strongyle nematodes identified as belonging to the genus Potorostrongylus were 

detected in two B. penicillata from Manjimup.  A single species of this genus, 

Potorostrongylus finlaysoni, is the sole member of the Strongyloidea known to occur in 

the genera Potorous and Bettongia (Beveridge and Spratt, 1996; Spratt et al., 1990), 

though a second species, P. aepyprymnus, has been reported from the rufous bettong 

(Aepyprymnus rufescens) (Beveridge et al., 1992; Mawson, 1974). 

 

The shift of the centre of fermentative digestion in the Macropodidae from the large 

bowel to the stomach allowed the subsequent radiation of strongyloid nematodes in 

these hosts (Beveridge and Spratt, 1996).  However, in potoroids the primary site of 

fermentative digestion is in the caecum, as their saccular forestomach functions 

primarily as a storage organ (Beveridge and Spratt, 1996; Frappel and Rose, 1986; 

Hume, 1982).  Therefore, the limited production of volatile fatty acids in the stomach of 

potoroids has resulted in a limited fauna of strongyloid nematodes.  The absence of 

these stomach-inhabiting strongyloid nematodes in potoroids is considered to be the 

reason for their observed lack of helminth diversity, as these nematodes commonly 

dominate the parasite communities in most macropodid hosts (Beveridge et al., 1992). 
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Records of protozoan parasites of bettongs are very limited (O'Donoghue and Adlard, 

2000), and there are no records of protozoan parasites from B. penicillata though the 

species found in the present study appear to correlate with those previously found in 

other members of the Potoroidae family.  Eimeria is a commonly reported protozoan in 

potoroids and was detected in B. penicillata from both Batalling and Manjimup, with 

three species identified: E. gaimardi; E. potoroi; and E. aepyrmni.  Each of these 

species has previously been reported as occurring exclusively in B. gaimardi, Potorous 

tridactylus and A. rufescens respectively (Barker et al., 1988).  Despite this, all three of 

these species were detected in B. penicillata in the present study. 

 

The unidentified Eimeria species as well as the unidentified coccidia detected in B. 

penicillata suggests that there may be additional species yet to be identified and further 

investigation is required to elucidate the extent of the protozoan fauna in members of 

the Potoroidae.  Eimeria was not detected in any of the B. penicillata sampled from 

Shark Bay, though this may have been due to a combination of the small sample size (n 

= 7) and the origin of the B. penicillata population, which was reintroduced to Shark 

Bay only a year prior to sampling. 

 

2.4.7.4 Trichosurus vulpecula 

Beveridge and Spratt (1996) proposed that the evolution of herbivory in Australian 

marsupials could have initially led to a decrease in parasite diversity.  This is illustrated 

by the detection of only one group of helminths (strongyle nematodes) in T. vulpecula 

in the present study.  In addition, the prevalence of these helminths is markedly lower 

than for all the other species of marsupial examined.  It has been proposed that this lack 

of helminth diversity may most likely be due to their arboreal nature (Beveridge and 
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Spratt, 1996).  The shift from a terrestrial to an arboreal existence would have resulted 

in reducing their access to infective parasite stages in soil thus leading to a decrease in 

parasite diversity (Beveridge and Spratt, 1996; Beveridge et al., 1992).  Hence, the 

observed lack of diversity of major helminth groups in T. vulpecula in the present study. 

 

As with other marsupials the helminth fauna of T. vulpecula is dominated by species of 

nematodes, with only two platyhelminths being known to occur, the common liver fluke 

(Fasciola hepatica) and the cestode Bertiella trichosuri (Beveridge and Spratt, 1996).  

The trematode F. hepatica was introduced to Australia with domestic livestock and is 

relatively common in T. vulpecula in the eastern states, however it does not occur in 

Western Australia.  The cestode B. trichosuri is a common parasite of T. vulpecula 

(Beveridge, 1985), though was not detected in the present study, possibly due to the 

reduced sensitivity of the flotation technique used to screen faecal samples. 

 

Of the fifteen nematode species known to occur in T. vulpecula, eight are 

trichostrongyloid nematodes most of which are accidental acquisitions from grazing 

ruminants (Beveridge and Spratt, 1996), and appear to occur at a low prevalence and 

intensity of infection (O'Callaghan and Moore, 1986).  Whilst speciation of strongyle 

parasites was not performed, the occurrence of accidental species originating from 

introduced ruminants would not be unexpected given the proximity of grazing livestock 

to many of the areas where T. vulpecula were sampled in this study.  T. vulpecula are 

also known to harbour the oxyuroid nematode Adelonema trichosuri (Beveridge and 

Spratt, 1996; Spratt et al., 1990), though again none were detected in the present study. 

 



 80

Recorded protozoan infections of T. vulpecula include parasites of the genera Eimeria, 

Sarcocystis, Toxoplasma and Entamoeba (O'Donoghue and Adlard, 2000), though the 

presence of Sarcocystis and Toxoplasma can generally only be detected by the 

examination of tissue samples, which were not collected in the present study.  Both 

Eimeria and Entamoeba were detected in T. vulpecula at relatively low levels (2.4% and 

7.2% respectively), however none of the Eimeria could be identified to species.  The 

protozoan fauna of T. vulpecula from Western Australia appears to correlate with the 

recorded protozoan parasites of T. vulpecula, though this itself appears to be somewhat 

lacking.  Excluding the introduced trichostrongylid nematodes and the common liver 

fluke, T. vulpecula harbour a restricted range of parasites (Beveridge and Spratt, 1996), 

and this appears to be even more so for T. vulpecula in Western Australia. 

 

2.4.7.5 Macropus fuliginosus and M. eugenii 

Despite the initial indication that the Macropodidae harbour a very limited diversity of 

parasites (Table 2.2), it must be remembered that the classification of strongyle eggs 

represents all parasites of the order Strongylida, with the exception of the superfamily 

Metastrongyloidea.  Therefore, classifying parasites only to their order has concealed 

the existence of a potentially large diversity of helminth fauna in both M. fuliginosus 

and M. eugenii from Western Australia.  Indeed, the Macropodidae are known to 

harbour the most diverse range of parasites within the Australian marsupial radiation 

(Beveridge and Spratt, 1996), and this diversity has been attributed to their development 

of a complex sacculated forestomach (Hume, 1982). 

 

The evolution of a saccular forestomach in the Macropodidae shifted the centre of 

fermentative digestion from the large bowel to the stomach allowing the subsequent 
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radiation of numerous strongyloid nematode genera that contribute significantly to the 

diversity of the helminth fauna of kangaroos and wallabies (Beveridge and Spratt, 1996; 

Beveridge and Arundel, 1979).  Typically, the Macropodidae have a helminth fauna 

characteristic of grazing eutherians, with members of the Trichostrongyloidea and 

Metastrongyloidea present, though members of the Strongyloidea are the most common 

nematodes (Beveridge and Spratt, 1996; Beveridge and Arundel, 1979).  Therefore, the 

helminth communities of kangaroos and wallabies are relatively uniform, composed of 

numerous species with no one species or group of species being dominant (Beveridge et 

al., 1992). 

 

A single genus of oxyuroid nematode, Macropoxyuris, occurs in the caecum and colon 

of kangaroos with worm burdens sometimes in excess of 500,000 (Beveridge and 

Arundel, 1979).  Two species of Macropoxyuris have been described though several 

more remain undescribed (Spratt et al., 1990).  Beveridge and Arundel (1979) found 

that species of Macropoxyuris usually occurred in kangaroos in mixed infections.  

Therefore, the oxyuroid eggs detected in 27.8% of M. fuliginosus sampled in the present 

study most likely belong to the genus Macropoxyuris.  An unidentified species of 

Macropoxyuris has been recorded as occurring in M. eugenii (Spratt et al., 1990), 

though oxyuroid eggs were not detected in any of the M. eugenii examined in the 

present study.  Likewise, a two year study of the seasonal and geographical variation of 

M. eugenii nematodes on Kangaroo Island also failed to detect oxyuroid nematodes 

(Smales and Mawson, 1978). 

 

The occurrence of unidentified coccidia in 74.3% of M. eugenii and 5.6% of M. 

fuliginosus sampled may represent a wide variety of protozoan species that have 
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previously been reported from these hosts (O'Donoghue and Adlard, 2000).  The most 

commonly occurring protozoans reported from both M. eugenii and M. fuliginosus 

belong to the genus Eimeria (O'Donoghue and Adlard, 2000).  Unidentified species of 

Eimeria were detected in 16.7% of M. fuliginosus, however many of the unidentified 

coccidia detected in M. eugenii are believed to be Eimeria species though they were not 

identified. 

 

The transmission of direct life cycle parasites, such as Eimeria and many other 

protozoan parasites may be enhanced in small and highly fragmented host populations 

(Viggers et al., 1993; Scott, 1988).  Therefore, the higher prevalence of protozoan 

parasites in M. eugenii compared to M. fuliginosus, may be a reflection of the 

fragmented and localised distribution of M. eugenii in Western Australia compared to 

the broad distribution of M. fuliginosus (Menkhorst and Knight, 2001; Smales and 

Mawson, 1978). 

 

2.4.7.6 Notomys alexis, Pseudomys hermannsbergensis and Mus 

musculus 

In this study, the predominant eutherian mammals examined consisted of spinifex 

hopping mice (Notomys alexis), sandy inland mice (Pseudomys hermannsbergensis) and 

introduced house mice (Mus musculus).  Due to the general difficulty in finding and 

trapping native rodents as opposed to the more common introduced species, very little is 

known of their helminth fauna (Warner, 1998).  In contrast to the marsupials, the 

Muridae in this study appeared to harbour a sparse range of helminth parasites, with the 

most obvious difference being the absence of nematodes belonging to the order 
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Strongylida.  However, all three murid species sampled had a high prevalence of 

oxyuroid nematodes belonging to the genus Syphacia. 

 

Nematodes of the genus Syphacia were the most common parasites detected in all three 

rodent species examined and although the majority of these were unidentified, Syphacia 

obvelata was detected in 30.8% of M. musculus.  Adult Syphacia worms were recovered 

from each of the murid species examined in the present study, however S. obvelata was 

only detected in M. musculus, whilst an unidentified Syphacia species was detected in 

N. alexis, P. hermannsbergensis and M. musculus.  The detection of S. obvelata in only 

M. musculus correlates with the previous finding that separate helminth communities 

exist between native rodents and M. musculus (Spratt, 1987).  However, the occurrence 

of an unidentified Syphacia species at similar prevalence levels in both the native 

rodents and M. musculus indicates that each of these host species is exposed to similar 

levels of infective stages of these nematodes. 

 

Oxyuroid nematodes have a typically direct life cycle, hence their affinity for 

herbivorous mammals.  However, S. obvelata has been shown to be transmitted 

primarily by direct contact between host individuals (Grice and Prociv, 1993), largely 

negating any environmental or external constraints on its transmission.  This 

requirement for physical contact between hosts would explain the occurrence of S. 

obvelata in the M. musculus and its absence from either species native mice.  However, 

the similar prevalence levels of the unidentified species of Syphacia in both the native 

mice and M. musculus suggest that it does not require direct contact between individuals 

for its transmission. 
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Protozoan parasites were not detected in any of the M. musculus examined in the 

present study.  Indeed, the occurrence of protozoan parasites in all three murid species 

examined was very low with unidentified coccidia detected in two N. alexis and two P. 

hermannsbergensis, and unidentified Entamoeba species in six N. alexis.  There are no 

protozoan parasites recorded for P. hermannsbergensis and Giardia duodenalis is the 

only protozoan recorded for N. alexis (O'Donoghue and Adlard, 2000).  Information on 

the prevalence and origin of the Giardia infection in this host indicates that it was an 

isolated case (Ey et al., 1993).  Giardia was not detected in any of the N. alexis 

examined from Shark Bay, though it was detected in one pale field rat (Rattus tunneyi), 

one western chestnut mouse (Pseudomys nanus) and one dingo (Canis lupus dingo) all 

from Lake Argyle, and will be further discussed in Chapter 4. 

 

The absence of protozoan parasites in M. musculus in the present study may be a 

reflection of the sample size (n = 13), however a similar sample size (n = 18) succeeded 

in detecting coccidia in P. hermannsbergensis.  Therefore, the apparent absence of 

protozoan parasites in M. musculus appears to support the hypothesised lack of 

interaction between them and native mice based on their dietary requirements (Norton, 

1987; Cockburn, 1980; Watts and Braithwaite, 1978).  However, the occurrence of an 

unidentified Syphacia species in both M. musculus and native mice contradicts this 

hypothesis.  Further investigation of the parasite fauna of introduced and native mice 

species is clearly required to gain a better understanding of the parasite communities 

present in both native and introduced rodents in Western Australia. 
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2.4.8 Parasite Transfer Between Feral Cats and Native Fauna 

Initial observations indicate that the transfer of parasite between cats and the native 

wildlife appears to be negligible.  A similar conclusion was reached by Dickman 

(1996b) who reviewed the published literature on the coincidence of non-specific feline 

parasites in the Australian vertebrate fauna.  However, only 25% of known marsupial 

host species have been examined for parasites (Beveridge and Spratt, 1996), whilst only 

35% of all Australian mammals have been examined for protozoan parasites (Adlard 

and O'Donoghue, 1998). 

 

Despite the lack of any observed sharing and/or interaction with feline pathogens to 

native fauna in the present study, the occurrence of certain parasites within feral cat 

populations indicates the involvement of the native fauna.  Obvious examples of this 

include those parasites with complex life cycles such as S. erinaceieuropaei and G. 

spinigerum as well as T. taeniaeformis and O. pomatostomi, which readily involve 

native species as intermediate or paratenic hosts.  The occurrence of generally non-

specific parasites, such as T. gondii (see Chapter 5) and Sarcocystis, in feral cat 

populations further increases the potential impact cats have on the native fauna. 

 

Further evidence of the cross-transmission of parasite between feral cats and the native 

fauna is provided by the nematode C. dasyuridis, a native parasite of dasyurids 

(Mawson, 1968).  The survey of helminth parasites of feral cats on King Island by 

Gregory and Munday (1976) detected 9.5% of cats infected with C. dasyuridis, despite 

the last recorded sighting of a dasyurid on the island being in 1922.  Despite the 

presumed extinction of dasyurids from King Island approximately 50 years earlier 

(Gregory and Munday, 1976), C. dasyuridis managed to persist in the feral cat 
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population, demonstrating the ability of some parasites to acquire new hosts to their 

advantage. 

 

The importance of this finding is the potential for foreign parasites to demonstrate 

similar abilities in the Australian fauna.  This has already been documented in T. 

vulpecula, where a significant portion of their helminth communities include species 

they have acquired from introduced ruminants (Beveridge and Spratt, 1996).  This is of 

particular concern for conservation efforts, as this “apparent competition” may continue 

to impact upon native species in areas where introduced species have been removed. 

 

The effects at population level of introduced disease in the Australian fauna are not 

adequately known for any species, though the transmission of pathogens to susceptible 

native wildlife by an invading species has been shown to have a more profound effect 

than any direct impact of the invader itself.  The well known examples of avian malaria 

in Hawaii (van Riper and van Riper, 1986), and rinderpest in East Africa (McCallum 

and Dobson, 1995) serve to show us the magnitude of the effects that introduced 

parasites can exert on wild animal populations.  Whilst such severe impacts have not yet 

been scientifically demonstrated as occurring in Australia, the present study shows that 

cats, along with other introduced carnivores, carry a wide range of parasitic organisms, 

some of which may have the potential to have a dramatic impact on not only native 

fauna survival and reproduction, but also on community structure. 
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Chapter 3 – Development of a PCR-RFLP for the 

Identification of Ancylostoma Species: 

Occurrence and Distribution in Feral Cats 

Throughout Western Australia 

 

3.1 INTRODUCTION 

3.1.1 Hookworm Infections 

Hookworms are parasitic helminths that belong to the order Strongylida (family 

Ancylostomatidae).  They are dioecious and have a direct life-history pattern 

(Crompton, 2000), typically being harboured in the host’s small intestine where they 

attach to the mucosa and feed on blood (Monti et al., 1998).  Hookworms feed by 

ingesting plugs of intestinal villi and adjoining tissue into their mouth opening, where 

small tooth-like lancets abraid the mucosal plug and enzymes are released which cause 

villus capillary loops to burst, which along with the cell contents and tissue fluids, 

provides the parasite’s food (Schad, 1991).  Due to the secretion of an anticoagulant 

whilst feeding, the former attachment sites continue to bleed after the hookworms have 

reattached elsewhere (Behnke, 1991; Hotez and Cerami, 1983). 

 

As a consequence of their blood-sucking activity, hookworms can affect physical and 

cognitive development in children (Stephenson et al., 2000).  Anaemia is the classical 

manifestation of hookworm disease and is a result of iron deficiency, which can vary 

from slight to severe (Crompton, 2000; Migasena and Gilles, 1991).  Up to 25% of 

individuals infected with hookworm suffer from anaemia and protein malnutrition, 
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which can also lead to extreme lethargy and weakness (Hotez and Pritchard, 1995).  

Hookworm infection can also occasionally be fatal, especially in infants (Hotez and 

Pritchard, 1995). 

 

After mating in the small intestine, each individual female hookworm can release 

between 5000 and 25,000 eggs per day that are passed out of the small intestine with the 

faeces (Crompton, 2000).  The soil and local environment frequented by infected hosts 

becomes contaminated with free-living first and second stage larvae which prefer well 

aerated soil that is shielded from direct sunlight for optimum growth (Crompton, 2000; 

Hotez and Pritchard, 1995).  The survival of hookworm larvae is favoured in damp, 

sandy or friable soil, with decaying vegetation, and a temperature range of 24ºC - 32ºC 

(Bundy and Keymer, 1991).  In these conditions the transition from egg to third stage 

infective larvae can be completed within a week (Prescott, 1984), though the prevailing 

climate greatly affects the rate of development of the free-living stages and the survival 

of the infective larvae (Crompton, 2000).  Temperatures above 37ºC inhibit the 

embryonation of hookworm eggs whilst exposure to temperatures below 12ºC reduces 

egg hatching rates and causes disruption to the normal development of the free-living 

larvae (Nwosu, 1978; Croll, 1972). 

 

The infective L3 larvae can migrate upwards in the soil as much as three metres to make 

contact with a host (Hotez and Pritchard, 1995; Bundy and Keymer, 1991).  The most 

common infection routes are via ingestion and cutaneous penetration, though some 

hookworm species can also infect animals prenatally via mother’s milk and the 

ingestion of paratenic hosts (Hendrix et al., 1996).  Typically the barely visible third 

stage hookworm larvae burrow into the skin of the host animal’s legs or feet and begin 
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an extensive migration route through the body, eventually establishing themselves in the 

small intestine (Hendrix et al., 1996; Hotez and Pritchard, 1995; Croll et al., 1975).  

Oral ingestion of third stage larvae provides a much more direct route to the small 

intestine, where they become sexually mature and begin to mate and feed (Hotez and 

Pritchard, 1995).  Females generally begin releasing eggs within about two months after 

entering the body as larvae (Hotez and Pritchard, 1995). 

 

3.1.2 Hookworm Occurrence in Australia 

The hookworm fauna of Australian mammals is limited with all but two of the species 

present having been introduced (Beveridge, 2002).  These introduced hookworm species 

are of considerable medical and veterinary importance due to their occurrence in 

humans and livestock (Beveridge, 2002), however the Australian fauna’s susceptibility 

to them is unknown.  Until the distribution and prevalence of these parasites is known, 

their potential impact on the native wildlife cannot be fully recognised. 

 
The poor representation of hookworms in the Australian fauna is probably a reflection 

of the fact that they are primarily parasites of eutherian groups which are either absent 

or which have only recently reached the Australian continent (Beveridge, 2002).  Native 

or endemic species of hookworms in Australia are restricted to two species Uncinaria 

hamiltoni and U. hydromyidis, which occur in pinnipeds and the Australian water rat 

respectively (Beveridge, 2002).  The hookworm fauna of Australian mammals is 

therefore limited in terms of the number of species, though the majority of the 

ancylostomatoid fauna in Australia is represented by introduced species of man and 

domestic animals (Beveridge, 2002). 
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Currently, eleven species of hookworms have been recorded in Australia, with the 

principal genera being Ancylostoma, Bunostomum, Necator and Uncinaria (Beveridge, 

2002).  The only ancylostomatoids which have reached Australia prior to the arrival of 

man and his domesticated animals appear to be species present in marine, or at least 

aquatic, mammals (Beveridge, 2002).  Thus the isolation of the Australian continent 

over a long period of time is the principal reason for the relative paucity of 

ancylostomatoid species present (Beveridge, 2002; Beveridge and Spratt, 1996). 

 

The human hookworm species, Ancylostoma duodenale and Necator americanus, were 

once common in Australia, particularly in the north eastern regions (Beveridge, 2002).  

However, the Australian Hookworm Campaign run from 1919 to 1924 was highly 

successful in controlling infections and both species have become rare, though A. 

duodenale does remain a significant problem in some isolated Aboriginal communities 

(Beveridge, 2002).  The more common species of hookworm in Australia include A. 

tubaeforme, A. caninum, A. ceylanicum and U. stenocephala, which generally occur in 

dogs and cats though may also infect humans to differing degrees (Schad and Banwell, 

1990).  A. braziliense has been detected in both dogs and cats in north Queensland 

(Stewart, 1994; Heydon and Bearup, 1963), though its distribution and host range in 

Australia is not known. 

 

Whilst A. tubaeforme has been reported in cats from Brisbane (19%, 81%) (Prescott, 

1984; Wilson-Hanson and Prescott, 1982) and Sydney (35%) (Kelly and Ng, 1975), it 

has only been found in feral cats from the Northern Territory (12.8%) (O'Callaghan and 

Beveridge, 1996) and the north west of Western Australia (20%) (Meloni et al., 1993; 

Thompson et al., 1993a).  Multiple studies have failed to detect A. tubaeforme in feral 
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and/or domestic cats from the southern regions of Australia (O'Callaghan et al., 1984; 

Shaw et al., 1983; Gregory and Munday, 1976; Ryan, 1976a; Coman, 1972b). 

 

As its name suggests, A. caninum is the commonly recognised hookworm of dogs, 

occurring at high prevalences in northern regions of Australia (Dunsmore and Shaw, 

1990; Kelly and Ng, 1975).  It has also been found in dingoes in Queensland (Dunsmore 

and Shaw, 1990; Seddon, 1967) and foxes in New South Wales (Ryan, 1976b).  In 

Australia there appears to be an association between the prevalence of A. caninum and 

latitude, with higher prevalences occurring in the warmer northern regions (Dunsmore 

and Shaw, 1990).  Studies of A. caninum in Townsville have shown that it is not 

specific to dogs, but is also capable of systematically infecting both cats and humans 

(Prociv and Croese, 1996; Stewart, 1994), and has been identified as a common cause of 

eosinophilic enteritis in humans in Queensland (Beveridge, 2002; Prociv and Croese, 

1996). 

 

A. ceylanicum is able to mature in humans, but throughout most of its range it is 

primarily a parasite of dogs and cats, occurring in humans only rarely, except in New 

Guinea (Schad, 1991).  A. ceylanicum has been shown to be much more infective orally 

than percutaneously in human volunteers, which helps explain its rarity in humans in 

most of its pantropical range (Yoshida et al., 1971).  A. ceylanicum and A. braziliense 

were not considered separate species until it was demonstrated that A. braziliense does 

not have the capacity to develop to maturity in humans, while A. ceylanicum does 

(Yoshida, 1971).  Hence, A. braziliense is most commonly associated with cases of 

cutaneous larva migrans in humans (Behnke, 1991).  In Australia, A. braziliense has 

been reported in dogs in north Queensland (Setasuban and Waddell, 1973; Seddon, 
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1967) with a single occurrence in Sydney (Kelly and Ng, 1975).  Its distribution has 

also been stated as extending to the Northern Territory and the north west of Western 

Australia (Kelly, 1977), though supporting references were not provided. 

 

U. stenocephala is a common parasite of dogs in the southern regions of Australia, 

being reported from New South Wales (Kelly and Ng, 1975), Victoria (Johnston and 

Gasser, 1993; Blake and Overend, 1982; Pullar, 1946), South Australia (O'Callaghan et 

al., 1984), Tasmania (Gregory and Munday, 1976) and the south west of Western 

Australia (Gardiner and Fraser, 1960), though not in Queensland (Beveridge, 2002).  It 

is a less common parasite of cats, having only been detected in 3% of feral cats from 

New South Wales (Ryan, 1976a) and 2.3% of feral cats from Tasmania (Gregory and 

Munday, 1976). 

 

3.1.3 Identifying Hookworm Species 

Accurate identification of hookworm species and the specific diagnosis of the infections 

they cause have important implications for studying fundamental aspects relating to 

anthelmintic efficacy, population biology and epidemiology as well as for effective 

control (Monti et al., 1998).  The most common means of diagnosing the presence of 

hookworm infections is the examination of faecal samples for the occurrence of 

hookworm eggs (Crompton, 2000; Monti et al., 1998).  However, accurate identification 

of Ancylostoma species cannot be achieved solely on the basis of egg morphology 

(Crompton, 2000).  Species identification can be performed on adult worms based on 

the morphology of their buccal apparatus (Crompton, 2000; Monti et al., 1998), though 

adult worms can generally only be obtained following highly intrusive anthelmintic 

expulsion chemotherapy or surgical techniques (Crompton, 2000).  Culturing larval 
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stages from eggs can also allow identification of hookworm species (Pawlowski et al., 

1991; Mueller et al., 1989), however ‘larval culture’ is tedious, time consuming (1 

week) and requires skilled personnel for accurate differentiation (Monti et al., 1998). 

 

Detailed morphological examinations of adult worms of Ancylostoma from both dogs 

and cats have also revealed variation in morphology (morphotypes) within species 

(Stewart, 1994).  The taxonomic status of such morphotypes, which may represent 

either morphologically similar but genetically distinct species (i.e. cryptic species), 

subspecies or population variants that are capable of infecting different host species, 

may cause confusion (Gasser et al., 1996).  The existence of such cryptic species with 

only slight or no morphological differences has been previously demonstrated in other 

bursate nematodes (Beveridge et al., 1993; Chilton et al., 1993, 1992), as well as more 

recently in A. caninum and A. duodenale (Hu et al., 2002).  Therefore, as our 

understanding of particular parasite taxonomy improves, techniques other than 

morphological examination are becoming necessary for the accurate identification of 

species and subspecies.  Molecular and biochemical techniques have been shown to be 

useful tools for the identification of parasite species (Monti et al., 1998; Stevenson et 

al., 1995; Bowles and McManus, 1993; Chilton et al., 1993), especially for those 

species where identification is complicated by a lack of morphologically distinct 

characters (Monis, 1999; Morgan and Thompson, 1998). 

 

Direct PCR assays have been developed for the species-specific detection of DNA from 

numerous species of parasitic worms and their eggs (Epe et al., 1997; Newton et al., 

1997; Romstad et al., 1997; von Samson-Himmelstjerna et al., 1997), and are based on 

the use of primers that amplify species-specific sequences within the internal 



 94

transcribed spacers (ITS) of the ribosomal DNA (rDNA) (Monti et al., 1998).  One 

exceptionally useful advantage of these techniques is the potential to quickly and 

accurately differentiate between parasite species based on DNA obtained from eggs 

shed in the faeces of infected hosts (Chilton and Gasser, 1999; Monti et al., 1998; 

Gasser et al., 1993).  The highly sensitive nature of PCR has the added advantage of 

being able to differentiate closely related nematode species, based on the DNA from a 

single egg (Campbell et al., 1995; Stevenson et al., 1995; Gasser et al., 1993), reducing 

the time required to identify species from 10 to 14 days for larval culturing to less than 

one day (Campbell et al., 1995). 

 

Polymerase chain reaction-linked restriction fragment length polymorphism (PCR-

RFLP) analysis has shown that different developmental stages of Ancylostoma 

hookworms can be identified to species level using the variation present in their rDNA 

(Gasser et al., 1998; Gasser et al., 1996).  This non-invasive method of identifying 

hookworm infections also negates the requirement to examine adult worms, the 

collection of which may involve highly invasive methods (Prociv and Croese, 1996).  

Thus, molecular techniques such as species specific PCR and PCR-RFLP have 

important implications for studying the systematics of hookworms and the 

epidemiology/population biology of hookworm infections.  As such, the aim of this 

study was to develop a PCR-RFLP method for the effective identification of 

Ancylostoma species from eggs collected in the faeces of feral cats from Western 

Australia, utilizing the sequence variation present in the ITS regions of the rDNA. 
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3.2 MATERIALS AND METHODS 

3.2.1 Screening for Hookworm Positive Samples 

Faecal samples were collected from 379 feral cats collected from eleven sampling 

locations throughout Western Australia (Figure 2.1).  Samples were screened for the 

presence of hookworm and other helminth and protozoan parasites as previously 

described in section 2.2.2.  The collection of feral cat samples from Shark Bay and 

Mount Keith occurred across three distinct time periods over a three year period: 

August 1998, November 1999-January 2000, and November 2000 for cats from Shark 

Bay; and November 1998, April 1999 and September 2000 for cats from Mount Keith.  

All other feral cat collection sites were sampled once.  Significance of differences 

between hookworm prevalence in cats from Shark Bay and Mount Keith over their three 

sampling periods was determined by chi-square analysis using the computer program 

Statview 4.0 (Abacus Concepts Inc., 1992). 

 

3.2.2 Purification and DNA Extraction 

Of the 119 faecal samples identified as being hookworm positive via light microscopy, 

56 had sufficient material preserved in 20% dimethyl sulphoxide (DMSO) in a saturated 

salt solution for the isolation of hookworm eggs.  Eggs were separated from the faecal 

pellet via sucrose gradient purification (Meinema, unpublished).  The presence of 

hookworm eggs following sucrose gradient purification was confirmed via light 

microscopy before undergoing DNA extraction. 

 

DNA was extracted from purified hookworm eggs using glassmilk (Biorad) as per 

manufacturer’s instructions.  Hookworm DNA was resuspended in 50 µl of TE buffer (1 

mM Tris-HCl; 0.1 mM EDTA; pH 7.2) prior to amplification of the ITS region. 
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3.2.3 Designing Hookworm Primers 

Species specific hookworm primers were designed with the computer program Amplify 

1.2 (Engels, 1993) to amplify the rDNA region comprising the first (ITS-1) and second 

(ITS-2) internal transcribed spacers plus the 5.8S gene (known as the ITS+ region) using 

the published sequence information from Genbank for A. tubaeforme (Y19182, 

AJ001592, Z70741), A. ceylanicum (Y19183, AJ001593, Z70740) and A. caninum 

(Y19181, AJ001591, Z70739).  There was no sequence information available for A. 

braziliense, therefore a specific primer could not be designed.  Primers consisted of a 

degenerate forward primer (RTHF1), which amplified all four species and was anchored 

in the ITS1 portion of the rDNA, and four species specific reverse primers: RTATR1 

(specific for A. tubaeforme); RTAYR1 (specific for A. ceylanicum); and RTACR1 

(specific for A. caninum).  These primers were anchored in the ITS2 region of the rDNA 

(Table 3.1). 

 

Table 3.1 Primers designed for the amplification of specific Ancylostoma species. 
 

Primer Sequence Species 
RTHF1 5’-CGTGCTAGTCTTCACGACTTTG-3’ Ancylostoma spp. 
RTAYR1 5’-CTGCTGAAAAGTCCTCAAGTCC-3’ A. ceylanicum 
RTATR1 5’-CTAGAACGGGAATCGCTAAAAGC-3’ A. tubaeforme 
RTACR1 5’-CTAGAACGGGAATCGCTAAATGC-3’ A. caninum 

 

3.2.4 Amplification of Hookworm ITS+ rDNA 

PCR amplification was performed in 25 µl volumes with the final mix containing 5-50 

ng of hookworm DNA, 12.5 pMol of each primer, 200µM each of dATP, dCTP, dGTP, 

dTTP, 67 mM Tris-HCl (pH 8.8), 16.6 mM (NH4)2SO4, 0.45% Triton X-100, 0.2 mg/ml 

gelatin, 4 mM MgCl2 and 0.5 units Tth+ polymerase (Biotech International, Perth, 
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Australia).  PCR mix was made up fresh for each reaction and were amplified in a 

Perkin Elmer 2400 thermocycler machine (Perkin Elmer Cetus) under the following 

conditions: preheated to 94ºC for 2 min; followed by 35 cycles of 94ºC (denaturation) 

for 30 s; 64ºC (annealing) for 30 s; 72ºC (extension) for 30 s; followed by a final 

extension step at 72ºC for 7 min. 

 

3.2.5 Sequencing of Hookworm rDNA 

Templates were purified using the freeze/squeeze method.  In brief, PCR bands were cut 

from the gel using sterile techniques and placed into separate eppendorf tubes and 

frozen overnight at -20ºC or for 15 min at -80ºC.  Whilst still frozen the gel slices 

containing the PCR band were squeezed between sterile parafilm to separate liquid from 

the agarose.  On average 50-100 µl of liquid was recovered from each band (dependent 

on original size).  The DNA was precipitated using salt and EtOH and resuspended in 

20 µl of sterile dH2O.  Sequencing reactions were performed using an ABI Prism Dye 

Terminator Cycle Sequencing Core kit (Applied Biosystems, Foster City, California) 

according to the manufacturer’s instructions.  Reactions were electrophoresed through 

an ABI 373 automatic sequencer and sequencing profiles analysed using SeqEd v1.0.3 

(Applied Biosystems). 

 

3.2.6 Agarose Gel Electrophoresis 

Each hookworm sample was checked post PCR for sufficient amplification of DNA by 

running 5 µl of each PCR on an agarose gel.  Agarose gel electrophoresis was carried 

out using 1% gels in TAE buffer (40 mM Tris-HCl; 20 mM acetate; 2mM EDTA; pH 

7.9).  Electrophoresis was performed using horizontal gels, in electrophoretic cells 

(Biorad).  Ethidium bromide was included in the gel at a final concentration of 0.15 
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µg/ml.  After electrophoresis, DNA was visualised under UV-illumination.  Amplified 

hookworm DNA was compared to a 100 bp DNA ladder (New England Biolabs). 

 

3.2.7 RFLP Analysis 

RFLP analysis of amplified hookworm DNA was performed using the restriction 

enzyme RsaI (New England Biolabs), which cleaves the recognition sequence 

5’…GT AC…3’.  Selection of the restriction enzyme RsaI was based on the differential 

digestion patterns generated with DNA Strider 1.2 (Marck, 1988) for the ITS+ sequence 

data for A. caninum, A. ceylanicum and A. tubaeforme.  Restriction digests contained 10 

mM Bis Tris Propane-HCl, 10 mM MgCl2, 1 mM dithiothreitol (pH 7.0), 2.5 units of 

RsaI (New England Biolabs) and 15 µl of PCR product in a final reaction volume of 

20µl.  No inhibitory effect of the PCR buffer on digestion with RsaI was detected.  PCR 

products were digested for 3 h at 37ºC and the resultant restriction patterns were 

visualised on 1% agarose gels as above (section 3.2.6).  Size of fragments was estimated 

by comparison with a 100 bp DNA ladder (New England Biolabs).  Every RFLP gel 

contained uncut, control hookworm PCR product for comparison with the resulting 

digestion patterns. 
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3.3 RESULTS 

3.3.1 Hookworm Occurrence in Feral Cats 

Hookworm eggs were present in 119 of the 379 faecal samples screened via 

microscopy, and occurred in cats from Walpole, Shark Bay, Lake Argyle, Mount Keith 

and the Cocos Islands (Table 3.2). 

 

Table 3.2 Hookworm prevalence in feral cats throughout Western Australia. 
 

Sample Location Prevalence (%) Sample Size 
Perth* 0.0 20 
Manjimup 0.0 15 
Walpole 80.0 20 
Dragon Rocks 0.0 6 
Mount Keith 13.6 44 
Gibson Desert 0.0 20 
Shark Bay 36.6 194 
Montebello 0.0 3 
Lake Argyle 26.5 34 
Bungle Bungles 0.0 4 
Cocos Islands 89.5 19 
Total 31.4 379 

* Includes Leonora Tip (n=3), Harvey Tip (n=2), Canning Dam (n=2) and Rottnest Island (n=3) 

The prevalence of hookworm infections in feral cats from Shark Bay varied markedly 

across the three distinct sampling periods of August 1998, November 1999-January 

2000 and November 2000 (Table 3.3).  Chi-square analysis revealed significant 

differences in hookworm prevalence between cats from August 1998 and those sampled 

in November 1999-January 2000 and November 2000 (P < 0.0001), though the 

difference in hookworm prevalence between cats collected in November 1999-January 

2000 and November 2000 was less pronounced (P < 0.05).  The feral cat population size 

estimated by officers from the Department of Conservation and Land Management 

(DCLM) based on cat tracks and trapping success as part of their cat eradication 

program at Shark Bay during this time, revealed a marked decrease in the feral cat 
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population between the years 1998 to 1999, followed by a rising trend, which may 

indicate that the population was beginning to recover following its apparent collapse 

(Figure 3.1). 

 

Table 3.3 Prevalence of hookworm infection in feral cats collected from Shark Bay 
from 1998 to 2000. 
 

Sample Time Sample Size Prevalence 
Aug 1998 60 68.3% 
Nov 1999-Jan 2000 68 7.4% 
Nov 2000 55 23.6% 
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Figure 3.1 Number of feral cats per 100 km transect at Shark Bay from February 1998 
to June 2000 based on track counts and trapping success.  Graph modified and used with 
permission (Algar and Angus, 2000). 
 

Sampling of feral cats from Mount Keith in November 1998, April 1999 and September 

2000 showed some variation in hookworm prevalence (Table 3.4).  However, this 

apparent variation was not significant as determined by chi-square analysis and was 

most likely due to the small sample sizes obtained. 
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Table 3.4 Prevalence of hookworm infection in feral cats collected from Mount Keith 
from 1998 to 2000. 
 

Sample Time Sample Size Prevalence 
Nov 1998 25 8.0% 
Apr 1999 6 33.3% 
Sept 2000 13 15.4% 

 

3.3.2 Identification of Ancylostoma by Species-Specific PCR 

Specific amplification of A. ceylanicum DNA produced a band of approximately 650 bp 

in length, whilst both A. caninum and A. tubaeforme produced bands of approximately 

550 bp in size (Figure 3.2).  Cross-reaction did not occur when attempting to amplify 

either A. caninum or A. tubaeforme DNA using the A. ceylanicum specific reverse 

primer (RTAYR1).  Likewise, no cross-reaction occurred when attempting to amplify A. 

ceylanicum DNA using either the A. caninum (RTACR1) or A. tubaeforme (RTATR1) 

specific reverse primers.  However, cross-reaction occurred between the A. caninum 

(RTACR1) and A. tubaeforme (RTATR1) primers, producing a fragment of 

approximately 550 bp in size when amplifying either A. caninum or A. tubaeforme DNA 

(Figure 3.2).  As sequence information and/or control DNA was not available, cross-

reaction with A. braziliense DNA could neither be confirmed nor discounted. 

 

   MW      1       2        3        4        5        6         7         8          9         10 

 
 
Figure 3.2 PCR amplification of the ITS+ region of A. ceylanicum, A. tubaeforme and 
A. caninum.  Lanes: MW, 100 bp ladder; 1-3, Ancylostoma ceylanicum; 4-6, A. tubaeforme; 7-9, A. 
caninum; 10, negative control. 
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3.3.3 Identification of Ancylostoma Species by PCR-RFLP 

Patterns produced by the digestion of the ITS+ region with RsaI allowed the 

differentiation of A. caninum, A. ceylanicum and A. tubaeforme from each other (Figure 

3.3).  Amplification of A. caninum and A. tubaeforme DNA with each other’s “specific” 

reverse primer (RTATR1 or RTACR1 respectively) did not affect the digestion pattern 

of either hookworm species. 

 

MW      1            2    3        4  5      6        MW 

 
 
Figure 3.3 PCR-RFLP analysis of the ITS+ region of A. ceylanicum, A. tubaeforme and 
A. caninum using RsaI.  Lanes: MW, 100 bp ladder; 1, Ancylostoma ceylanicum uncut; 2, A. 
ceylanicum cut; 3, A. tubaeforme uncut; 4, A. tubaeforme cut; 5, A. caninum uncut; 6, A. caninum cut. 
 

Two hookworm species were identified as occurring in feral cats from Western 

Australia: A. tubaeforme and A. ceylanicum.  The most common hookworm species 

identified was A. tubaeforme, which occurred in cats from four of the five different 

sampling locations where hookworm was detected whilst A. ceylanicum occurred in cats 

from the Cocos Islands and a single case from Lake Argyle (Table 3.5).  The Cocos 

Islands, Mount Keith, Shark Bay and Walpole had only a singular hookworm species 

infecting feral cats, whilst both A. tubaeforme and A. ceylanicum occurred in the feral 

cat population from Lake Argyle (Table 3.5).  Mixed hookworm infections were not 

detected in any of the feral cats sampled.  A. caninum and A. braziliense were not 
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detected in any of the cats from this study.  Due to the lack of A. braziliense control 

DNA, the absence of this hookworm species in feral cats was confirmed using sequence 

analysis of ITS+ PCR products in comparison with the published sequence data of other 

Ancylostoma species. 

 

Table 3.5 PCR-RFLP identification of Ancylostoma species in 56 feral cats collected 
from Western Australia. 
 

Hookworm Species Sample 
Location A. tubaeforme A. ceylanicum A. caninum 

Walpole 10 0 0 
Mount Keith 4 0 0 
Shark Bay 20 0 0 
Lake Argyle 5 1 0 
Cocos Islands 0 16 0 
Total 39 17 0 
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3.4 DISCUSSION 

3.4.1 Identification of Ancylostoma spp. by PCR-RFLP 

The species-specific PCR was capable of differentiating A. ceylanicum from A. caninum 

and A. tubaeforme due to a 100 bp size difference in the fragments produced, though 

was unable to differentiate between A. caninum and A. tubaeforme (Figure 3.2).  Cross-

reaction between the species-specific Ancylostoma primers and A. braziliense could not 

be determined due to the lack of any A. braziliense control DNA.  The inability to 

obtain any adult A. braziliense worms serves to highlight the rarity of this species in 

Australia, though does not exclude its presence.  As such, sequence analysis was used in 

conjunction with the PCR-RFLP to confirm the species identity of hookworm eggs 

collected from feral cats throughout Western Australia. 

 

This study has demonstrated the ability of PCR-RFLP to accurately identify the three 

hookworm species A. caninum, A. ceylanicum and A. tubaeforme from eggs collected in 

faeces, despite cross-reaction between the reverse primers RTACR1 (A. caninum) and 

RTATR1 (A. tubaeforme) (Figure 3.3).  This result demonstrates the suitability of the 

ITS+ region for the differentiation of hookworm species.  Although the present study 

has focussed primarily on the application of the ITS+ PCR-RFLP to the identification of 

hookworms from cat, previous studies have also shown the ITS to be equally effective 

at differentiating between human hookworm species as well (Monti et al., 1998; 

Hawdon, 1996). 

 

The advantage of the hookworm PCR-RFLP technique is that it allows for the accurate 

identification of hookworm species, irrespective of developmental stage (Chilton and 

Gasser, 1999).  This has important implications for studying the epidemiology and 
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population biology of hookworms and for accurate diagnosis of the infections they 

cause.  The nature of this method negates the need for invasive sampling methods and 

allows species identification from as little as a single egg.  The PCR-RFLP provides a 

useful alternative to less specific and more time consuming identification methods such 

as serology and copro-culture (Chilton and Gasser, 1999; Prociv and Croese, 1996), and 

lends itself to processing large numbers of samples.  Genetic characterisation of 

hookworm infections also provides the potential for investigating the occurrence and 

taxonomic status of “morphotypes” within populations and subpopulations (Hu et al., 

2002). 

 

3.4.2 Hookworm Occurrence in Feral Cats 

The overall prevalence of hookworm infections in feral cats collected throughout 

Western Australia was 31.4% and did not appear to be limited to any particular climatic 

region, occurring in cats collected from Walpole (80%), Mount Keith (13.6%), Shark 

Bay (36.6%), Lake Argyle (26.5%) and the Cocos Islands (89.5%) (Table 3.2).  PCR-

RFLP identified the presence of two species of ancylostomatoid hookworm occurring in 

feral cats throughout Western Australia, A. tubaeforme and A. ceylanicum.  The most 

common species was A. tubaeforme, whilst A. ceylanicum was only detected in cats 

from the Cocos Islands as well as a single cat from Lake Argyle (Table 3.5). 

 

According to the literature, four species of Ancylostoma (A. braziliense, A. caninum, A. 

ceylanicum and A. tubaeforme) occur in cats in Australia, throughout a range of climatic 

regions, though appear to be primarily limited to coastal regions of the northern half of 

Australia (Beveridge, 2002; Prescott, 1984).  Given that only 56 of the 119 cats infected 

with hookworm were identified to species by PCR-RFLP in the present study, a higher 
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prevalence of A. ceylanicum, or the occurrence of A. caninum and/or A. braziliense in 

feral cats in Western Australia cannot be ruled out. 

 

Beveridge (2002) recently reviewed the distribution and occurrence of hookworm 

species in Australia, and A. tubaeforme has not previously been observed in cats from 

the southern states or the southwest of Western Australia before, despite numerous 

surveys of both feral and domestic cats (Milstein and Goldsmid, 1997; O'Callaghan et 

al., 1984; Shaw et al., 1983; Gregory and Munday, 1976; Ryan, 1976a; Coman, 1972b).  

O’Callaghan and Beveridge (1996) found A. tubaeforme to be widely distributed in feral 

cats from the Northern Territory whilst Meloni et al. (1993) and Thompson et al. 

(1993b) reported A. tubaeforme in cats from Aboriginal communities in the far north of 

Western Australia. 

 

The occurrence of A. tubaeforme in 80% of the feral cats collected from Walpole 

contradicts previous studies which report an absence of this species in the southern 

states or the southwest of Western Australia (O'Callaghan et al., 1984; Shaw et al., 

1983; Gregory and Munday, 1976; Ryan, 1976a; Coman, 1972b).  Additionally, the 

absence of U. stenocephala from cats in the southwest of Western Australia is not 

unexpected as U. stenocephala is commonly found in foxes, dingoes and feral dogs 

(Ryan, 1976b; Coman, 1973b, 1972a), though it is seldom found infecting cats (Gregory 

and Munday, 1976; Ryan, 1976a). 

 

The reports by Meloni et al. (1993) and Thompson et al. (1993b) detected A. 

tubaeforme in 18.2% and 20.6% of cats examined from Aboriginal communities in the 

far north of Western Australia respectively.  These findings are similar to the 26.5% 
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hookworm prevalence found in the present study, however neither of the previous 

studies detected A. ceylanicum.  Whilst A. tubaeforme is not considered to be a zoonotic 

risk (Schad and Banwell, 1990), A. ceylanicum is known to be capable of infecting 

humans and is the only zoonotic hookworm known to consistently cause human gut 

infections (Prociv and Croese, 1996; Chowdhury and Schad, 1972).  In New Guinea, 

human infection with A. ceylanicum is common and occurs at abundances comparable 

to that of the human hookworms A. duodenale and N. americanus (Schad, 1991; Schad 

and Banwell, 1990).  Whilst A. ceylanicum has been shown to be much more infective 

orally than percutaneously in human volunteers (Yoshida et al., 1971), its occurrence in 

feral cats is still of major zoonotic importance. 

 

Nowhere is this more crucial in Western Australia than the Cocos Islands, where 89.5% 

of cats examined were harbouring A. ceylanicum infections.  This high prevalence of A. 

ceylanicum in cats, coupled with centralised human and cat populations on the islands, 

represents a serious zoonotic threat to public health.  With such a high prevalence of A. 

ceylanicum infection in the cat population and a climate that is conducive to the growth 

and development of hookworm larvae, it is suspected that hookworm infection, or at the 

very least cutaneous larva migrans, present a significant public health threat to the local 

inhabitants of the Cocos Islands. 

 

This same zoonotic potential exists at Lake Argyle, where A. ceylanicum was detected 

in the feral cat population, even though A. tubaeforme was more prevalent.  The higher 

A. tubaeforme infection rate may be due to this species out competing A. ceylanicum in 

the environment or the host, though no significant difference in the development of 

these two species has been observed under varying temperature and osmotic stress 
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conditions (Matthews, 1985).  However, paratenic hosts have been implicated in the life 

cycle of A. tubaeforme (Norris, 1971), which may play an important role in the 

persistence of this hookworm species within Western Australia. 

 

A. tubaeforme is much more infective in cats when inoculated via ingestion (Norris, 

1971), which suggests the involvement of paratenic hosts in its transmission within the 

environment.  Paratenic and transport hosts of A. tubaeforme include predominantly 

rodents and arthropods respectively (Prescott, 1984; Norris, 1971), presumably due to 

their role in the diets of cats, their foraging habits and life histories which increase their 

potential exposure to infective stages in the soil.  However, our understanding of the 

epidemiology of A. tubaeforme is limited (Prociv and Croese, 1996), and the 

involvement of paratenic hosts in the transmission of feline hookworm in Australia 

requires further investigation. 

 

This study has demonstrated that the occurrence of hookworm in feral cats throughout 

Western Australia is much more widespread than was previously thought.  The 

detection of A. tubaeforme in feral cats from both arid and semi-arid environments 

(Mount Keith and Shark Bay respectively) is of particular interest as O’Callaghan and 

Beveridge have also identified A. tubaeforme and a single case of A. caninum in feral 

cats from central Australia.  Therefore, previous studies that have limited the occurrence 

of this species to the warmer northern regions of Australia may have failed to appreciate 

the role of paratenic hosts or the existence of suitable microenvironments within 

otherwise inhospitable regions. 
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3.4.3 Hookworm and Microenvironments in Western Australia 

The occurrence of hookworm infections in cats from Shark Bay and Mount Keith was 

unexpected as these areas experience an arid climate with extremes of temperature and 

un-seasonal rainfall.  Temperature has the greatest effect on the free-living hookworm 

larvae, with temperatures between 20ºC and 30ºC being most favoured by A. 

tubaeforme (Nwosu, 1978).  These temperatures are optimal for development under 

“adequate moisture or humidity” conditions (Prociv and Croese, 1996; Schad and 

Banwell, 1990; Nwosu, 1978).  Matthews (1985) and Nwosu (1978) investigated the 

effects of osmotic stress on the development of A. tubaeforme eggs, however they failed 

to clearly define what constitutes “adequate” moisture or humidity.  A general 

consensus appears to indicate that tropical or sub-tropical environments as well as areas 

that are regularly watered such as grass or garden soil are sufficiently moist to facilitate 

hookworm development (Prociv and Croese, 1996; Hotez and Pritchard, 1995; Schad 

and Banwell, 1990). 

 

Shark Bay and Mount Keith do not experience tropical or sub-tropical climates and 

temperatures can range from below 0ºC to over 40ºC within a 24 h period.  Likewise, 

the un-seasonal rainfall for these areas also leads to extended periods of dry heat.  The 

occurrence of A. tubaeforme in feral cats from these two regions suggests the existence 

of microenvironments within the landscape where A. tubaeforme can complete its life 

cycle.  The presence of these microenvironments is believed to be associated with 

human modification of the environment.  Both the Shark Bay and Mount Keith 

sampling regions have a pastoral history with many of the livestock water reservoirs 

still in working order.  Additionally, Mount Keith is an active mining lease with an on-

site mine village complete with sewage treatment plant and tailings dam.  These sources 
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of moisture in an otherwise predominantly dry landscape would not only facilitate the 

development of infective stages of A. tubaeforme, they would also act as “sinks” for the 

local wildlife.  The presence of these water points in the landscape would increase the 

potential for hookworm transmission in cats through direct contact with contaminated 

soil as well as via predation of paratenic hosts in the immediate vicinity. 

 

This anthropogenic influence on the distribution of A. tubaeforme in cats throughout 

Western Australia is supported by the absence of hookworm in cats from the Gibson 

Desert (Table 3.2).  The climatic conditions of this region are similar to those of Mount 

Keith, however it is extremely remote and the landscape has experienced very little in 

the way of grazing or mining.  Similarly, this hypothesis can be applied to other areas 

such as the Bungle Bungles and the Montebello Islands where hookworm infections 

were also absent in feral cats from these areas.  However, the small sample size 

collected from these areas does not allow a definite conclusion to be drawn. 

Nevertheless, modification of the environment to provide permanent water sources for 

livestock or other purposes has facilitated the spread of hookworm into regions of 

Western Australia where it otherwise would not occur. 

 

3.4.4 Hookworm Fluctuation in Feral Cats from Shark Bay 

The hookworm prevalence in feral cats from Shark Bay fluctuated dramatically over the 

three years that sampling took place (Table 3.3).  However, there was no significant 

change in hookworm prevalence for cats collected from Mount Keith during the same 

time period, indicating that the variation in prevalence at Shark Bay was due to a 

localised influence (Table 3.4).  Estimates of the feral cat population size at Shark Bay 

were collated from trapping success and track counts from January 1998 through to 
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June 2000 by DCLM staff undertaking an eradication program on the enclosed Peron 

Peninsula, Shark Bay (Figure 2.2).  Plotting the number of cats observed shows that the 

feral cat population on the peninsula suffered a steady decline in numbers from mid 

1998 till the end of 1999, when it began to recover (Figure 3.1).  Likewise, the 

hookworm prevalence in feral cats during this period dropped from 68.3% in August 

1998 to 7.4% at the end of 1999. 

 

Host population size has a profound effect on the dynamics of a pathogen and every 

parasite requires a minimum density of hosts whereby it can maintain itself, known as 

the threshold population size (HT) (Lyles and Dobson, 1993; Dobson and May, 1986; 

Bartlett, 1960).  So long as the host population exceeds the threshold density, the 

parasite is able to maintain itself (Dobson and May, 1986).  As the feral cat population 

declined in size on the Peron Peninsula, the hookworm prevalence also experienced a 

significant decline (Table 3.3), suggesting the cat population was approaching HT. 

 

The high hookworm prevalence observed in feral cats in 1998 (68.3%) indicates a high 

level of interaction between individuals, presumably due to resource sharing and an 

overlapping of home ranges (Denny et al., 2002; Izawa and Doi, 1993; Izawa et al., 

1982).  Reduction of the cat population (by approximately half) due to the intensive 

trapping regime throughout 1998/1999 would have reduced the need for resource 

sharing and interaction within the feral cat population due to the resultant lower 

densities.  This decreased interaction is evident in the significantly (P < 0.0001) lower 

hookworm prevalence in cats collected at the end of 1999 (7.4%). 
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Izawa and Doi (1993) reported that the level of interaction and resource sharing in 

populations of cats varies with the density of cats and the availability of resources.  

Therefore, the low density of cats at Shark Bay in 1999 was reflected in the low 

prevalence of hookworm infections due to the reduced interaction between individual 

animals.  However, as population size decreases in an enclosed system such as the 

Peron Peninsula, so too does the efficiency of trapping as a control measure (Algar, 

pers. comm.).  A reduction in the trapping intensity at Shark Bay after 1999 permitted 

the feral cat population to recover (indicated by trendline in Figure 3.1), resulting in an 

increase in hookworm prevalence observed in cats collected in 2000 (23.6%), as their 

interaction increased. 

 

3.4.5 Potential Impact of Hookworm Infections 

The potential impact of hookworm infections on native and introduced species in 

Western Australia is not obvious, although the presence of A. ceylanicum in feral cats 

from both Lake Argyle and the Cocos Islands clearly presents a potential zoonotic risk 

to humans.  Whilst the transmission potential of A. ceylanicum at Lake Argyle is 

unknown, it would appear to be extremely high at least in the Cocos Islands.  

Hookworm parasitism may be common in cat populations, however clinical signs are 

generally not observed and the occurrence of skin lesions in cats is less severe than in 

humans (Prescott, 1984).  The most outstanding feature of hookworm infection is 

anaemia which can lead to inappetence and ill-thrift, and can occasionally be fatal, 

particularly in young animals (Hotez and Pritchard, 1995; Prescott, 1984). 
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Chapter 4 – Detection of Giardia in Introduced 

and Native Wildlife: Molecular Characterisation of 

a Novel Species of Giardia from a Quenda 

(Isoodon obesulus) 

 

4.1 INTRODUCTION 

4.1.1 Giardia – Impact and Importance 

The flagellated protozoan Giardia was first observed by Van Leeuwenhoek in 1681 and 

more fully described by Lambl in 1859 (Ortega and Adam, 1997).  Initially it was 

thought to be commensal in humans, but it is now clearly recognised as a common 

cause of diarrhoea and malabsorption and is the most commonly recognised pathogenic 

intestinal parasite in developed countries as well as in developing areas where hygiene 

and nutritional standards are difficult to maintain (Ortega and Adam, 1997; McRoberts 

et al., 1996).  Giardia infects millions of people throughout the world in both epidemic 

and sporadic forms and is transmitted through ingestion of contaminated water and food 

or by direct faecal-oral transmission (Ortega and Adam, 1997).  Species of Giardia 

inhabit the intestinal tracts of virtually all classes of vertebrates (Thompson, 2000), 

however Giardia duodenalis (syn. Giardia intestinalis; Giardia lamblia) is the only 

recognised species found in most mammals (O'Handley et al., 2000; Thompson et al., 

2000b; Thompson et al., 1998; Thompson et al., 1993b). 

 

The life cycle of Giardia is simple and direct, consisting of two developmental forms, 

the trophozoite and the cyst.  The cyst is the infectious form and is relatively inert and 
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environmentally resistant (Ortega and Adam, 1997).  After ingestion, excystation occurs 

in the duodenum as a result of exposure to the acidic gastric pH and the pancreatic 

enzymes chymotrypsin and trypsin, producing two trophozoites from each cyst (Hill, 

1993; Feely et al., 1991).  The trophozoites replicate in the crypts of the duodenum and 

upper jejunum and reproduce asexually by binary fission (Ortega and Adam, 1997). 

 

The prepatent period of giardiasis and the duration of infection are not related to the size 

of the initial inoculum (Islam, 1990).  The incubation period for people with 

symptomatic infection is 1-2 weeks but can vary from 1 to 75 days (Wolfe, 1990), 

though in the majority of cases the infection remains asymptomatic.  Malabsorption in 

cases of giardiasis has been well documented and may be responsible for the substantial 

weight loss that can occur following infection (Meloni et al., 1993; Roberts et al., 

1988). 

 

The diagnosis of giardiasis is most commonly established by the identification of cysts 

or, less frequently, trophozoites in faecal specimens.  The passage of cysts is somewhat 

sporadic, and for some cases with chronic diarrhoea and malabsorption, the results of 

faecal sample examinations can be repeatedly negative despite ongoing suspicion of 

giardiasis (Ortega and Adam, 1997). 

 

4.1.2 Nomenclature of Giardia 

Five morphologically distinct species of Giardia have been recognised; G. duodenalis 

(syn. G. intestinalis, G. lamblia) (infects a wide range of wild and domestic mammals 

including humans), G. agilis (amphibians), G. muris (rodents) and G. psittaci and G. 

ardeae (birds) (Thompson et al., 2000a).  This taxonomy is largely based on the shape 
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of the trophozoite, the size of the ventral adhesive disc relative to the cell length and the 

shape of the median bodies (Monis et al., 1999).  The phylogenetic affinities of Giardia 

have been a matter of controversy for a number of years, however there is now broad 

consensus of its primitive origins (Simpson et al., 2002).  Giardia has thus become a 

key organism in attempts to understand the evolution of eukaryotic cells given it has a 

very simple intracellular organization (Marti et al., 2003a; Marti et al., 2003b). 

 

Attempts at speciation of Giardia isolates based on host specificity have been discarded 

due to the high level of ambiguity between host specific and zoonotic infections.  As 

such, G. duodenalis is currently split into eight major assemblages commonly infecting 

a wide range of wild and domestic mammals and humans.  These genotypes were 

initially segregated based on host species specificity, however further research has 

shown many of them to be capable of cross transmission (Thompson et al., 2000a; 

Thompson et al., 2000b).  The four other species; G. muris, G. agilis, G. ardeae and G. 

psittaci appear to maintain a reasonable level of host specific infectivity.  A sixth 

species, G. microti, has been described on the basis of cyst morphology and small 

subunit ribosomal RNA (SSU-rDNA) sequence analysis (van Keulen et al., 1998). 

 

4.1.3 Giardia Phylogenetics 

The SSU-rDNA is a well conserved group of genes widely recognised as a means of 

detecting genetic diversity among species of organisms (Appels and Honeycutt, 1986).  

The different regions of the ribosomal RNA provide varying levels of phylogenetically 

useful information.  The coding regions (18S, 5.8S and 28S) are highly conserved whilst 

the internal and external transcribed spacers are moderately conserved (Hillis and 

Davies, 1986).  It is widely accepted that analysis of the rRNA region can be used to 
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differentiate between strains or species of organisms (McManus and Bowles, 1996).  Of 

particular interest is the 5' end of the 18S gene, which has been used extensively for 

genotyping and identifying isolates of Giardia.  Indeed, sequence analysis of the SSU-

rDNA has supported the distinctiveness between the genotypes of G. duodenalis, as 

well as that of G. ardeae and G. muris as proposed based on their morphological 

characteristics (Thompson et al., 2000a; Monis et al., 1999; Hopkins et al., 1997). 

 

The use of SSU-rDNA analysis has been previously used to describe the occurrence of a 

distinct Giardia species found in voles and muskrats (van Keulen et al., 1998).  Based 

on morphology and analysis of the SSU-rDNA gene, van Keulen et al. (1998) 

concluded that the Giardia they isolated was a new species that they called G. microti.  

Additionally, the use of the Glutamate Dehydrogenase (gdh), Triose Phosphate 

Isomerase (tpi) and Elongation Factor 1 Alpha (ef1α) genes has been widely accepted as 

a reliable means for the characterisation of both Giardia species and genotypes 

(McIntyre et al., 2000; Hopkins et al., 1999; Monis, 1999; Monis et al., 1999; Monis 

and Andrews, 1998; Monis et al., 1998; Hopkins et al., 1997; McRoberts et al., 1996). 

 

These loci are useful tools for the characterisation of novel Giardia isolates as well as 

phylogenetic studies.  Both the SSU-rDNA gene and the ef1α gene have previously 

been used to segregate the G. duodenalis genotypes as well as the species G. ardeae, G. 

muris and G. microti for phylogenetic and epidemiological studies (Monis et al., 1999).  

Here we investigate the occurrence of Giardia in both introduced and native wildlife 

throughout Western Australia, and characterise a novel isolate of Giardia found in a 

southern brown bandicoot (quenda) (Isoodon obesulus) in the south west of Western 

Australia using both SSU-rDNA and ef1α gene sequence analysis. 
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4.2 METHODS 

4.2.1 Detection, Purification and Measurement of Cysts 

Faecal samples were collected from 851 native mammals and 379 feral cats throughout 

Western Australia.  The 851 native mammals comprised: 249 Trichosurus vulpecula; 

238 Bettongia penicillata; 77 Isoodon obesulus; 65 Dasyurus geoffroyi; 42 Notomys 

alexis; 36 Macropus fuliginosus; 35 Macropus eugenii; 35 Perameles bougainville; 18 

Pseudomys hermannsbergensis; 12 Mus musculus; 8 Pseudomys nanus; 8 Lagostrophus 

fasciatus; 6 Bettongia lesueur; 6 Leporillus conditor; 5 Rattus tunneyi; 5 Canis lupus 

dingo; 3 Pseudomys deliculatus; 1 Macropus rufus; 1 Macropus robustus; and 1 

Ningaui ridei. 

 

Faecal samples were examined by direct stool microscopy stained with 5% Malachite 

Green stain and by both Sodium Nitrate and Zinc Sulphate flotation (Bartlett et al., 

1978).  Samples positive for Giardia cysts were subsequently purified via saturated salt 

and glucose gradient purification (Meinema unpublished).  Purified quenda (Isoodon 

obesulus) Giardia cysts were measured using the Optimas Image Analysis Package 

version 5.2 at ×1,000 magnification.  The area of analysis was set to enclose each 

individual cyst in order to minimise computational time.  Threshold was optimised by 

eye to differentiate the cyst background and once the optimal threshold was reached, the 

software was set to recognise the cyst as an area object.  All measurements (length, 

width, area and circularity) were transferred to a Microsoft Excel spreadsheet for 

analysis. 
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4.2.2 DNA Extraction and PCR Amplification 

DNA was extracted from purified and concentrated Giardia cysts using glassmilk 

(Biorad) as per manufacturer’s instructions.  Preliminary genetic characterisation of the 

extracted Giardia DNA was performed by amplifying a 292 bp region of the 5’ end of 

the small subunit ribosomal RNA (SSU-rRNA) gene (Hopkins et al., 1997), using the 

conditions set out below (section 4.2.2.1).  Characterisation of the quenda Giardia 

isolate was performed using molecular techniques studying the entire SSU-rRNA gene 

as well as the Elongation Factor 1 alpha (ef1α) gene. 

 

4.2.2.1 SSU-rDNA PCR 

Amplification of the SSU-rDNA was performed using conditions previously set out by 

Hopkins et al. (1997), and the primers RH11 (5’-CATCCGGTCGATCCTGCC-3’) and 

RH4 (5’-AGTCGAACCCTGATTCTCCGCCAGG-3’) to generate a 292 bp fragment 

for genotyping G. duodenalis genotypes and primers RH11 and RM3’ (5’-

CAGGTTCACCTACGGATACC-3’) for amplifying the entire 1.4 kb SSU-rRNA gene.  

In short, PCR’s contained 1-50 ng of extracted Giardia DNA; 1x Taq DNA polymerase 

reaction buffer consisting of 67 mM Tris-HCl, 16.6 mM (NH4)2SO4, 0.45% Triton X-

100 and 0.2 mg/ml gelatin at pH 8.8 (Biotech International Ltd., Perth, Western 

Australia); 2 mM MgCl2, 200 µM of each deoxyribonucleotide triphosphate, 5% 

DMSO, 12.5 pMol of both the forward and reverse primers, 0.5 units of Taq polymerase 

(Biotech International Ltd., Perth, Western Australia) and 0.5 units of Taq Extender 

PCR Additive (Stratagene, Integrated Sciences, Sydney).  Ultra pure water was used to 

make up the final volume of each reaction to 25 µl.  PCR’s were performed in 0.2 ml 

thin walled PCR tubes on a Perkin Elmer GeneAmp PCR System 2400 thermocycler.  

Reaction conditions consisted of a pre-incubation at 96ºC for 2 min and an initial 3 
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cycles of 96ºC for 20 s, 45ºC for 30 s and 72ºC for 2 min, followed by 32 cycles of 96ºC 

for 20 s, 55ºC for 30 s and 72ºC for 1 min with a final 72ºC extension for 7 min.  Due to 

the size of the SSU-rDNA gene (1433 bp), amplified products were cloned prior to 

sequencing (see section 4.2.4 below). 

 

4.2.2.2 ef1α PCR 

Amplification of the ef1α gene was performed as previously described by Monis (1999) 

and generated a band of approximately 750 bp.  In brief, each PCR contained 1-50 ng of 

extracted Giardia DNA; 1x Taq DNA polymerase reaction buffer consisting of 67 mM 

Tris-HCl, 16.6 mM (NH4)2SO4, 0.45% Triton X-100 and 0.2 mg/ml gelatin at pH 8.8 

(Biotech International Ltd., Perth, Western Australia); 4 mM MgCl2; 200 µM of each 

deoxyribonucleotide triphosphate; 5% Dimethyl Sulphoxide (DMSO); 12.5 pMol of 

both the forward (GLongF 5’-GCTCSTTCAAGTACGCGTGG-3’) and reverse 

(EF1AR 5’-AGCTCYTCGTGRTGCATYTC-3’) primers; 0.5 units of Taq polymerase 

(Biotech International Ltd., Perth, Western Australia); and 0.5 units of Taq Extender 

PCR Additive (Stratagene, Integrated Sciences, Sydney).  Ultra pure water was used to 

make up the final volume of each reaction to 25 µl.  PCR’s were performed in 0.2 ml 

thin walled PCR tubes on a Perkin Elmer GeneAmp PCR System 2400 thermocycler.  

Reaction conditions consisted of a pre-incubation at 94ºC for 2 min followed by 35 

cycles of 94ºC for 30 s, 55ºC for 30 s and 72ºC for 1 min, with a final 72ºC extension 

for 7 min.  Sequencing of the ef1α gene was performed directly from the amplified 

product without cloning as the gene (750 bp in length) could be sequenced in a single 

step. 
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4.2.2.3 Agarose Gel Electrophoresis 

Agarose gel electrophoresis was carried out using 1% gels in TAE (40 mM Tris-HCl; 20 

mM acetate; 2 mM EDTA; pH 7.9).  Electrophoresis was performed using horizontal 

gels in electrophoretic cells (BioRad).  Ethidium bromide was included in the gel at a 

final concentration of 0.15 µg/ml.  After electrophoresis, DNA was visualised under 

UV-illumination. 

 

4.2.3 Cloning 

Multiple SSU-rDNA gene products were amplified in isolation from each other under 

the conditions described above (section 4.2.2.1).  These PCR fragments, originating 

from unique PCR master mixes, were excised from their gels using sterile techniques 

and purified using spin columns (Qiagen, Hilden, Germany) as per manufacturer’s 

instructions.  Purified PCR products were cloned into TOP 10 F’ competent cells using 

the TOPO Cloning Kit (Invitrogen, Carlsbad, California) as per manufacturer’s 

instructions.  Transformed cells were plated onto LB (Bacto-tryptone, 10 g/L; Bacto-

yeast extract, 5 g/L; NaCl, 10 g/L; pH 7.0) plates containing 50 µg/ml of ampicillin.  

Colonies were grown up overnight (16 h) at 37ºC. 

 

4.2.4 Automatic Sequencing 

Sequencing was performed as previously described (section 3.2.5), with the exception 

that PCR templates were purified using spin columns (Qiagen, Hilden, Germany) and 

three independent sequences for both the SSU-rDNA and ef1α were obtained in both the 

forward and reverse direction prior to analysis. 
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4.2.5 Sequence Comparison and Phylogenetic Analysis 

Sequence information for the SSU-rDNA and ef1α loci was obtained from Genbank for 

comparison with the sequence data from the Quenda Giardia.  Accession numbers for 

the SSU-rDNA sequences are as follows: Quenda (AY309064); Assemblage A (group I, 

X52949; group II, AF199446); Assemblage B (AF199447); Assemblage C (AF199443); 

Assemblage D (AF199449); Assemblage E (AF199448); Assemblage F (AF199444); 

Assemblage G (AF199450); G. ardeae (Z17210); G. muris (X65063); G. psittaci 

(AF473853) and G. microti (AF006676, AF006677).  Accession numbers for these ef1α 

sequences are as follows: Quenda (AY309065); Assemblage A (group I, D14342; group 

II, AF069573); Assemblage B (group III, AF069569; group IV, AF069570); 

Assemblage C (AF069574); Assemblage D (AF069575); Assemblage E (AF069571); 

Assemblage F (AF069572); Assemblage G (AF069568); G. ardeae (AF069567); G. 

muris (AF069566). 

 

These sequences were aligned using the computer software package Clustal X 

(Thompson et al., 1997) and the alignments manually adjusted by eye as required.  

Subsequent phylogenetic analysis of these sequences was performed using MEGA 2.1 

(Kumar et al., 2001).  Based on the results of Monis et al. (1999), which found 

congruence between distance-based, parsimony and maximum likelihood analyses for 

Giardia ef1α and SSU-rDNA sequences, only distance-based analysis was conducted.  

Distances were estimated using the Tamura-Nei model with pair-wise deletion of 

missing data.  Trees were constructed using the Neighbour Joining method and support 

for nodes was estimated by bootstrap analysis using 1,000 replicates. 
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4.3 RESULTS 

4.3.1 Diagnosis and Morphology 

Giardia cysts were detected in five of the 1230 faecal samples collected from both feral 

cats and a range of native mammals throughout Western Australia.  Giardia infections 

were detected in one cat (Felis catus), one dingo (Canis lupus dingo), one pale field rat 

(Rattus tunneyi), one western chestnut mouse (Pseudomys nanus) and one quenda 

(Isoodon obesulus).  The cat was collected from the Dragon Rocks Nature Reserve, 

whilst the dingo, R. tunneyi and P. nanus were all collected from Lake Argyle.  The 

quenda was one of 72 collected from the south west region of Western Australia (Figure 

2.1). 

 

Measurements of 63 quenda Giardia cysts at ×1,000 magnification showed a size range 

of 10.4 to 14.3 µm in length with an average length of 12.5±0.87 µm.  Cyst width varied 

from 6.9 to 8.8 µm with an average width of 7.7±0.47 µm.  No trophozoites were 

detected.  Attempts to culture the isolated quenda Giardia cysts using the methods 

outlined by Hopkins et al. (1997) failed.  Whether this was due to the Giardia cysts 

being non-viable or due to the inability of the isolate to grow under the specified culture 

conditions is unknown. 

 

4.3.2 Sequence Confirmation and Alignment 

Sequence profiles were obtained for the Giardia isolates collected from the cat, dingo 

and quenda.  However, despite multiple attempts, amplification of Giardia DNA at both 

the SSU-rDNA and ef1α loci was unsuccessful for the two cases of Giardia infection in 

the R. tunneyi and P. nanus collected from Lake Argyle.  Therefore, despite 
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microscopic confirmation of Giardia infection in these two animals, speciation of the 

isolates was not possible. 

 

Sequence data obtained from the cat, dingo and quenda were confirmed to be Giardia 

SSU-rDNA via a BLAST search of the GenBank database.  Speciation and 

characterisation of the cat and dingo isolates, via alignment at the SSU-rDNA locus 

with the published sequence information available from GenBank (see section 4.2.5 for 

accession numbers), found the cat and dingo were harbouring G. duodenalis infections.  

Further characterisation of these two isolates at the 5’ end of the SSU-rDNA identified 

the G. duodenalis present in the cat as belonging to Assemblage A and the G. 

duodenalis in the dingo belonging to Assemblage D.  Sequence analysis of the Giardia 

isolate collected from the quenda at the 5’ end of the SSU-rDNA identified it as a novel 

genotype of Giardia not previously reported and warranted further investigation. 

 

DNA sequences were obtained for the quenda Giardia isolate for both the entire SSU-

rDNA and ef1α loci.  The sequence data obtained from the quenda Giardia was 

confirmed to be Giardia SSU-rDNA and ef1α sequence via a BLAST search of the 

GenBank database.  Phylogenetic analysis of the SSU-rDNA (Figure 4.1) and the ef1α 

(Figure 4.2) sequences identified the quenda isolate as a novel genotype of Giardia not 

previously reported.  In both cases it was placed as a lineage external to all of the 

previously described assemblages of G. duodenalis.  In the case of the SSU-rDNA data, 

which has more published sequences for a greater range of Giardia species, the quenda 

isolate was placed external to the cluster including G. duodenalis, G. microti and G. 

psittaci.  The placement of the quenda isolate in both analyses was highly supported by 

bootstrap analysis (100% for SSU-rDNA, 85% for ef1α). 
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Figure 4.1 Phylogenetic relationships of Giardia isolates inferred by distance-based 
analysis of SSU-rDNA sequences.  Bootstrap support (>50% for 1,000 replicates) is indicated at 
eachnode. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2 Phylogenetic relationships of Giardia isolates inferred by distance-based 
analysis of ef1α sequences.  Bootstrap support (>50% for 1,000 replicates) is indicated at each node. 
 

 Assemblage AI 
 Assemblage AII 
 Assemblage F 
 Assemblage E 

 Assemblage G 
 Assemblage D 

 Assemblage C 
 G. microti AF006676 

 G. microti AF006677 
 G. psittaci 

 Quenda 
 G. ardeae 

 G. muris 

91

100

93

61
81

51

79

94

99

86

63

 Assemblage E 
 Assemblage F 
 Assemblage AII 

 Assemblage AI 
 Assemblage BIII 
 Assemblage BIV 

 Assemblage G 
 Assemblage C 

 Assemblage D 
 Quenda 

 G. ardeae 
 G. muris 

100

85

56
99

98

78

0.02 nucleotide substitutions / site



 125

4.4 DISCUSSION 

4.4.1 Epidemiology of Giardia in Australia 

The detection of Giardia in only five of 1230 (0.4%) faecal samples from both native 

and introduced fauna suggests an extremely low prevalence of this parasite in Western 

Australia.  However, McGlade et al. (2003) showed that detection of Giardia infections 

in domestic cats via microscopy was highly insensitive when compared to PCR or 

coproantigen detection methods.  Presumably this finding is unaffected by host species 

as the shedding of Giardia cysts from an infected host is typically intermittent and 

repeat sampling of individuals is generally required to obtain an accurate assessment of 

prevalence (O'Handley et al., 1999; Meloni et al., 1993).  It has been estimated that 

between 15% and 50% of Giardia infections can go undetected if only one stool sample 

is examined per individual for the presence of cysts (Goka et al., 1990; Danciger and 

Lopez, 1975).  For this study it was not possible to obtain repeat samples from 

individual animals and as such it is not unreasonable to assume that the prevalence of 

Giardia infections in both native and introduced animals in Western Australia would be 

higher than reported in this study. 

 

The investigation of Giardia occurrence in Australian wildlife has been largely limited 

to the study of native fauna, dogs and cats in Tasmania, primarily due to the potential 

risk zoonotic transmission poses to the tourist industry (Kettlewell et al., 1998).  A 

survey for Giardia infections by Bettiol et al. (1997) on 295 native animals collected 

across Tasmania found an average prevalence of 21%.  The higher Giardia prevalence 

detected in Tasmanian marsupials by Bettiol et al. (1997) in comparison to the present 

study can be attributed to their use of a coproantigen detection test (Hopkins et al., 

1993) in addition to microscopy, which helps overcome the detection problems 
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associated with the intermittent nature of cyst shedding and low infection levels in 

infected hosts (McGlade et al., 2003). 

 

Bettiol et al. (1997) and Kettlewell et al. (1998) showed that Giardia appears to be a 

common parasite occurring in both native and introduced animals in Tasmania.  Bettiol 

et al. (1997) detected the highest prevalence of Giardia in bandicoots (Isoodon obesulus 

and Perameles gunnii), with 16 of 26 animals infected.  In the present study, only one of 

77 quenda examined was found to be shedding Giardia cysts, though this difference in 

prevalence may be due to intermittent shedding as previously discussed.  Additionally, 

Bettiol et al. (1997) demonstrated that eastern barred bandicoots (Perameles gunnii) 

were capable of becoming infected with and excreting cysts of human source G. 

duodenalis.  These bandicoots displayed no clinical symptoms, nor suffered from 

diarrhoea or weight loss, however the ease with which these animals became infected 

with Giardia of human origin together with the apparent prevalence of Giardia in 

Tasmania’s native animals raises concern over the potential zoonotic role wildlife may 

play in Giardia transmission. 

 

The role of wildlife as a reservoir of human giardiasis has been demonstrated as 

occurring with beavers in a waterborne outbreak of G. duodenalis in Canada (Isaac-

Renton et al., 1993), with the greatest zoonotic risk believed to be from Giardia 

belonging to Assemblage A, and to a lesser extent Assemblage B (Monis and 

Thompson, 2003; Thompson, 2000).  These genotypes have been found to occur in farm 

animals, pets and some wild animals, though whether animals act as reservoir hosts for 

humans or vice versa is unclear (van Keulen et al., 2002; O'Handley et al., 2000; 

Thompson et al., 2000a).  However, animal-specific genotypes appear to be host-
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adapted, and so far have been restricted to livestock, dogs, cats and rodents, and have 

not been detected in humans (Thompson et al., 2000a; van Keulen et al., 1998; Ey et al., 

1997). 

 

Epidemiological studies of human giardiasis suggests that humans are most likely to be 

the main reservoir for infection and that person to person contact is a major route of 

transmission and most likely plays a more important role than zoonotic transmission in 

human infection (Robertson et al., 2000; Schantz, 1991).  However, studies have 

demonstrated that dogs and cats regularly harbour Giardia infective to humans 

(Hopkins et al., 1997; Monis et al., 1996; Mayrhofer et al., 1995; Meloni et al., 1995).  

This is exemplified by the finding of G. duodenalis in a cat from Dragon Rocks which 

was shown to belong to Assemblage A, the genotype most commonly found infecting 

humans and considered the greatest zoonotic risk (Thompson et al., 2000a; Thompson 

et al., 2000b). 

 

In contrast, the G. duodenalis isolate found in a dingo from Lake Argyle in the north of 

Western Australia belonged to Assemblage D, which is commonly found infecting dogs 

(Thompson et al., 2000a; Monis et al., 1998).  Both Assemblage A and Assemblage D 

genotypes have been reported to occur frequently in dogs from remote Aboriginal 

communities in the north of Western Australia (Hopkins et al., 1997), though 

experimental evidence suggests that the Assemblage D genotype will, by competitive 

exclusion, out-compete other genotypes from Assemblage A, thus preventing their 

colonisation of the dog intestine (Thompson et al., 1996).  Therefore the diagnosis of 

the Assemblage D genotype of G. duodenalis in a dingo from Lake Argyle is not 

surprising given the frequency with which Aboriginal camp dogs in this region are 
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infected by Giardia (Hopkins et al., 1997; Meloni et al., 1995) and the potential for 

interaction between both dingoes and dogs in this environment.  Clearly, cats and dogs 

may act as carriers of Giardia not only for humans, but may also provide opportunities 

for infection of native animals due to their encroachment on native habitat (Kettlewell et 

al., 1998). 

 

The investigation of cross-transmission of Giardia infections ideally requires the 

examination of the dynamics of Giardia transmission between hosts living in the same 

geographical area (Hopkins et al., 1997; Thompson and Lymbery, 1996), as the 

occurrence of similar genotypes of Giardia in different host species is not by itself 

conclusive evidence that zoonotic transmission is taking place (Thompson, 2000).  As 

such, the detection of Giardia in R. tunneyi and P. nanus collected from the same region 

as the dingo mentioned above was of great interest.  However, despite microscopic 

confirmation of the presence of Giardia cysts in the faecal samples collected from these 

two rodents, molecular characterisation was not possible.  Due to the small quantity of 

faecal material obtained from R. tunneyi and P. nanus, salt/sucrose gradient purification 

(Meinema, unpublished) could not be applied, and it is presumed that PCR inhibitors, 

common in faecal samples (Ghosh et al., 2000), combined with the small quantity of 

faecal material contributed to the failure to extract Giardia DNA of sufficient quality to 

allow PCR amplification. 

 

4.4.2 Novel Genotype or New Species? 

Sequence analysis of the quenda Giardia isolate at the SSU-rDNA and ef1α loci show it 

to be clearly distinct from the sequences of all the other G. duodenalis isolates from 

humans and other mammals (Figure 4.1, 4.2).  Similarly, the quenda Giardia isolate is 



 129

also distinct from the other recognised species G. microti, G. psittaci, G. ardeae and G. 

muris at the SSU-rDNA locus as well as being distinct from the species G. ardeae and 

G. muris at the ef1α locus.  Therefore, the sequence information obtained from this 

isolate clearly demonstrates that the quenda Giardia isolate is more distantly related to 

G. duodenalis than either G. microti or G. psittaci, and should be classified as a new 

species of Giardia. 

 

Cyst measurements of the quenda Giardia isolate (10.4 to 14.3 µm) fall within those 

previously recorded for G. duodenalis (Garcia, 1998).  However, the size of Giardia 

cysts (and presumably the size of trophozoites as well) in both humans and dogs have 

been shown to vary significantly from day to day according to host diet and different 

environmental conditions (Tsuchiya, 1931, 1930).  It has also been argued that whilst 

cyst morphology may be able to distinguish between populations of Giardia in two 

hosts of the same species, it is inadvisable to use differences in size alone as a means of 

species distinction within the genus Giardia (Filice, 1952).  Indeed, it is the lack of 

reliably consistent differences between the G. duodenalis assemblages A and B that is 

retarding their recognition as distinct species (Thompson et al., 2000b), even though it 

has been demonstrated that the genetic distance separating them exceeds that used to 

delineate other species of protozoa (Monis and Thompson, 2003; Monis et al., 1996; 

Mayrhofer et al., 1995; Andrews et al., 1989).  This indicates that genetic and biological 

data may be more reliable than morphology when delineating species of Giardia. 

 

The distinctiveness of the quenda Giardia isolate also raises the issue of whether or not 

this is a potentially new zoonotic species or if it has a limited or specific host range 

adapted to the Australian wildlife.  The latter seems more likely, given that it has never 
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before been isolated from humans or domestic animals and host-adapted genotypes such 

as the quenda Giardia isolate appears to be, have not been identified in humans and 

consequently do not appear to represent a risk to public health (Thompson et al., 2000a; 

van Keulen et al., 1998; Ey et al., 1997).  As such, if the quenda Giardia isolate is an 

endemic species that has evolved within the Australian fauna over millions of years, it 

raises the issue of whether it is the same as the Giardia previously found by Bettiol et 

al. (1997) in Tasmanian marsupials. 

 

4.4.3 Epidemiological Importance of Molecular Characterisation 

The dispersal of similar genotypes of Giardia throughout different host species is not by 

itself conclusive evidence that zoonotic transmission is occurring (Thompson et al., 

2000b).  As such, selected wildlife species have been scrutinised as potential sources of 

Giardia infection for humans in North America and Canada for several years (Measures 

and Olson, 1999; Graczyk et al., 1998; Olson et al., 1997a; Wallis et al., 1996; 

Erlandsen et al., 1990; Isaac-Renton et al., 1987; Monzingo and Hibler, 1987).  

However, the advent of molecular characterisation has shown these animals harbour 

host specific genotypes which are not zoonotic threats (Thompson et al., 2000b; 

Hopkins et al., 1999; Monis et al., 1998; van Keulen et al., 1998; Ey et al., 1997; 

Hopkins et al., 1997).  Therefore, the role of wildlife in the transmission of Giardia is 

not necessarily one of a reservoir for human infection. 

 

Kettlewell et al. (1998) and Bettiol et al. (1997) speculated that the occurrence of 

Giardia in native marsupials from Tasmania was linked to the contamination of the 

environment by humans and introduced animals.  However, genetic characterisation of 

these isolates was not performed and without genotyping the Giardia recovered from 
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both native and introduced wildlife it is not possible to accurately establish a potential 

transmission cycle.  Genotyping of Giardia isolates provides a powerful predictive tool 

for providing direct evidence of zoonotic transmission as well as determining sources of 

infection in outbreak conditions (Thompson et al., 2000b).  The use of such tools on the 

quenda Giardia isolate has demonstrated that the isolate is genetically distinct enough to 

be placed outside the G. duodenalis group, among the other recognised species of 

Giardia. 

 

This finding is of interest from both a conservation and epidemiological viewpoint as 

previous reports of Giardia in Australian native mammals are extremely limited and 

more commonly attributed to genotypes of G. duodenalis (Kettlewell et al., 1998; 

Bettiol et al., 1997).  The information reported here supports the hypothesis of this 

being a distinct species of Giardia that has persisted in the Australian native fauna and 

possibly evolved with it over the last 40 million years since Australasia split from 

Gondwanaland.  If this is the case, it could be extremely helpful in understanding the 

origin and evolution of Giardia (Simpson et al., 2002).  It also highlights our lack of 

knowledge concerning the Australian fauna and its parasites (Adlard and O'Donoghue, 

1998), as research into the transmission of Giardia and similar parasites within 

Australia to date has focussed primarily on domestic and companion animals in regard 

to zoonotic transmission (O'Handley et al., 2000; Olson et al., 1997b; Meloni et al., 

1993; Collins et al., 1987; Swan and Thompson, 1986).  Hopefully the discovery of this 

new species will encourage further investigation into the taxonomy, infection and 

transmission of Giardia in Australian wildlife. 
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Chapter 5 –Occurrence and Distribution of 

Toxoplasma gondii in Feral Cats and Native 

Mammals from Western Australia: Comparison of 

Serology and PCR Detection Methods 

 

5.1 INTRODUCTION 

5.1.1 What is Toxoplasma gondii? 

Toxoplasma gondii is a ubiquitous, obligate intracellular coccidian parasite that occurs 

in most areas of the world and is of both veterinary and medical importance worldwide 

due to its implication in abortion and congenital disease in its intermediate hosts (Dubey 

et al., 1998; Dubey and Beattie, 1988).  Virtually all species of warm-blooded animals 

including humans can be infected by T. gondii, though only cats and other members of 

the family Felidae are the definitive hosts (Dubey and Lappin, 1998).  There are three 

infectious stages: sporozoites in oocysts, generally found as a contaminant of food or 

water; tachyzoites, the actively multiplying stage present in intermediate host tissue; and 

bradyzoites, the slowly multiplying stage enclosed in tissue cysts (Tenter et al., 2000; 

Dubey and Lappin, 1998).  Oocysts are excreted in faeces only by members of the 

Felidae, whereas tachyzoites and bradyzoites can be found in tissues of both definitive 

and intermediate hosts (Dubey and Lappin, 1998). 
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5.1.2 Toxoplasma gondii Life Cycle 

The life cycle of T. gondii can be divided into two stages, the enteroepithelial life cycle 

(occurring only in the definitive feline host) and the extraintestinal life cycle (occurring 

in all hosts including cats). 

 

5.1.2.1 Enteroepithelial Life Cycle 

The Enteroepithelial life cycle occurs only in members of the Felidae with most cats 

thought to become infected with T. gondii through the ingestion of infected intermediate 

hosts (Dubey and Lappin, 1998).  Bradyzoites are released from tissue cysts into the 

stomach and small intestine following their ingestion by a member of the Felidae 

(Dubey, 1998b; Dubey and Lappin, 1998), whereby they undergo asexual proliferation 

followed by sexual reproduction and oocyst formation in the epithelium of the small 

intestine (Tenter et al., 2000; Dubey et al., 1998).  Infected epithelial cells rupture and 

discharge unsporulated oocysts into the intestinal lumen, which are then excreted into 

the environment with the faeces (Dubey and Lappin, 1998). 

 

Sporulation of T. gondii oocysts occurs in the environment within one to five days, and 

like other coccidial parasites is dependent on temperature and moisture conditions 

(Jackson and Hutchison, 1989; Dubey et al., 1970).  Oocyst excretion in cats generally 

lasts for one to three weeks (Dubey and Frenkel, 1972a) with up to 1 million oocysts 

shed per gram of faeces (Frenkel et al., 1995).  Local soil contamination can be as high 

as 100,000 oocysts/g of soil (Frenkel et al., 1995), with sporulated T. gondii oocysts 

able to survive in the environment for up to 1.5 years (Frenkel et al., 1975). 
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The prepatent period (time to the shedding of oocysts after initial infection) and 

frequency of oocyst shedding varies according to the stage of T. gondii ingested 

(Dubey, 1996; Freyre et al., 1989; Dubey and Frenkel, 1976).  The shortest prepatent 

period in cats (3 to 10 days) is experienced after infection via ingestion of tissue cysts 

(Dubey, 1998a), whilst production of oocysts can be delayed up to 18 days or more 

following ingestion of oocysts or tachyzoites (Dubey, 1996).  Fewer than 30% of cats 

shed oocysts after ingesting tachyzoites or oocysts, whereas nearly all cats shed oocysts 

after ingesting tissue cysts (Dubey, 1996; Dubey and Frenkel, 1976).  Tissue cysts 

generally persist for the life of the cat and subsequent shedding of oocysts has been 

reported to occur sporadically (Dubey, 1977). 

 

5.1.2.2 Extraintestinal Life Cycle 

The extraintestinal development of T. gondii is the same for all hosts and is not 

dependent on whether tissue cysts or oocysts are ingested (Dubey and Lappin, 1998).  

After the ingestion of oocysts, sporozoites excyst in the lumen of the small intestine and 

penetrate the intestinal cells where they undergo asexual development to become 

tachyzoites (Tenter et al., 2000; Dubey and Lappin, 1998).  Tachyzoites are capable of 

multiplying rapidly in many different types of host cells for an undetermined period of 

time, before initiating a second phase of development which results in the formation of 

tissue cysts containing bradyzoites (Dubey and Lappin, 1998).  Tissue cysts may 

develop in intermediate hosts as early as 6-7 days after infection by either oocysts or 

other tissue cysts (Dubey et al., 1998). 

 

Tissue cysts have a high affinity for neural and muscular tissues and are located 

predominantly in the central nervous system (CNS) and the eye as well as skeletal and 
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cardiac muscles of infected hosts (Dubey et al., 1998).  They may also be found in 

visceral organs, such as the lungs, liver and kidneys (Tenter et al., 2000; Dubey et al., 

1998).  Tissue cysts are the terminal life cycle stage in the intermediate host and are 

immediately infectious.  They generally persist for the life of the host, however it is 

believed that tissue cysts breakdown periodically in hosts, releasing bradyzoites which 

transform into tachyzoites to reinvade host cells and form new tissue cysts (Dubey, 

1998a; Dubey et al., 1998). 

 

5.1.3 Transmission of Toxoplasma gondii 

T. gondii is capable of undergoing both horizontal and vertical transmission within both 

intermediate and definitive hosts (Figure 5.1) (Dubey et al., 1997b; Dubey et al., 1995a; 

Dubey and Carpenter, 1993; Beverley, 1959).  Because T. gondii can be transmitted by 

multiple sources, it is difficult to establish the definite mode of transmission on an 

individual basis.  Therefore, it is currently not known which of the various routes of 

transmission is more important, however epidemiologic evidence suggests that cats are

 

Cat

Kittens

Intermediate Host

Offspring

Tissue
cysts

Faecal oocysts

Tissue cysts

TachyzoitesTachyzoites

Vertical Transmission
Horizontal Transmission

Faecal
oocysts

Figure 5.1 Transmission cycle of T. gondii. 
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ultimately essential for the maintenance of T. gondii in the environment (Dubey et al., 

1997a; Frenkel and Ruiz, 1981; Munday, 1972; Wallace et al., 1972). 

 

There are three infectious stages in the life cycle of T. gondii: tachyzoites; bradyzoites 

contained in tissue cysts; and sporozoites contained in sporulated oocysts.  All three 

stages are infectious for both intermediate and definitive hosts which may acquire a T. 

gondii infection mainly via one of the following routes: a) horizontally by oral ingestion 

of infectious oocysts from the environment, b) horizontally by oral ingestion of tissue 

cysts contained in raw or undercooked meat or primary offal (viscera) of intermediate 

hosts, or c) vertically by transplacental transmission of tachyzoites (Dubey et al., 1998; 

Dubey, 1991; Jackson and Hutchison, 1989; Dubey and Beattie, 1988).  Additionally, 

transmission of tachyzoites from mothers to offspring via their milk has been observed 

in several hosts (Powell et al., 2001; Tenter et al., 2000; Jackson and Hutchison, 1989; 

Dubey and Beattie, 1988), whilst other minor modes of transmission involve transfusion 

of bodily fluids and transplantation of organs (Dubey and Beattie, 1988). 

 

5.1.3.1 Ingestion of Oocysts 

Grazing animals and birds can directly ingest oocysts as contaminants of pasture, hay, 

grain or water supplies.  Humans are at risk through gardening in contaminated areas 

and through external contamination of fresh vegetable material (Dubey, 1986; Rothe et 

al., 1985; Hartley and Munday, 1974).  Insects such as flies and cockroaches can act as 

mechanical transport hosts by carrying oocysts on their feet and mouthparts (Hartley 

and Munday, 1974; Wallace, 1973, 1972, 1971). 
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5.1.3.2 Ingestion of Tissue Cysts 

All meat eating animals, including predatory birds and humans can be infected when 

tissues containing viable T. gondii cysts are ingested (Dubey, 1986; Rothe et al., 1985).  

This route of infection is also important in terms of human exposure (Tenter et al., 

2000).  T. gondii tissue cysts are common in meat producing animals such as pigs, sheep 

and goats, and less frequently in poultry, rabbits and horses (Tenter et al., 2000).  

Although T. gondii tissue cysts can be destroyed by heating to 70ºC for ten minutes, the 

mere searing of meat (rare) will not destroy the organisms (Dubey, 1986; Rothe et al., 

1985). 

 

5.1.3.3 Congenital Transmission 

Traditionally, toxoplasmosis is of most importance to previously non-infected women 

of childbearing age due to the risk of transplacental infection of the foetus during 

pregnancy (Jones et al., 2001).  Following ingestion of T. gondii via oocyst 

contamination of food or water, or the ingestion of tissue cysts, tachyzoites can multiply 

in the placenta and foetus (Cook et al., 2000; Tenter et al., 2000).  Congenital 

toxoplasmosis is known to cause abortion, neonatal death, or foetal abnormalities with 

detrimental effects such as the development of blindness or mental retardation (Tenter et 

al., 2000; Dubey and Beattie, 1988).  The estimated economic burden of T. gondii 

infections in the United States, primarily from congenital toxoplasmosis, is $7.7 billion 

each year (Jones et al., 2001).  Most human infections however are sub-clinical and the 

majority of people postnatally infected with T. gondii will go through life with no 

adverse effects. 
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T. gondii infections are generally more widespread in sheep and are a major economic 

cost to the industry due to high levels of abortion in flocks (Dubey and Beattie, 1988).  

The extent of T. gondii infection in sheep populations varies widely, with infection rates 

for individual flocks of sheep ranging from 5% to 95% (Blewett, 1983).  Whilst current 

views consider congenital transmission of T. gondii in sheep to be insignificant (Blewett 

and Watson, 1983), a recent study by Duncanson et al. (2001) has shown congenital 

transmission to occur in 61% of pregnancies in a commercial sheep flock.  This study 

has highlighted the significance of vertical transmission in the persistence of T. gondii 

and is causing the re-evaluation of earlier studies which demonstrated the importance of 

vertical transmission in maintaining the parasite in populations of intermediate hosts 

(Owen and Trees, 1998; de Roever-Bonnet, 1969; Remington et al., 1961; Beverley, 

1959). 

 

Congenital toxoplasmosis in cats is also common, with the severity of the infection 

varying with the stage of gestation at the time of infection.  Many kittens born to queens 

infected with T. gondii during gestation become infected transplacentally or via suckling 

(Dubey et al., 1995a; Dubey and Carpenter, 1993; Sato et al., 1993).  Much the same as 

with sheep and other hosts, T. gondii infections are most severe in transplacentally 

infected kittens, causing stillbirths as well as mortality prior to weaning (Dubey et al., 

1995a; Dubey and Carpenter, 1993). 

 

5.1.4 Pathogenesis 

It is not fully understood why some infected animals develop clinical toxoplasmosis 

whilst others do not.  Age, sex, host species, strain of T. gondii, number of organisms 

and stage of the parasite ingested may all account for some of the differences, whilst 
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stress, concomitant illness and immunosuppression may also increase host susceptibility 

to T. gondii (Dubey and Lappin, 1998).  Symptoms of acute toxoplasmosis can include 

fever, coughing, pneumonia, mastitis, abortion and stillbirths (Dubey, 1994).  In the 

sub-clinical form, symptoms may be absent or inapparent with a degree of immunity 

being acquired by the host (Liesenfeld, 1999; Davis and Dubey, 1995; Dubey, 1995).  

Acute cases may produce inflammation in heart muscle, liver and skin (rash) with 

localised swelling of lymph nodes as well as lethargy, weight loss, vomiting and 

diarrhoea (Dubey and Lappin, 1998; Dubey et al., 1995a; Dubey and Carpenter, 1993). 

 

Tachyzoites are the invasive asexual forms of the parasite that require intracellular 

existence for replication and survival, (Carruthers, 2002; Dubey and Lappin, 1998).  

Cell necrosis is common at localised sites of infection and is due to the intracellular 

growth of T. gondii (Dubey and Lappin, 1998).  In infections acquired after the 

ingestion of tissue cysts or oocysts, initial clinical signs are usually due to the necrosis 

of intestinal epithelium and associated lymphoid organs caused by tachyzoite 

proliferation (Dubey and Lappin, 1998).  Tachyzoites are spread to extraintestinal 

organs via blood or lymph, with the brain, liver, lungs, skeletal muscle and eyes being 

common sites for the chronic persistence of infection (Dubey and Lappin, 1998; Dubey 

et al., 1998). 

 

Approximately three weeks after infection tachyzoites begin to disappear from visceral 

tissues and may localise as tissue cysts which persist in the host for life, though 

intermittent relapses may occur if the host becomes immunosuppressed or highly 

stressed (Dubey and Lappin, 1998).  The clinical outcome of the infected host is 

determined by the extent of injury it sustains to its internal organs, particularly heart, 
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lung, liver and adrenal glands (Dubey and Lappin, 1998).  Generally, most host species 

will recover from an infection, though acute disseminated T gondii infections can often 

be fatal (Dubey and Lappin, 1998). 

 

5.1.5 Toxoplasma gondii in the Australian Fauna 

Toxoplasmosis is a common cause of death in captive and wild Australian marsupials, 

especially macropods and bandicoots (Reddacliff et al., 1993; Lenghaus et al., 1990; 

Obendorf and Munday, 1990, 1983).  Deaths due to T. gondii have also been reported in 

wild possums (Cook and Pope, 1959), captive dasyurids (Attwood et al., 1975), captive 

wombats (Munday, 1988; Arundel et al., 1977), koalas (Hartley et al., 1990) and 

echidnas (McOrist and Smales, 1986).  Clinical signs of toxoplasmosis in marsupials 

include sudden death, lethargy, inappetence, respiratory distress, diarrhoea and 

neurological disturbances (Canfield et al., 1990; Obendorf and Munday, 1990).  Lesions 

can be present in many organs, but the main changes in marsupials are usually in the 

brain and lungs (Munday, 1988). 

 

Native animals have been reported in the wild as being blinded, stumbling, and dying 

from toxoplasmosis (Obendorf et al., 1996; Obendorf and Munday, 1990).  Wild 

animals infected with T. gondii may exhibit pathology including obscured vision and 

difficulty in walking, though these general symptoms are not specific to T. gondii 

infections (Reddacliff et al., 1993; Ashton, 1979).  Toxoplasmosis often occurs in 

captive marsupials causing outbreaks of sudden death with no apparent symptoms, 

though respiratory and nervous signs are sometimes observed (Reddacliff et al., 1993).  

Whilst deaths from toxoplasmosis may constitute a major form of mortality for some 
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native mammals (Obendorf et al., 1996), attributing mortalities exclusively to T. gondii 

infections is difficult to achieve. 

 

Tissue cysts are often described from latent infections and their detection has previously 

been used to estimate the prevalence of Toxoplasma infection in wild populations of 

macropods (Gibb et al., 1966).  However, failure to detect them microscopically does 

not eliminate the possibility of infection.  Often there are no gross lesions in macropods 

dying with acute toxoplasmosis and those that are present are generally not specific for 

T. gondii (Canfield et al., 1990).  In many cases it may be impossible to determine the 

nature of the infection on pathology alone (Reddacliff et al., 1993), and as a 

consequence toxoplasmosis is often overlooked or misdiagnosed in Australian 

marsupials. 

 

5.1.6 Toxoplasma gondii Detection Methods 

Tachyzoites may be detected directly in various tissues and body fluids by cytology 

during acute illness, though they are rarely found (Dubey and Lappin, 1998).  

Additionally, despite a worldwide seroprevalence of over 30% in naturally infected cats, 

studies have estimated that less than 1% of cats shed oocysts on any given day (Dubey 

and Lappin, 1998; Dubey and Beattie, 1988).  Because cats usually only shed T. gondii 

oocysts for 1 to 2 weeks after their first exposure, oocysts are rarely found in routine 

faecal examination and cats do not normally experience diarrhoea or clinical symptoms 

during this period of shedding either (Dubey and Lappin, 1998). 

 

Oocysts of T. gondii are also morphometrically indistinguishable from oocysts of 

Hammondia hammondi and Besnoitia darlingi, which also occur in cats (Dubey and 
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Lappin, 1998).  Therefore, the accurate identification and detection of T. gondii 

infection in both intermediate and definitive hosts is achieved using bioassay, serology 

or molecular tools, each of which has their own advantages and disadvantages.  

Bioassay involves the inoculation of animals or cell cultures with suspected T. gondii 

infected tissue(s) or suspected T. gondii oocysts (Dubey and Lappin, 1998).  This 

method is understandably complicated, cumbersome and expensive for routine 

screening and was not used in the present study. 

 

5.1.6.1 Serology 

Serological testing is the most commonly used technique for supporting the clinical 

diagnosis of toxoplasmosis.  Numerous serological tests are available for the diagnosis 

of T. gondii infections in most host species, however no single serological assay exists 

that can definitively confirm or refute toxoplasmosis in a host (Dubey and Lappin, 

1998).  The detection of different classes of antibodies against T. gondii show that IgM, 

IgG and IgA responses to infection overlap and can be detected in both healthy and 

clinically ill animals (Lappin, 1996).  There is no definite pattern to T. gondii-specific 

IgM, IgG and IgA serological responses over time that can be used to reliably document 

recent infection or clinical disease using individual serum samples (Lappin, 1996). 

 

Many animals suffering from toxoplasmosis have low-grade clinical signs and therefore 

may not be serologically evaluated until antibody titres have already reached maximal 

levels, which makes it very difficult to interpret serum antibody titres (Lappin, 1996).  

Because T. gondii specific antibodies occur in the serum of both healthy and diseased 

animals, results of serologic tests cannot independently prove clinical toxoplasmosis 

(Dubey and Lappin, 1998).  T. gondii specific IgM is also occasionally detected in the 



 144

serum of animals with chronic or reactivated infection and does not always correlate 

with recent exposure (Dubey and Lappin, 1998).  As such, serological test results can be 

interpreted in the following ways: 

A positive result indicates one of four things: 

1) A current infection;  

2) A previous infection to which the host is now immune; 

3) Cross-reaction with shared antibody from another infection; or  

4) The presence of antibodies transferred from mother to young. 

Whilst a negative result also indicates one of four things:  

1) The individual is not and never was infected;  

2) The infection is so recent that detectable antibody responses have not yet 

developed;  

3) The host was previously infected, but immunity was short-term and antibodies 

are no longer present in detectable quantities; or  

4) The host is or was infected but was not capable of producing antibodies against 

the infection (Scott, 1988). 

 

5.1.6.2 Molecular Diagnosis 

The use of PCR to amplify and subsequently detect DNA from micro-organisms in a 

range of tissues has proven extremely valuable, particularly for pathogens that are 

difficult to culture or for which sample volumes are generally small (Stiles et al., 1996; 

MacPherson and Gajadhar, 1993).  As such, molecular methods have been investigated 

to aid in the clinical management of toxoplasmosis.  The ability to identify T. gondii 

DNA in biological samples provides direct evidence of the presence of the organism as 

opposed to serology, which is dependent upon a host response (Jones et al., 2000).  A 
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limitation of PCR techniques however, is that they cannot distinguish between active 

and chronic T. gondii infections, nor do they provide information on the viability of the 

parasite (Lee et al., 1999), though the recent development of T. gondii quantitative PCR 

assays aim to overcome this obstacle (Jauregui et al., 2001; Costa et al., 2000; Homan 

et al., 2000; Lin et al., 2000). 

 

The ability of PCR-based techniques to provide a sensitive answer in less than one day 

makes them effective tools for early diagnosis, whilst the detection of T. gondii in body 

fluids or tissues offers a more specific means of documenting infections than does 

serum antibody titres (Stiles et al., 1996).  Additionally, PCR has been used to make the 

definitive diagnosis of toxoplasmosis from a wide range of biological samples 

including: ocular fluid (Burney et al., 1998); amniotic fluid (Guy et al., 1996); CSF and 

tissues (Cingolani et al., 1996; van de Ven et al., 1991); bronchoalveolar lavage fluid 

(Bretagne et al., 1993); as well as lymph and blood samples (Lamoril et al., 1996; 

Dupon et al., 1995; Ho-Yen et al., 1992). 

 

However, no single diagnostic technique is infallible and PCR, much like 

histopathology, can only detect an infection if T. gondii is present in the sample 

collected.  The risk of false negatives is related to the sparse and focal distribution of T. 

gondii tissue cysts and low-level infections, which may result in the absence of the 

parasite in a sample even though it was collected from and infected individual. 

 

5.1.7 Detection of Toxoplasma gondii in Biological Samples 

Whilst the detection of T. gondii antibodies is the standard diagnostic test used for 

antemortem diagnosis of toxoplasmosis, the presence of antibodies does not 
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automatically infer disease or infection (Dubey and Lappin, 1998).  Additionally, the 

extrapolation of serological techniques designed for human applications to veterinary 

medicine creates problems with sensitivity and specificity, thus compromising the 

reliability of these techniques (MacPherson and Gajadhar, 1993).  As such, direct 

detection of T. gondii in body fluids or tissues offers a more specific and sensitive 

means of documenting infection than do serum antibody titres, however there is no 

agreement as to the preferred PCR target gene for the diagnosis of toxoplasmosis in 

either humans or animals. 

 

T. gondii PCR amplification protocols have centred around three well conserved gene 

targets: the rDNA genes (Fazaeli et al., 2000; Guay et al., 1993; MacPherson and 

Gajadhar, 1993); the P30 gene, which codes for the major surface antigen of the 

tachyzoite (Lee et al., 1999; Nguyen et al., 1996); and the B1 gene, which is a 35-fold 

repetitive gene of unknown function (Muller et al., 1996; Stiles et al., 1996; Guy and 

Joynson, 1995; van de Ven et al., 1991; Burg et al., 1989).  The B1, P30 and 18S rDNA 

genes are most widely used due to their well-conserved nature within the T. gondii 

species.  However, the B1 gene has been shown to be highly specific and more sensitive 

in the detection of T. gondii in clinical samples than the P30 and 18S rDNA genes 

(Jones et al., 2000; Holmdahl et al., 1994). 

 

The B1 gene has been widely researched and used for the detection of T. gondii (Grigg 

and Boothroyd, 2001; Jones et al., 2000; Ellis, 1998; Owen and Trees, 1998; Pelloux et 

al., 1996; Burg et al., 1989), and has previously been shown to be comparable to 

traditional T. gondii detection methods (van de Ven et al., 1991).  The repetitive nature 

of the B1 gene allows PCR detection of as little as 50 fg of T. gondii DNA (Jones et al., 
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2000), which has been estimated as the amount of DNA contained within a single T. 

gondii organism (Wright and Manos, 1990).  Being well conserved, the B1 gene allows 

the amplification of all strains of T. gondii, without any cross reaction with closely 

related parasitic organisms, nor human, bacterial or fungal species (Jones et al., 2000). 

 

Due to the sensitive and specific nature of the B1 gene, a hemi-nested PCR protocol 

directed at this site has been developed (Pujol-Rique et al., 1999).  This protocol 

represents a potentially robust molecular diagnostic test for the detection of T. gondii 

infection in biological samples.  This study was designed to investigate the diagnostic 

potential of this technique on a broad range of host species from the Australian fauna. 

As such, the aims of this study were to: 

1. Compare the sensitivity of the molecular testing to that of diagnostic serology; 

2. Determine the applicability of the molecular test as a diagnostic tool for the 

detection of acute and chronic T. gondii infections in biological samples from 

feral cats and Australian native fauna; 

3. Use the single tube hemi-nested PCR to screen tissue samples collected from 

feral cats and native fauna throughout Western Australia for the presence of T. 

gondii and to investigate the potential risk toxoplasmosis poses to the native 

fauna. 
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5.2 MATERIALS AND METHODS 

5.2.1 Tissue Samples and Collection 

5.2.1.1 Clinical Samples 

Tissue samples consisting of brain, liver, spleen, muscle, skin lesions and lymph nodes 

were collected from a naturally infected cat presented to the Murdoch University 

Veterinary Hospital suffering from acute toxoplasmosis.  Brains from experimentally 

infected mice and purified T. gondii RH strain tachyzoites were provided courtesy of 

Professor Alan Johnson (UTS, Sydney).  These samples were used to test the sensitivity 

and specificity of the one-tube hemi-nested PCR protocol. 

 

Additional tissue samples were collected from a limited number of native and 

introduced animals that were known to have either an acute or chronic T. gondii 

infection diagnosed by either serological or histopathological detection, as well as from 

animals with no history of infection that were presented with possible symptoms of 

toxoplasmosis.  Samples collected included brain, spleen, liver, lung, kidney, muscle, 

spinal cord, tongue, heart, lymph node and skin lesion.  However, the conditions under 

which some of the samples were collected were such that not all tissues could be 

collected from all animals. 

 

Sample animals consisted of: a ferret (Mustela putorius furo) submitted to the veterinary 

clinic suffering from suspected toxoplasmosis; a southern hairy nosed wombat 

(Lasiorhinus latifrons) from the Perth Zoo with a serological history of T. gondii 

exposure; two ravens (Corvus coronoides) which died after being submitted to the 

veterinary clinic suffering neurological disorders (one of which was confirmed as 

having toxoplasmosis via histopathology); a southern brown bandicoot (Isoodon 
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obesulus) recovered from a suburban backyard with no obvious cause of death; three 

western barred bandicoots (Perameles bougainville) from a captive breeding colony that 

died of no obvious causes; and four quokkas (Setonix brachyurus) from Rottnest Island 

displaying possible symptoms of T. gondii prior to death. 

 

5.2.1.2 Serological Samples 

Serum samples were collected from a combination of 70 stray and feral cats from which 

tissue samples were also collected.  Seroprevalence of cats was determined using the 

latex agglutination test (LAT) (does not distinguish immunoglobulin classes), indirect 

immunofluorescence assay (IFA) (anti-Toxoplasma antibody test), direct agglutination 

test (DAT) (detection of IgM) and modified agglutination test (MAT) (detection of 

IgG).  Two different commercial laboratories (VetPath, Perth and ClinPath, Hobart) 

performed the serological tests. 

 

5.2.1.3 Feral Cat and Native Fauna Samples 

Once the single tube hemi-nested PCR was calibrated with biological samples, it was 

used to screen tissue (brain) samples collected from 268 feral cats and 200 native 

mammals from different regions throughout Western Australia, comprising: 69 

Macropus fuliginosus; 42 Notomys alexis; 39 Macropus rufus; 16 Pseudomys 

hermannsburgensis; 10 Mus musculus; 6 Bettongia penicillata; 5 Pseudomys nanus; 5 

Rattus tunneyi; 3 Pseudomys delicatulus; 3 Trichosurus vulpecula; 1 Isoodon obesulus; 

1 Dasyurus geoffroii ( Figure 5.2). 
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Figure 5.2 Location of tissue sampling sites for T. gondii within Western Australia 
showing mammal species collected from each site.  Key to sampling site abbreviations: BB = 
Bungle Bungles; CI = Cocos Islands; CO = Collie; DR = Dragon Rocks; GD = Gibson Desert; LA = Lake 
Argyle; MI = Montebello Islands; MJ = Manjimup; MK = Mount Keith; NW = Newman; PM = Perth 
Metropolitan Region; RA = Ravensthorpe; SB = Shark Bay; WG = Wongawol Station; WP = Walpole.  
Key to species abbreviations: BTP = brushtail possum (Trichosurus vulpecula); FC = cat (Felis catus); 
CHU = chudich (Dasyurus geoffroii); DM = delicate mouse (Pseudomys delicatulus); HM = house mouse 
(Mus musculus); PFR = pale field rat (Rattus tunneyi); QUE = quenda (Isoodon obesulus); RK = red 
kangaroo (Macropus rufus); SHM = spinifex hopping mouse (Notomys alexis); SIM = sandy inland 
mouse (Pseudomys hermannsburgensis); WCM = western chestnut mouse (Pseudomys nanus); WGK = 
western grey kangaroo (Macropus fuliginosus); WOY = woylie (Bettongia penicillata). 
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5.2.2 DNA Extraction 

Two DNA extraction protocols were used for this study, Chelex 100 resin solution and 

a DNA MasterPure Extraction kit from Epicentre.  Both extraction techniques were 

trialled to observe the technique best suited to quick and efficient large scale DNA 

extractions on biological samples.  In both protocols the brain tissue from sampled 

animals was frozen and macerated prior to DNA extraction to provide a homogenous 

suspension of brain tissue and T. gondii parasites (if present in the brain). 

 

5.2.2.1 Chelex Resin Protocol 

Tissue samples were macerated and the DNA extracted using Chelex® 100 resin (Walsh 

et al., 1991).  In brief, the macerated tissue was digested with Proteinase K (final 

concentration 150 µg/ml) at 56ºC for 24-48 hours with continuous mixing in 5% w/v 

Chelex® 100 resin in ddH2O.  Following incubation the Chelex® 100 resin and any 

remaining cellular debris was pelleted in a bench top microcentrifuge and the 

supernatant transferred to a clean tube.  The supernatant was subsequently treated with 1 

µg of RNAase A at 37ºC for 30 min before being used for PCR amplification. 

 

5.2.2.2 Epicentre MasterPure Kit 

DNA was extracted using the MasterPure kit from Epicentre, which utilises a rapid 

desalting process resulting in the removal of contaminating macromolecules (Miller et 

al., 1988) and is applicable to a wide variety of biological samples.  Extraction of DNA 

was performed following the manufacturer’s instructions.  In brief, approximately 50 – 

100 mg of tissue sample was suspended in 300 µl of Tissue Lysis Buffer with a final 

concentration of 15 µg/ml Proteinase K and incubated at 56ºC with continuous mixing 

for 20 – 24 hours.  Samples were cooled on ice then incubated with 1 µg of RNAase A 
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at 37ºC for 30 min.  Samples were incubated on ice for a further 3–5 min before adding 

150 µl of MasterPure Protein Procipitate Buffer and vortexing for 10 seconds.  The 

resulting precipitate was spun down at maximum speed in a bench top microcentrifuge 

(14,000 rpm) for 10 min at 4 ºC.  The supernatant was removed and transferred to a 

clean tube and the DNA was precipitated with 500 µl of isopropanol and gentle mixing.  

The DNA was pelleted by spinning at maximum speed (14,000 rpm) in a bench top 

microcentrifuge for 10 min.  The pellet was washed twice with 70% ethanol to remove 

any residual salts and vacuum dried before resuspending in TE buffer (pH 7.4). 

 

5.2.3 Single Tube Hemi-Nested PCR Amplification 

Amplification of T. gondii B1 gene was performed using the highly sensitive one-tube 

hemi-nested PCR protocol and primers developed by Pujol-Rique et al. (1999) with 

modifications.  In brief, 10-50 ng of extracted DNA was added to a final volume of 25 

µl of PCR buffer consisting of 50 mM KCl, 15 mM Tris-HCl (pH 8.0), 1.5 mM MgCl2, 

50 µM each of dATP, dCTP, dGTP and dTTP, primer TM1 at 0.01 µM, primer TM2 at 

0.1 µM and primer TM3 at 1 µM, 0.5 U of Taq Extender™ PCR Additive (Stratagene, 

Integrated Sciences, Australia) and 0.5 U of AmpliTaq Gold® (Applied Biosystems, 

Foster City, CA) polymerase. 

 

Samples were amplified in a Perkin Elmer 2400 thermocycler (Perkin Elmer Cetus).  

The hemi-nested thermocycle program consisted of two rounds of 30 cycles each.  The 

varying primer concentrations allowed the initial amplification of a 619 bp fragment in 

the first round followed by the amplification of a 362 bp fragment in the second round 

(Table 5.1, Figure 5.3).  After an initial denaturation for 3 min at 95ºC, conditions in the 

first round of 30 cycles were: denaturation at 94ºC for 30 s; annealing at 65ºC for 30 s 
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and elongation at 72ºC for 1 min.  After an additional extension period of 10 min, the 

second round of amplification was performed under the same conditions, except the 

annealing step was carried out at 55ºC.  Another additional extension step of 72ºC for 

10 min was included after the second round of 30 cycles followed by a holding 

temperature of 15ºC.  A negative control (high purity H2O for injecting) was included in 

every amplification reaction as was a positive control.  Positive controls consisted of 

extracted T. gondii DNA from cultured RH strain tachyzoites (supplied by Professor 

Alan Johnson), as well as T. gondii DNA extracted from a clinically submitted cat 

suffering from confirmed acute toxoplasmosis.  PCR products were visualised on 1% 

agarose gels stained with ethidium bromide and compared to a 100 bp DNA ladder 

(New England Biolabs), as previously described (section 3.2.6). 

 

The sensitivity of the PCR protocol was determined both for pure T. gondii genomic 

DNA (serial dilutions of T. gondii RH tachyzoite DNA), and in the presence of a back 

ground of murine host tissue DNA spiked with different amounts of T. gondii RH 

tachyzoite DNA.  Additionally, the screening of brains of mice experimentally infected 

with T. gondii RH tested the sensitivity of the PCR protocol.  The specificity of the 

reaction was confirmed against the GenBank database at the network server of the 

National Centre for Biotechnology information, and was demonstrated by PCR analysis 

of the closely related protozoan Neospora caninum. 

 

Table 5.1 Primers used in one-tube hemi-nested PCR. 
 

Primer* Sequence PCR Product 
TM1 5’-GAGAGGTCCGCCCCCACAAG-3’ … 
TM2 5’-CTGCTGGTGCGACGGGAGTG-3’ 619 bpa 
TM3 5’-CAGGAGTTGGATTTTGTAGA-3’ 362 bpb 

*Primers sourced from Pujol-Rique et al. (1999). 
aProduced with primers TM1 and TM2, bProduced with primers TM1, TM2 and TM3. 
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5.2.4 Sequencing 

Sequencing of PCR products was carried out as previously described (section 3.2.5), 

using the primer pairs TM1/TM2 and TM2/TM3. 
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5.3 RESULTS 

5.3.1 DNA Extraction 

Both the Chelex® Resin and MasterPure extraction techniques were efficient at 

extracting genomic DNA from all types of tissue samples. However, improved 

sensitivity and specificity of T. gondii amplification was achieved using the MasterPure 

DNA extraction Kit which yielded cleaner DNA with less carry-over contaminants than 

did the Chelex® Resin technique.  As such this was the DNA extraction technique used 

for all biological samples. 

 

5.3.2 Histopathology 

Histological examination was performed on only a limited number of samples due to the 

majority of samples being collected throughout Western Australia (Figure 2.1) and the 

vast distances involved resulting in a lack of available fresh tissue.  As such, 

histopathology was only conducted on those animals available for “fresh” autopsy.  Of 

those samples where histological examination was carried out (one cat, one ferret, two 

ravens and four Quokka), only the cat, the ferret and one of the ravens had lesions 

compatible with T. gondii infections being present.  Multiple regions of encephalitis 

throughout the brain sections of the cat and the raven were observed though no visual 

confirmation of T. gondii was obtained.  The raven also had ocular degeneration present 

in both eye sections.  Histological examination of the quokka samples was inconclusive 

due to widespread autolysis from storage of the carcasses at -20ºC prior to autopsy. 
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5.3.3 Specificity and Sensitivity of Hemi-Nested PCR 

PCR successfully amplified a single band of the expected size (362 bp) from the T. 

gondii B1 gene whose identity was confirmed by sequencing (Figure 5.3).  No PCR 

product was generated from using N. caninum DNA as template.  Analysis of samples 

from serial dilutions of T. gondii RH tachyzoite pure genomic DNA confirmed the 

detection limit of the PCR assay of 0.1 T. gondii organism or 0.1 pg as previously stated 

(Pujol-Rique et al., 1999).  The ability of the assay to detect T. gondii in the background 

of host tissue was assessed by PCR amplification of extracts from T. gondii negative 

tissues spiked with different amounts of T. gondii RH tachyzoite DNA.  Thus an amount 

between 250 and 500 ng of host and parasite DNA combined was found to be the best 

amount to avoid interference with the amplification of T. gondii and still detect as little 

as 1 pg of T. gondii DNA. 

 

        M       1    2          3        4   M 

 
 
Figure 5.3 Amplification of T. gondii B1 gene using both single-step and one-tube 
hemi-nested PCR techniques.  Lane M, 100 bp DNA ladder; 1, 619 bp fragment generated by 
single-step PCR with primers TM1 and TM2; 2, 362 bp fragment generated by single-step PCR with 
primers TM2 and TM3; 3, 362 bp fragment generated by single-step PCR with primers TM1, TM2 and 
TM3; 4, negative control. 
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5.3.4 PCR Detection of Toxoplasma gondii 

5.3.4.1 Application to Clinical Samples 

Brain samples were analysed by PCR for each animal as well as any additional tissue 

samples that were available.  A total of 11 tissue samples collected from five animals 

known to be positive for T. gondii by serology, histopathology or both were analysed by 

PCR (Table 5.2).  Samples from additional animals suspected of being infected with T. 

gondii were also analysed by PCR, however no visible lesions were detected in raven 2, 

whilst histopathology was hampered by autolysis in the four quokkas and was not 

conducted on the remaining samples (Table 5.2).  An example of the typical PCR results 

obtained is shown in Figure 5.3.  Among the tissue samples analysed, brain was found 

to be optimal for PCR detection of T. gondii infection.  Other tissues that provided PCR 

positive results included spleen, lung, liver, and kidney (Table 5.2).  PCR successfully 

amplified T. gondii DNA from all the tissue samples with histological lesions positive 

for T. gondii infection. 

 

5.3.4.2 Molecular versus Serology 

Serological testing of feral cat serum samples produced varying results as to the number 

of positive animals from each area except Shark Bay where antibodies to T. gondii were 

not detected in any of the animals tested (Table 5.3).  The latex agglutination test gave 

positive reactions for 18 of 62 samples.  T. gondii antibodies were detected in 16 of the 

25 cats evaluated with DAT and six with MAT, with the following titres: 1:16 in 4 cats; 

1:64 in 5 cats; 1:256 in 4 cats; and 1:1024 in 2 cats.  The MAT titres were: 1:64 in 1 cat; 

1:256 in 4 cats; and 1:1024 in 1 cat.  IFA found 3 of 3 cats evaluated positive.  PCR 

analysis detected T. gondii DNA in four of the 70 feral cats tested serologically. 
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Table 5.2 T. gondii one-tube hemi-nested PCR amplification results for different host 
species and tissue samples. 
 

 B
rain 

Liver 

Spleen 

M
uscle 

H
eart 

K
idney 

Lung 

Tongue 

Spinal 
C

ord 

Lym
ph 

Skin 
Lesion 

Cat* + + + +      + + 
Mouse* +           
Ferret*       +   +  
SHNW* +           
Raven1* +           

 
Raven2 

 
- 

 
- 

 
-   

-   
-     

WBB1 - -  -        
WBB2 - -  -        
WBB3 - -  -        
SBB +  + +        
Quokka1 - - - -        
Quokka2 + - - + + + - - +   
Quokka3 - - - - - - - - -   
Quokka4 - - - - - - - - -   

*Indicates animals that were known to be positive for T. gondii via histopathology or serology, all other 
animals presented with suspected symptoms of T. gondii infection.  SHNW = Southern Hairy Nosed 
Wombat; WBB = Western Barred Bandicoot; SBB = Southern Brown Bandicoot 
 

 

Table 5.3 Comparison of four different serological tests and the one-tube hemi-nested 
PCR to detect T. gondii in feral cats from three different regions in Western Australia. 
 

Serology*  
Latex IFAT DAT MAT PCR 

Shark Bay 0 (42) - - - 0 (42) 
Perth Metro 3 (3) 3 (3) 6 (8) 6 (8) 1 (11) 
Walpole 15 (17) - 5 (17) 5 (17) 3 (17) 

*Where applicable, a titre of 1:64 or greater is deemed to be a positive reaction. 
Numbers in parentheses indicate sample size. 
 

5.3.4.3 Detection of T. gondii in Feral Cats and Native Mammals 

PCR was positive in 13 of 268 feral cat brain samples (Table 5.4) and 13 of 200 native 

mammal brain samples (Table 5.5) collected throughout Western Australia.  T. gondii 

was detected in cats collected from the Perth metropolitan region, Walpole, Manjimup 

tip, Mount Keith, the Gibson Desert and the Cocos Islands.  T. gondii was detected in 

the brains of 13 of 20 red kangaroos (Macropus rufus) collected from Wongawol 

Station in the Goldfields region. 
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Table 5.4 Detection of T. gondii DNA by one-tube hemi-nested PCR in brain samples 
of 268 feral cats collected from eleven different regions throughout Western Australia. 
 

 Sample Size Positive Prevalence 
Perth Metro 18 2 11.1% 
Walpole 20 4 20.0% 
Manjimup 15 1 6.7% 
Dragon Rocks 6 0 0.0 
Mount Keith 19 1 5.3% 
Shark Bay 127 0 0.0 
Gibson Desert 17 4 23.6% 
Lake Argyle 20 0 0.0 
Bungle Bungles 4 0 0.0 
Montebello Islands 3 0 0.0 
Cocos Islands 19 1 5.3% 
Total 268 13 4.9% 

 

 

Table 5.5 Detection of T. gondii DNA by one-tube hemi-nested PCR in brain samples 
of 200 native mammals collected from eight different regions throughout Western 
Australia. 
 

 Sample Size Positive Prevalence 
Manjimup 

Bettongia penicillata 
Trichosurus vulpecula 
Isoodon obesulus 
Dasyurus geoffroii 

 
6 
3 
1 
1 

 
0 
0 
0 
0 

 
0.0 
0.0 
0.0 
0.0 

Collie 
Macropus fuliginosus 

 
47 

 
0 

 
0.0 

Ravensthorpe 
Macropus fuliginosus 

 
22 

 
0 

 
0.0 

Wongawol 
Macropus rufus 

 
20 

 
13 

 
65.0% 

Gibson Desert 
Pseudomys hermannsburgensis 
Mus musculus 

 
16 
3 

 
0 
0 

 
0.0 
0.0 

Newman 
Macropus rufus 

 
19 

 
0 

 
0.0 

Lake Argyle 
Rattus tunneyi 
Pseudomys nanus 
Pseudomys delicatulus 

 
5 
5 
3 

 
0 
0 
0 

 
0.0 
0.0 
0.0 

Shark Bay 
Notomys alexis 
Mus musculus 

 
42 
7 

 
0 
0 

 
0.0 
0.0 

Total 200 13 6.5% 
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5.4 DISCUSSION 

5.4.1 Molecular Detection of Toxoplasma gondii 

Development of a diagnostic tool that was sensitive and specific enough to detect acute 

and chronic cases of toxoplasmosis was crucial to this study.  The highly sensitive and 

specific nature of the one-tube hemi-nested PCR protocol targeting the multicopy B1 

gene was determined using T. gondii trophozoite DNA kindly supplied by Professor 

Alan Johnson of the University of Technology, Sydney (see section 5.3.3).  Detection of 

T. gondii DNA was also possible in six different tissues collected from a naturally 

infected cat presented to the Murdoch University Teaching Veterinary Hospital (Table 

5.2).  This cat was suffering from acute toxoplasmosis and the parasite had proliferated 

throughout most of its tissues to a stage where tachyzoites were readily discernable in 

most biopsy smears.  The sensitivity and specificity of the PCR technique was also 

confirmed using brain tissue from an experimentally infected mouse (also supplied by 

Professor Alan Johnson, UTS, Sydney) as well as various tissues from a ferret, southern 

hairy nosed wombat and a raven, all diagnosed with T. gondii infections (Table 5.2).  

The ability to detect T. gondii DNA from each of these different host species not only 

illustrates the ubiquitous nature of T. gondii infections, but also demonstrates the 

versatility of this molecular technique for the detection of T. gondii in different species 

without the risk of decreased specificity or sensitivity. 

 

The single tube hemi-nested PCR protocol minimises the occurrence of contamination 

without hindering the sensitivity of the assay by eliminating the additional handling of 

amplified products that occurs in standard nested PCR protocols.  The detection limit of 

this technique has previously been shown to be 0.1 T. gondii organism or approximately 

0.2 pg (Pujol-Rique et al., 1999), which was replicated in the laboratory using pure T. 
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gondii DNA extracted from trophozoites.  However, in the presence of host DNA this 

detection limit was reduced to approximately 1 pg of T. gondii DNA which represents 1 

to 5 tachyzoites (Savva, 1989).  This detection level is similar to that reported by other 

authors (Hurtado et al., 2001; Owen et al., 1998; Guay et al., 1993; MacPherson and 

Gajadhar, 1993; Burg et al., 1989) and was deemed sufficient to detect the presence of 

T. gondii in tissues of infected hosts.  Brain, spleen and muscle were most often used for 

analysis though T. gondii was also detected in kidney, liver, heart, lung and lymph 

nodes (Table 5.2). 

 

5.4.2 Molecular Detection versus Serology and Histopathology 

The one-tube hemi-nested PCR technique was shown to be highly sensitive and specific 

in detecting T. gondii DNA in all the tissues obtained from animals that were positive 

for T. gondii via histopathology or serology or both (Table 5.2).  Whilst some of the 

animal carcasses sampled were subject to varying degrees of decomposition the one-

tube hemi-nested PCR could still detect the presence of T. gondii DNA, even though 

histological interpretation was difficult.  Therefore, autolyzed tissues from stored and 

frozen animal carcasses, though ineffectual for histopathological or serological 

examination, are still useful for PCR detection.  Indeed, one of the major advantages of 

molecular techniques is their generally robust nature and the ability to be successfully 

applied to a wide variety of samples, which may not necessarily be useful for other 

detection methods. 

 

The reproducibility and interpretation of serological results can vary widely in regards 

to sensitivity and specificity based on the test used (Hopkins et al., 1993; MacPherson 

and Gajadhar, 1993).  This is evidenced by the varying results obtained from two 
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commercial laboratories using two different tests on the same serum samples collected 

from feral cats from Walpole.  Analysis of 17 feral cat sera using the LAT detected 15 

positive samples, whilst analysis using both DAT and MAT detected only 5 positive 

samples (Table 5.3).  Of the five samples positive by DAT and MAT, four had titres of 

1:64 and one had a titre of 1:1024.  Further detection of IgG titres on these serum 

samples using IFA detection by a second laboratory produced titres that were both 

higher and lower than those detected by MAT (results not shown).  Unfortunately, the 

limited number of sera collected and the high costs associated with serological testing of 

antibody titres prevented further investigation of these discrepancies.   

 

Molecular analysis of tissue samples using the one-tube hemi-nested PCR detected T. 

gondii in three of the five serologically positive cats from Walpole whose corresponding 

titres were 1:64, 1:64 and 1:1024 (Table 5.3).  The least significant level of reactivity 

for IFA, DAT and MAT is considered to be 1:64 (Dubey and Lappin, 1998), therefore 

titres from these tests should be ≥1:64 before they are considered to be positive.  As 

such, four of the five serologically positive cats are borderline positive and infection 

may be questionable.  The detection of T. gondii DNA in only two of the four cats with 

titres of 1:64 suggests that the other two samples were actually serological false 

positives.  However, an accurate assessment of these two techniques is not possible as 

the PCR involves the direct detection of T. gondii DNA, whilst serology measures the 

host response to the parasite. 

 

The much higher number of serologically positive cats from Walpole detected by the 

LAT may be due to cross-reaction rather than a true positive result as the LAT has 

previously been shown to be less sensitive/specific than MAT in detecting T. gondii 
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antibodies (Dubey et al., 1997a).  In general, MAT detects T. gondii antibodies earlier 

and of greater magnitude than most other serological tests (Lappin, 1996; Dubey et al., 

1995b).  However, MAT cannot necessarily document recent or active infection in cats 

as MAT antibody titres of ≥1:10,000 have been observed in healthy cats that shed T. 

gondii oocysts six years earlier and have not been re-exposed since then (Dubey, 1995).  

It has also been shown that some cats do not mount an antibody response despite 

infection with T. gondii (Dubey, 1986), and this process may very well occur in other 

host species. 

 

PCR has an advantage over serology in its ability to directly detect T. gondii DNA and 

not have to rely upon host responses to the parasite.  Also, the high levels of sensitivity 

and specificity afforded by PCR techniques allows the detection of T. gondii infections 

in many different host species without affecting its accuracy and can be used to detect 

both acute and chronic infections (Hurtado et al., 2001; Jauregui et al., 2001; Lin et al., 

2000; Pujol-Rique et al., 1999; MacPherson and Gajadhar, 1993), however it cannot 

differentiate between them.  One problem that has hindered the introduction of PCR as a 

routine diagnostic technique has been the occurrence of false positive and false negative 

results (Dubey and Lappin, 1998; Ellis, 1998). 

 

The use of a one-tube hemi-nested PCR technique for the detection of T. gondii 

infections provides greatly increased specificity over single step PCR protocols, whilst 

at the same time decreasing the risk of contamination, thereby practically eliminating 

the risk of false positives from cross contamination and non-specific primer binding 

(Hurtado et al., 2001; Pujol-Rique et al., 1999).  The occurrence of false positives in 

PCR is predominantly due to inhibition of the PCR (Ellis, 1998), or in regard to T. 



 164

gondii, due to the sparse and focal distribution of the parasite in sample tissues (da Silva 

and Langoni, 2001; Esteban-Redondo et al., 1999). 

 

In the present study, the risk of inhibitors creating false negatives was overcome by the 

use of a DNA extraction kit designed to neutralise and eliminate PCR inhibitors during 

the extraction of the DNA (see section 5.2.2.2).  To overcome the risk of false negatives 

due to the potentially diffuse distribution of T. gondii in host tissues, samples were 

macerated to provide a homogeneous distribution of T. gondii tissue cysts throughout 

the sample before an aliquot was taken for DNA extraction.  Whilst the multi-copy B1 

gene is a highly specific target sequence (Cazenave et al., 1991; Burg et al., 1989), that 

has been shown to be up to 20 times more sensitive than the P30 and 18S rDNA genes 

in detecting T. gondii DNA (Jones et al., 2000), these cannot be guaranteed to eliminate 

the risk of false negatives. 

 

Whilst every effort was made to sample greater than 50% of the brain of all animals 

collected in a bid to ensure the detection of T. gondii in infected individuals, this was 

not always possible.  The remote locations and large distances involved with many of 

the sampling areas meant that numerous samples were collected by volunteers and 

Department of Conservation and Land Management officers who were not familiar with 

the nature or importance of collecting these samples.  This coupled with the somewhat 

unsavoury task of collecting the required samples resulted in less than 50% of the brain 

being collected for many of the samples.  As such, a number of false negatives may 

have occurred due to inappropriate sampling, resulting in the underestimation of the 

prevalence of T. gondii in Western Australia. 
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Whilst PCR based methods have been used to detect T. gondii in many different host 

species (da Silva and Langoni, 2001; Hurtado et al., 2001; Jauregui et al., 2001; Feng 

and Milhausen, 1999; Dupon et al., 1995), to date there have been no published reports 

on the use of such molecular techniques for the detection of T. gondii in Australian 

marsupials.  The results of this study have shown that the single tube hemi-nested PCR 

targeting the multicopy B1 gene is a reliable technique for the diagnosis of T. gondii 

infection in multiple species of animals (Table 5.2, 5.5), so long as sample collection is 

designed to maximise the chances of sampling the T. gondii.  The sensitivity of this 

technique, together with its capacity to overcome the autolytic and immunologic status 

of the host, makes it a valuable tool for the detection of T. gondii DNA.  However, 

whilst PCR provides a potentially more sensitive tool for the diagnosis of toxoplasmosis 

in biological samples, it may be further enhanced as a diagnostic tool when used in 

conjunction with histopathological and/or serological analysis (Stiles et al., 1996).  

Ideally, given the complex nature and our less than complete understanding of the 

nature of T. gondii infections, test results (PCR, serology or histology) should be 

interpreted in conjunction with any other observable or related information whenever 

possible. 

 

5.4.3 Toxoplasma gondii in Feral Cats from Western Australia 

The one-tube hemi-nested PCR indicated that 13 of the 268 feral cats (4.9%) collected 

throughout Western Australia contained T. gondii tissue cysts in their brains (Table 5.4).  

This is the first known study to use molecular methods for the detection of T. gondii in 

feral cats in Australia.  Previous studies on feral cats from Victoria (Coman et al., 

1981b), Tasmania (Milstein and Goldsmid, 1997; Gregory and Munday, 1976) and 

southern Western Australia (Jakob-Hoff and Dunsmore, 1983) used serology to survey 
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the occurrence of T. gondii in feral cats.  These surveys found the prevalence of T. 

gondii antibodies to range from 0% to 52.3% (Table 5.6).  Gregory and Munday (1976) 

reported finding T. gondii antibodies in 51 of the 53 cats examined, however this 

included 23 cat sera that reacted at titres below 1:64 and are therefore not considered 

positive (Dubey and Lappin, 1998).  This revised prevalence of T. gondii (52.8%) is 

comparable to the 50% prevalence detected in feral cats from Tasmania by Milstein and 

Goldsmid (1997). 

 

Table 5.6 Summary of T. gondii surveys conducted on feral cats in Australia 
 

State Climate Status Prevalence Methodb Reference 

Temperate Straya 36% (66) Western 
Australia Temperate Feral 0% (8) 

IHA Jakob-Hoff and Dunsmore (1983) 

Temperate Stray 44% (16) 
Victoria 

Semi-Arid Feral 14% (59) 
IHA Coman et al. (1981b) 

Tasmania Temperate Feral 52.8% (53) IFA Gregory and Munday (1976) 

Tasmania Temperate Feral 50% (18) LAT Milstein and Goldsmid (1997) 
aIncludes both domestic and stray cats. 
bIHA, indirect haemagglutination assay; IFA, indirect fluorescent antibody test; LAT, 
latex agglutination test. 
 

The overall T. gondii prevalence of 4.9% detected in feral cats in the present study 

appears to be significantly different to previous findings in feral cats in Australia, 

however it is difficult to make an accurate comparison between molecular and 

serological assays.  As mentioned previously, the relatively low overall prevalence in 

the present study may be an underestimation of the true prevalence of T. gondii in cats 

from Western Australia.  However, the large number of cats sampled from numerous 

locations in this study may have more to do with the low overall prevalence than any 

methodology related underestimation as the local prevalence of T. gondii in cats from 

several areas is comparable to previous studies (Table 5.4, 5.6). 
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Jakob-Hoff and Dunsmore (1983) as well as Coman et al. (1981b) found a lower 

prevalence of T. gondii in cats from drier areas.  This apparent preference for wetter 

regions has been observed in both native and introduced mammals elsewhere in 

Australia (O'Donoghue et al., 1987; Smith and Munday, 1965; Cook and Pope, 1959), 

and has been attributed to the susceptibility of T. gondii oocysts to dessication (Dubey, 

1998c; Yilmaz and Hopkins, 1972).  The presence of T. gondii in 20% of feral cats 

sampled from Walpole and its absence in feral cats from Lake Argyle, the Bungle 

Bungles and the Montebello Islands correlates well with these previous studies.  

However, whilst the occurrence of T. gondii in the present study occurred 

predominantly in cats from the wetter southern region of the state, T. gondii was 

detected in cats from the Gibson Desert and Mount Keith which both experience an arid 

climate.  Indeed, the highest prevalence of T. gondii in feral cats was detected in those 

from the Gibson Desert. 

 

The low prevalence of T. gondii detected in cats from the Cocos Islands (5.3%), 

Manjimup (6.7%) and the Perth metropolitan area (11.1%) in comparison to the 

previous surveys is of interest as these cats were classified as strays due to their 

collection from, or in close proximity to, rubbish tips.  Coman et al. (1981b) detected 

what appears to be a significantly higher occurrence of T. gondii antibodies in stray cats 

(44%) compared to feral cats (14%).  Jakob-Hoff and Dunsmore (1983) found no 

significant difference between the prevalence of T. gondii antibodies in stray and 

domestic cats, whilst none of their feral cats had antibodies to T. gondii.  Likewise, stray 

cats have also been found to have a higher prevalence of T. gondii antibodies (59.7%) 

than domestic cats (37.5%) in America (Dubey, 1973).  The predominantly scavenging 
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diet of stray cats is considered to increase their likelihood of being exposed to infective 

T. gondii stages (Sumner and Ackland, 1999; Dubey, 1973). 

 

Stomach content analysis of cats collected from Perth, Manjimup and the Cocos Islands 

indicated that these cats relied predominantly on scavenging, therefore the relatively 

low T. gondii prevalence observed might be an indication of the increased sanitation 

methods employed at tips as opposed to camping grounds and picnic reserves.  

Additionally, the isolated nature and small size of the Cocos Islands means that the 

majority of their meat supply is frozen, which has been shown to reduce the viability of 

T. gondii tissue cysts if not kill them (Tenter et al., 2000; Kotula et al., 1991).  This 

reduced infectivity may also be responsible for the low prevalence of T. gondii observed 

in the stray cat population despite their scavenging diet. 

 

The present study has shown that T. gondii infections in cats are not limited to the 

southern cooler regions of Western Australia where conditions are presumably more 

favourable for the transmission and persistence of the parasite.  Instead, the distribution 

of T. gondii in cats from Western Australia does not appear to be influenced by climatic 

conditions and occurs in feral cats from arid regions as well as from wetter regions.  

However, it is unknown if the nature and origin of T. gondii infections in feral cats from 

different climatic regions of Western Australia are the same. 

 

5.4.4 Toxoplasma gondii in Native Mammals from Western 

Australia 

The collection of native species was performed so as to maximise the overlap with the 

sampling of feral cats, though this was not always possible.  Of the eleven different 
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areas from which feral cats were collected, native fauna were sampled from four of 

them: Manjimup; Shark Bay; the Gibson Desert and Lake Argyle (Figure 5.2).  The 

remaining four native fauna sampling sites were selected so as to be comparable to the 

remaining regions from where cats were collected.  Given the rare and endangered 

status of many of Western Australia’s native fauna species, the destructive sampling 

required for this study naturally limited both the scope and range of species studied.  

However, 200 native and introduced mammals encompassing 12 different species were 

sampled and screened using the one-tube hemi-nested PCR protocol as used for the feral 

cats.  T. gondii tissue cysts were detected only in the brains of 13 red kangaroos 

(Macropus rufus) collected from Wongawol Station, situated in the arid central region 

of Western Australia (Table 5.5, Figure 5.2). 

 

Although feral cats were not collected from Wongawol Station the detection of T. 

gondii in 65% of M. rufus sampled from this area appears to correlate with the presence 

of T. gondii in feral cats from the similarly arid sampling areas of the Gibson Desert and 

Mount Keith.  However, large macropods such as kangaroos are not frequent prey items 

for feral cats and are not likely to be scavenged except when prey is hard to come by 

(Martin et al., 1996; Catling, 1988).  Therefore, the high prevalence of T. gondii in M. 

rufus is difficult to explain, especially considering its absence from kangaroos (M. 

fuliginosus) in the southern sampling regions of Western Australia (Table 5.5), where 

feral cats are more plentiful (Adams and Chavand, 2002). 

 

As such, a more accurate indication of the prevalence of T. gondii in native fauna would 

most likely be achieved by surveying the smaller marsupial and rodent species that 

occur more frequently in the feral cat diet throughout Western Australia (Adams and 
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Chavand, 2002; Angus et al., 2002; Martin et al., 1996; Muir, 1982).  This was achieved 

for Shark Bay, Lake Argyle, the Gibson Desert and Manjimup, though sample sizes 

obtained from each location were not always adequate.  For example, the low number of 

medium sized mammals sampled from Manjimup (Table 5.5) means that any T. gondii 

infections detected would have been fortuitous rather than an indication of the true 

prevalence of the parasite.  However, as previously discussed, the destructive nature of 

the sampling method combined with the endangered status of these native species 

drastically limited the extent of sampling of these species. 

 

Additionally, T. gondii was not detected in 19 native and introduced rodents from the 

Gibson Desert, however these animals were collected in 1999 a year before the 

collection of feral cats.  T. gondii was also absent from rodents collected from Shark 

Bay and Lake Argyle though none of the cats sampled from these areas were infected 

either (Table 5.4, 5.5).  The absence of T. gondii in native fauna samples, even from 

those regions where the parasite was detected in feral cats, does not necessarily mean 

that T. gondii does not occur in the wildlife (Gustafsson and Uggla, 1994).  The failure 

to detect T. gondii in any of the native mammals sampled from the southern regions of 

Western Australia may be due more to the selection of native species than the absence 

of T. gondii from these areas. 

 

Obendorf et al. (1996) observed T. gondii related mortalities in wild eastern barred 

bandicoots (Perameles gunnii) whilst Bettiol et al. (2000) demonstrated the 

pathogenicity of the parasite in the same host species.  Additionally, the high 

susceptibility of Australian marsupials has been observed in captive populations 

(Dreesen, 1990; Patton et al., 1986; Jensen et al., 1985; Boorman et al., 1977).  Perhaps 
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this high mortality level associated with T. gondii infections in the Australian wildlife is 

responsible for the low detection levels of the parasite, as relatively few individuals 

survive to develop chronic infections (de Thoisy et al., 2003; Gustafsson and Uggla, 

1994).  A detailed serological survey of feral cats and those species considered to be 

most at risk of contracting T. gondii from the same vicinity would most likely provide a 

more accurate indication of whether or not this is occurring. 

 

5.4.5 Persistence of Toxoplasma gondii in the Environment 

Whilst Coman et al. (1981b) observed an apparent environmental influence in T. gondii 

infections between cats from different regions of Victoria (Table 5.6), they also 

suggested that the dietary habits of the cats surveyed may have had a greater impact on 

the prevalence of T. gondii.  Stray cats, such as those collected from rubbish tips, picnic 

reserves and camping grounds by Coman et al. (1981b) predominantly feed on garbage 

and as such would be more likely to be exposed to infective T. gondii stages through the 

scavenging of human food scraps and waste (Dubey, 1973).  However, this does not 

explain the higher prevalence rate of T. gondii detected in feral cats from the Gibson 

Desert (23.6%) compared to stray cats collected predominantly from tips in the Perth 

metropolitan region (11.1%) and Manjimup (6.7%) in the present study (Table 5.4). 

 

Interestingly, of the 17 feral cats collected from the Gibson Desert, 11 were collected in 

September 2000 with the remaining 6 being collected in September 2001 from the same 

study site.  Whilst juvenile mortality in feral cat populations in Australia is known to be 

high (Brothers et al., 1985; Coman et al., 1981b), the removal of 11 mature cats from 

the Gibson Desert sample site in September 2000 would have improved juvenile 

survival in the local population by creating new niches for young cats to colonise.  
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These juvenile cats would have originated from within as well as from outside the 

Gibson Desert sample site due to the natural dispersal process of young cats in the 

environment (Algar et al., 2000).  Therefore, these cats would have made up a 

significant portion of the cats sampled from the Gibson Desert in September 2001. 

 

Epidemiological studies of toxoplasmosis in cats indicate that most wild/feral cats 

become infected with T. gondii soon after they are weaned through the ingestion of 

infective intermediate host tissues (Dubey, 1994).  Whilst cats are known to shed as 

many as 162 million T. gondii oocysts following infection (Dubey, 1996; Rommel et 

al., 1987), T. gondii infections are transmitted in cats much more efficiently by 

carnivorism than by the ingestion of oocysts (Dubey, 1996).  Alternatively, oocysts are 

highly infective to a wide range of intermediate hosts, particularly small mammals 

which are widely regarded as being important for the maintenance of T. gondii in the 

environment (Dubey, 1997; Dubey et al., 1995c; Dubey, 1994; Dreesen, 1990). 

 

Several studies have demonstrated the potential of wild rodent populations to represent 

not only a highly prevalent, but also a persistent intermediate host reservoir for T. gondii 

in the environment (Owen and Trees, 1998; Webster, 1994b; Jackson et al., 1986).  

Beverley (1959) showed that mice congenitally infected with T. gondii are able to 

produce their own congenitally infected offspring for up to 9 generations, whilst de 

Roever-Bonnet (1969) and Remington et al. (1961) also showed vertical transmission of 

T. gondii to occur in successive litters of rodents.  More recently, high levels of vertical 

transmission have been shown to occur consistently in chronically infected house mice 

(M. musculus) and field mice (A. sylvaticus), which most likely persists for the life of 
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breeding females at substantially higher rates than previous studies on laboratory mice 

and hamsters have observed (Owen and Trees, 1998). 

 

The Gibson Desert Nature Reserve experienced a wetter winter in 2001 than it did for 

several years previously (BureauofMeteorology, 2001), which resulted in an improved 

seed set in the local vegetation and subsequent increase in rodent numbers.  Therefore, 

vertical transmission of T. gondii from chronically infected dams to their offspring 

during a favourable season(s) would result in the effective amplification of the parasite 

in the rodent population.  A localised insurgence of young T. gondii susceptible cats in 

the Gibson Desert after sampling in September 2000 combined with the increasing 

rodent population would have provided optimal conditions for transmission of T. gondii 

to a large portion of the feral cat population.  Therefore, it appears that the prevalence of 

T. gondii in feral cats from arid regions of Australia may fluctuate in relation to the 

climatic conditions. 

 

Similarly, the high prevalence of T. gondii detected in M. rufus from Wongawol Station 

in 2002 could be due to vertical transmission within a rapidly expanding kangaroo 

population following on from the same favourable season(s).  Although the occurrence 

of congenital transmission has not been investigated extensively in macropods, Dubey 

et al. (1988) identified T. gondii in two black-faced kangaroo joeys (Macropus 

fuliginosus melanops), of which at least one was congenitally infected.  Whilst this is 

the only report of vertical transmission of T. gondii in Australian marsupials, there is no 

reason to suggest that it is not a common occurrence, with congenital transmission 

shown to occur in a wide variety of animal species including humans (Jones et al., 

2001; Cook et al., 2000), pigs (Jungersen et al., 2001), sheep (Duncanson et al., 2001), 
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mice (Owen and Trees, 1998) rats (Freyre et al., 1999; Dubey et al., 1997b) and even a 

dolphin (Jardine and Dubey, 2002).  Vertical transmission of the closely related parasite 

Neospora caninum has also been demonstrated in mice (Cole et al., 1995), dogs (Barber 

and Trees, 1998), foxes (Schares et al., 2001) and cattle (Bjorkman et al., 1996). 

 

Traditionally, vertical transmission of T. gondii has not been considered an important 

route of infection due to the development of an immunity in the host following 

infection, which prevents the transfer of T. gondii to future offspring (Dubey et al., 

1999; Dubey, 1995; Zenner et al., 1993).  Alternatively, vertical transmission is 

considered to be a much more important route of infection for N. caninum, at least in 

cattle, as host immunity does not occur after infection, allowing its perpetuation for 

successive generations (Dubey, 2003; Adrianarivo et al., 2000; Paré et al., 1996).  

However, congenital transmission of T. gondii has recently been reported in a newborn 

child whose mother had been infected 20 years earlier (Silveira et al., 2003).  This 

finding supports earlier hypotheses of the potential for reinfection and subsequent 

vertical transmission of T. gondii (Johnson, 1997).  Indeed, Duncanson et al. (2001) 

detected congenital transmission in 61% of pregnancies in a single sheep flock, and 

theorised that vertical transmission of T. gondii may be sufficient to maintain the 

parasite in natural populations of sheep without requiring frequent new infections by 

oocysts excreted by cats. 

 

The hypothesis of vertical transmission is not unreasonable, as similar results have been 

reported in wild rodent populations.  Jackson et al. (1986) observed an elevated 

prevalence of T. gondii infections in recovering populations of field mice (A. sylvaticus) 

and bank voles (Clethrionomys glareolus) in Scotland in 1982, following a severe 
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winter that caused a considerable reduction in the numbers of these two rodents.  

Jackson et al. (1986) detected T. gondii infections in approximately 20% of the rodents 

trapped in 1983 following the severe winter, though only a single animal (1.9%) was 

infected in 1983 after a mild winter that did not result in the depletion of either 

population.  The lack of any age or sex bias between T. gondii infected and uninfected 

animals (Jackson et al., 1986), indicating that congenital transmission was responsible 

for the high prevalence observed in 1983.  If T. gondii infections were being contracted 

from the environment via infective oocysts then the prevalence in older animals would 

be higher than in the younger ones because of their increased chances of exposure to 

infective stages through having spent more time in the environment, however this was 

not the case (Jackson et al., 1986). 

 

The source and mode of transmission of the T. gondii infections in M. rufus from 

Wongawol Station remains speculative, as cat samples were not collected from this area 

and the kangaroos were sampled only once.  However, Jackson et al. (1986) have 

shown that the prevalence of T. gondii can be influenced by environmental conditions 

causing a cyclical variation of T. gondii in rodents that has also been observed in cases 

of human toxoplasmosis (Tizard et al., 1976).  Such cyclic variation could explain the 

change in prevalence of T. gondii observed in feral cats from the Gibson Desert between 

2000 (0%) and 2001 (66.7%).  Indeed, if sampling of cats from the Gibson Desert was 

not performed in 2001, it might have lead to the erroneous conclusion that T. gondii was 

absent from cats in this area, particularly given the observed lack of T. gondii in native 

fauna collected from the Gibson Desert in 1999.  However, the sampling of native fauna 

appears to have occurred before the proliferation of T. gondii in this region and 

unfortunately further collections did not occur in 2000 or 2001.  Therefore, it is not 
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known if T. gondii infections increased in native fauna in the Gibson Desert as 

hypothesised. 

 

The present study indicates that T. gondii infections appear to fluctuate in feral cats, at 

least in the Gibson Desert, though this cannot necessarily be extended to include other 

populations of feral cats or Australian wildlife without further investigation.  Whilst 

congenital transmission of T. gondii has been shown to take place in numerous host 

species, it is reliant upon many factors (Duncanson et al., 2001; Zenner et al., 1993), 

and the extent to which it occurs in the Australian fauna is unknown.  However, it is 

believed that vertical transmission is an important factor in the persistence of T. gondii 

in populations of host species within Australia. 

 

5.4.6 Effect of Toxoplasma gondii on Host Species 

Australian marsupials along with New World monkeys and Madagascan lemurs are 

most susceptible to T. gondii, presumably because they evolved in the absence of any 

indigenous felids (Reddacliff et al., 1993).  Whilst acute toxoplasmosis in Australian 

marsupials has been shown to have high levels of mortality, chronic infections do occur 

(Bettiol et al., 2000a; Obendorf et al., 1996; Reddacliff et al., 1993).  This “latent” 

phase of toxoplasmosis has traditionally been considered to be asymptomatic and 

harmless (Havlicek et al., 2001), however there is a growing realisation that T. gondii 

has the profound ability to modify the behaviour of its hosts (Webster, 2001; Yolken et 

al., 2001; Berdoy et al., 1995). 

 

The manipulation hypothesis states that parasites may be able to alter the behaviour of 

their hosts for their own selective benefit, usually by increasing the intermediate host’s 
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susceptibility to predation by a definitive host, which in turn facilitates the completion 

of the parasite’s life cycle (Moore and Gotteli, 1990).  The indirect life cycle of T. 

gondii, where members of the cat family are the only known definitive hosts, would 

clearly benefit from improving its transmission rate from intermediate to definitive 

hosts, and as such there might be strong selective pressure to evolve a mechanism to 

enhance this transmission (Flegr et al., 1996).  Given the parasite’s predilection for host 

brain tissue, it is also situated in an ideal position in which to successfully achieve such 

a manipulation, and there is now a convincing body of evidence to suggest that T. 

gondii does affect the behaviour of its host (Webster, 2001). 

 

Studies carried out under different experimental conditions suggest that T. gondii 

infected rodents behave differently for a suite of behaviours that may make them more 

likely to be predated by cats (Webster, 2001; Berdoy et al., 2000, 1995; Hay et al., 

1984; Hay et al., 1983a; Hay et al., 1983b; Hay et al., 1983c).  The results of these 

studies suggest a significant difference in the perceived response to cat predation 

between uninfected rodents and infected rodents.  Thus the effect of T. gondii appears to 

be specific to those behavioural categories that may increase transmission, rather than 

simply causing a generalised illness and/or change in the host’s behaviour (Webster, 

2001). 

 

Rats and mice are not the only animals that have been shown to exhibit behavioural 

alterations due to latent toxoplasmosis infections.  There is no doubt that congenital 

toxoplasmosis can reduce intellectual function (Jones et al., 2001; Cook et al., 2000), 

though recent studies also suggest that latent toxoplasmosis in humans can affect long-

term concentration as well as cause personality changes in people (Havlicek et al., 
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2001; Flegr et al., 1996).  Indeed, a recent study has suggested a possible link between 

T. gondii and schizophrenia in humans, with significantly higher levels of T. gondii 

antibodies reported in first-incidence schizophrenic patients than in the general public 

(Yolken et al., 2001). 

 

Latent toxoplasmosis, although frequently dismissed as asymptomatic and clinically 

unimportant in both humans and animals, does alter host behaviour (Havlicek et al., 

2001; Webster, 2001).  Ultimately, actual predation rates by the feline definitive host 

upon infected and uninfected hosts are required to properly measure any proposed 

behavioural manipulation amongst intermediate hosts (Webster, 2001).  However, the 

potential influence of T. gondii infections given their high prevalence within both 

human and animal populations worldwide should not be ignored nor discredited.  

Indeed, the apparent susceptibility of Australian native mammals to predation by 

introduced foxes and cats should not necessarily be attributed to a phylogenetic “dim-

wittedness” (Freeland, 1994). 

 

In some cases contraction of an introduced parasite may be sufficient to cause 

significant mortality of native mammals, whilst in others this is due to the incorporation 

of the host species into the complex life cycle of the parasite (Freeland, 1994).  With 

regard to T. gondii in the Australian fauna, it appears that both these effects are true.  

The apparent physiological susceptibility of the Australian native fauna to T. gondii 

combined with the more subtle influences of this introduced parasite may have further 

perturbed an already destabilised situation.  Therefore, a better understanding of the 

transmission of T. gondii in Australia is required before we can fully appreciate the 

effect that this ubiquitous parasite is having on our unique fauna. 
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Chapter 6 - General Discussion 

 

6.1 GENERAL DISCUSSION 

Introduced species are now recognised as a serious threat to Australia’s unique fauna, 

second only to habitat clearing and fragmentation.  Whilst the more obvious impacts of 

predation and competition are well known, the more subtle effects of foreign pathogens 

on the native wildlife have been less studied.  Many of Western Australia’s unique 

mammal fauna currently require at least some level of management to ensure their 

survival.  The increasing role of captive breeding and translocation programs in the 

conservation of species, dictates that pathogens and their potential impact on host 

populations need to be recognised as important factors in conservation biology. 

 

The detection of thirteen helminth and five protozoan genera occurring in feral cats 

from different geographical and climatic regions of Western Australia indicates the 

diverse nature of parasitic infections harboured by these introduced animals.  Whilst all 

of these parasite genera have been previously reported in cats from Australia (Prescott, 

1984), their distribution and prevalence provide a valuable insight into the ecology of 

the feral cat in Western Australia.  Likewise, an understanding of the parasite 

communities of our native fauna is of increasing concern, particularly as human 

intervention and management of wildlife populations becomes increasingly important in 

ensuring the survival of species.  Whilst the identification of many of the native fauna 

parasites in the present study was only to order or family level, even this level of 

classification provides a useful base of knowledge for future studies, as these groups 



 180

comprise large assemblages of diverse species (O'Donoghue and Adlard, 2000; Spratt et 

al., 1990). 

 

Therefore, this study was intended to provide an overview of the gastro-intestinal 

parasites occurring in feral cats and native mammals throughout Western Australia 

using both traditional and molecular techniques where applicable, and paying particular 

attention to the ubiquitous protozoan Toxoplasma gondii.  In order to predict the 

potential for cross transmission of feline parasites to native mammals, two main lines of 

investigation were followed: 

1. A general survey of helminth and protozoan parasites was conducted on feral 

cats and a number of selected native mammals throughout Western Australia 

based on the examination of faecal samples to: 

a. Investigate the distribution and occurrence of feral cat parasites in 

Western Australia; 

b. Compare the parasite communities of selected native fauna with 

published findings. 

2. The application of molecular techniques to parasite species of particular interest 

from both an epidemiological and conservational view point: 

a. A PCR-RFLP was developed to identify species of Ancylostoma from 

eggs collected in the faeces of feral cats; 

b. Characterisation of Giardia using SSU-rDNA and ef1α sequence data to 

determine the taxonomy and potential transmission routes of infections 

detected in both native and introduced species; 

c. A one-tube hemi-nested PCR technique was adapted for diagnostic 

screening of feral cat and native fauna tissue samples to determine the 
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prevalence and distribution of T. gondii in the feral cat population and 

attempt to detect it in the native fauna. 

 

6.1.1 Parasite Sharing and Interaction 

The two most convincing pieces of evidence gathered from this study supporting the 

cross transmission of parasites between feral cats and native mammals were firstly, the 

presence of T. gondii in several native mammal species (Chapter 5) and secondly, the 

occurrence of the nematode Cyathospirura dasyuridis in a feral cat (Chapter 2).  Whilst 

the transfer of parasites between cats and the native wildlife in Western Australia 

appears to be limited to these two parasite species, it would be naïve indeed to believe 

that the distribution and occurrence of feline pathogens is as limited as this.  Dickman 

(1996b) reviewed the published literature on the coincidence of non-specific feline 

parasites recorded from Australian vertebrate fauna and found that few cat viruses, 

protozoan or helminth parasites have been recorded.  However, the lack of feline 

pathogens detected in the native fauna in the present study does not exonerate the feral 

cat as a reservoir of disease. 

 

Many of the parasites detected in the present study such as Spirometra 

erinaceieuropaei, Gnathostoma spinigerum, Taenia taeniaeformis, Oncicola 

pomatostomi, Toxocara cati and T. gondii, readily involve numerous species of native 

fauna as either intermediate or paratenic hosts.  However, the detection of these 

intermediate stages requires highly invasive sampling techniques, as the role of the 

intermediate host is typically to facilitate the transmission of these stages to the 

definitive host (most commonly via predation).  The varied composition of the feral cat 

diet, of which small native mammals comprise a large portion (Paltridge et al., 1997; 
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Martin et al., 1996; Jones and Coman, 1981), combined with the high prevalence of 

these parasites in particular regions further supports the involvement of the native fauna 

as intermediate hosts.  However, the impact these parasites may have on the native 

fauna is difficult to quantify, as symptoms may only be apparent in particular 

components of these host populations or at certain times of year (Dickman, 1996b; 

Freeland, 1994).  Even when infection may result in acute mortality (Bettiol et al., 

2000a; Bettiol et al., 2000b), it is notoriously difficult to detect infection in wild 

populations, and when infection results in more subtle effects it is even harder to discern 

(Scott, 1988). 

 

The effects at population level of introduced disease on the Australian fauna are not 

adequately known for any species, though the transmission of pathogens from invading 

species to susceptible natives has been shown to have a more profound effect than any 

direct impact of the invader itself (see section 1.4.3).  The present study demonstrates 

that feral cats carry a wide range of parasitic organisms, many of which have the 

potential to impact on not only native fauna survival and reproduction, but also on 

community structure (Lyles and Dobson, 1993; Scott, 1988).  This is of particular 

importance with regard to the captive breeding and translocation of native animals for 

conservation purposes.  Therefore, application of the appropriate methodologies is an 

extremely important step for the effective investigation of parasites and their associated 

diseases. 

 

Whilst the detection of a parasitic infection in an individual animal is reasonably 

straightforward and can be conducted with a high level of confidence, detection of the 

same parasitic infection in a host population can be considerably more complex.  An 
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important characteristic of some parasites is their tendency to be over dispersed within a 

host population such that many individuals are uninfected or only lightly infected whilst 

a few individuals harbour very heavy infections (Scott, 1988).  A consequence of this is 

that the examination of a small sample of the host population may under estimate the 

true prevalence of the parasite or even suggest its absence.  The role parasites play in 

the decline of Australian mammals is largely unknown as evidence of disease causing 

local declines is largely anecdotal (How et al., 1987; Archer, 1984; Guiler, 1961; White, 

1952), and the effects of infection and disease in wild animal populations are 

notoriously difficult to detect, let alone demonstrate (Scott, 1988). 

 

6.1.2 Sampling Limitations and Distribution of Parasites 

Molecular techniques aid in the detection and differentiation of parasites within hosts 

and the environment by providing technically simple and highly sensitive tools for 

studying the epidemiology of parasite infection and transmission (Monis and Andrews, 

1998; McManus and Bowles, 1996).  The stable nature of DNA and the ability to isolate 

and amplify it from small amounts of tissue or other biological samples allows the 

collection and storage of material for molecular techniques to be less stringent than that 

required for many other identification methods.  Similarly, the ability to detect 

infectious agents from crude material, such as faeces, eliminates the need for invasive 

sampling techniques and avoids time consuming culturing methods, which allows for 

the simultaneous analysis of large numbers of samples (Monis and Andrews, 1998; 

McManus and Bowles, 1996). 

 

Molecular markers are a particularly attractive option for the study of parasites or 

parasite stages that lack useful morphological characters (Monis, 1999).  Molecular 
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techniques not only provide definitive results, their increased levels of sensitivity also 

allow the distinction between species, subspecies and/or strain groups, as well as 

inferring their phylogenetic relationships and thus identifying routes of transmission 

(Monis and Andrews, 1998; McManus and Bowles, 1996).  This is demonstrated by the 

differentiation of morphologically identical Ancylostoma eggs from faeces by PCR-

RFLP (Chapter 3) as well as the phylogenetic characterisation of Giardia cysts detected 

in both native and introduced wildlife (Chapter 4). 

 

The ability to directly test for the presence of parasite DNA avoids many of the 

ambiguities associated with indirect detection methods and is invaluable in the 

epidemiological study of many parasite species (Zarlenga and Higgins, 2001).  For 

example, despite the numerous serological tests available for the detection of T. gondii, 

there is no single assay that can definitively confirm or refute the occurrence of 

toxoplasmosis in a host (Dubey and Lappin, 1998), whilst the direct nature of PCR 

detects the presence or absence of the parasite itself and as such is not reliant upon a 

host response (Chapter 5).  However, despite the numerous advantages offered by 

molecular techniques, their sensitivity is still limited by the quality of the samples.  In 

particular, the sometimes very sparse and focal distribution of T. gondii in host tissues 

can produce false negatives. 

 

The majority of sampling for the current study was performed in conjunction with pre-

existing trapping and monitoring programs conducted by the Department of 

Conservation and Land Management (DCLM).  Whilst sample collection from feral cats 

was unrestricted, many of the native fauna monitoring programs were linked to the 

study of predominantly rare and/or endangered species and sampling was limited to the 
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collection of faeces only.  Additionally, the overlap of sampling both feral cats and 

native fauna was not ideal as areas of interest for feral predator control involved the arid 

and semi-arid regions of Western Australia whilst native fauna monitoring was 

predominantly conducted in the southern regions of the state.  Therefore, whilst the 

sampling of feral cats and native fauna was performed from most areas, it did not 

always occur simultaneously nor was it always possible to collect samples from the 

preferred species. 

 

The destructive nature of collecting tissue samples resulted in the subsequent collection 

of predominantly faecal samples from native fauna due to their endangered status.  This 

limited the ability of the current study to detect intermediate stages of parasites such as 

T. gondii and S. erinaceieuropaei, which are most likely to occur in the native fauna via 

transmission from feral cats (Dickman, 1996b).  The non-invasive sampling of the 

native fauna also resulted in a lack of adult stages necessary for the correct 

identification of many of the helminth parasites detected due to the morphologically 

similar eggs these different species shed.  However, most eggs were identified to order 

or family level, which provided a useful base for the comparison of helminth and 

protozoan communities detected with published records. 

 

The most readily accessible species of native fauna that were amenable to large-scale 

tissue collection were kangaroos.  These samples were collected with the aid of 

professional shooters and as such, the location and frequency of sampling was largely 

reliant upon the professional shooters.  Wherever possible, tissue samples were 

collected from areas as close to feral cat sampling sites as possible, however this is far 

from an ideal method of sampling.  Although T. gondii infections and outbreaks have 
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been reported in numerous species of macropod (Reddacliff et al., 1993; Johnson et al., 

1989; Johnson et al., 1988), kangaroos generally suffer very low rates of predation by 

feral cats.  In retrospect, kangaroos would not be expected to be important in the 

transmission and persistence of T. gondii infections, however the collection of tissue 

samples from other native mammals species was restricted. 

 

The comprehensive and extensive literature available in regard to feline parasites is 

linked to the cosmopolitan distribution of the cat.  Therefore, many of the parasites 

encountered in feral cats in this study were readily identifiable to genus if not species 

level.  Additionally, the carnivorous nature of the cat makes it a top-level predator and 

thus a definitive host for many of its parasites, again making the detection and 

identification of parasite infections easier.  In comparison, the failure to detect many 

feline parasites occurring in the native fauna is again linked to the limited sample 

collection available from the native fauna (i.e. inability to screen for parasites or 

parasite stages that occur other than in the gastro-intestinal tract).  This further 

highlights the need for a stringent sampling regime, which was an inherent problem in 

the present study, as the quality of the sample ultimately dictates the sensitivity of the 

subsequent assays. 

 

Much of the pre-existing parasite information regarding Australia’s native and 

introduced mammal fauna has been drawn from studies in Queensland, New South 

Wales, Victoria and Tasmania.  Whilst the available information provides a useful basis 

for comparison with species from other regions of Australia, it also highlights the lack 

of knowledge regarding many of Western Australia’s unique mammal species.  

Although the current study did not identify many of the parasites detected in native 
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mammals to species level, it did identify a number of discrepancies between the parasite 

communities of Western Australian mammals and published records from the other 

states (Chapter 2). 

 

6.1.3 Anthropogenic Influence 

Numerous studies from around the world have reported cat population densities to vary 

from less than one to more than 2000 cats km-2 in response to the availability of 

resources (Liberg and Sandell, 1994).  It has been shown that populations of group-

living cats exploiting resource-rich sites are well structured and functional rather than 

being ad hoc collections of individuals (Denny et al., 2002; Kerby and Macdonald, 

1994).  This ability of the cat to live in a structure social system at high densities 

appears to be dependent upon human subsidies and occurs as a response to a rich and 

clumped food supply (Liberg and Sandell, 1994). 

 

Rubbish tips and waste disposal sites provide stable, resource-rich “islands of 

opportunity” and are known to support high densities of cats (Denny et al., 2002; 

Wilson et al., 1994).  The ubiquitous nature of these resource-rich sites in the landscape 

clearly enhances the number of feral cats in Australia, however rubbish tips are not the 

only resource-rich sites present in the environment.  Pastoralism and mining activities 

throughout much of Australia have resulted in the construction of numerous artificial 

water reservoirs for stock and as a by-product of mining activities.  These readily 

available sources of surface water attract a myriad of species and result in localised 

“pockets” of wildlife existing at higher densities than the surrounding areas.  The 

wildlife attracted to these focal points represent a stable and abundant food supply for 

feral cats.  Additionally, the increased soil moisture and humidity associated with these 
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sources of water form microenvironments, which ultimately facilitate the transmission 

of pathogens in both the feral cats and native fauna frequenting these areas. 

 

The higher densities of cats and native fauna occurring in the vicinity of these 

microenvironments results in higher levels of interaction between infective stages and 

potential hosts, which translates to increased transmission and a higher average parasite 

burden per host (Scott, 1988).  The existence of these microenvironments in Western 

Australia is exemplified by the occurrence of Ancylostoma tubaeforme and S. 

erinaceieuropaei in feral cats from Mount Keith (Chapter 2 and 3).  Both of these 

parasites have very different life cycles, however neither parasite is suited to an arid 

climate such as that experienced at Mount Keith.  Human modification of the landscape 

at Mount Keith in the form of pastoral and mining activities has created numerous stable 

microenvironments through the creation of water troughs, sewage treatment ponds and a 

tailings dam from the mine. 

 

The importance of these anthropogenic water reservoirs for the persistence of A. 

tubaeforme and S. erinaeceieuropaei is further proven by the absence of these two 

parasite species from cats in the Gibson Desert.  These two sampling locations 

experience similar climatic conditions with similar cat densities (Angus et al., 2002; 

Algar et al., 2000).  However, the Gibson Desert is outside the pastoral zone and has not 

been subjected to mining, making surface water extremely rare and intermittent.  

Therefore, human activities and their subsequent modification of the environment 

appear to have inadvertently contributed not only to the high densities of cats observed 

throughout Australia, but also to the occurrence of a wide range of introduced parasite 

species that would not have otherwise occurred. 
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However, these anthropogenic effects are not only confined to the rural regions of 

Australia.  The general pattern in most areas of the world today involves the expansion 

of urban areas to the detriment of natural habitats.  As urban areas continue to expand, 

wild animal populations are being driven into smaller and smaller areas.  Forcing 

animals to exist at these higher densities will affect virtually every aspect of the life and 

health of these animals, their parasite fauna being no exception (Scott, 1988).  Host 

density, susceptibility and contact rates are important factors in the successful 

transmission of parasites within a host population.  Contact rates are generally 

influenced by the behaviour of the potential host, whilst host susceptibility is influenced 

by many factors including genetic predisposition (O'Brien et al., 1985; Wakelin, 1978), 

nutritional status (Ambroise-Thomas, 2000) and stress (Sedlak et al., 2000).  Therefore 

anything that influences the behaviour and/or survival of the host may also influence the 

persistence of their parasites (Scott, 1988). 

 

Even apparently non-pathogenic parasites may become important in populations of 

native wildlife when they become stressed due to overcrowding, malnutrition, age, 

increased densities of infective stages or a number of other factors (Scott, 1988).  When 

these factors are combined they may also predispose animals to other population 

pressures (Scott, 1988; Arundel et al., 1977).  Likewise, human encroachment on these 

already stressed wildlife populations greatly increases the potential for transmitting 

foreign pathogens and diseases.  In particular, the protozoan parasite T. gondii has been 

identified as serious risk and contributor to mortalities in wild populations of bandicoots 

and other marsupial species adjacent to urban areas (Obendorf et al., 1996; Freeland, 

1994; Obendorf and Munday, 1990).  It is important to realise that the impact of 



 190

infection and disease on host populations is only going to increase as urban areas 

continue to expand and the world wide movement of animals, plants and produce 

continues to intensify. 

 

6.1.5 Future Directions 

An improved understanding of the host-parasite relationships in the Australian wildlife 

is required to overcome the general paucity of information surrounding our native 

fauna.  There is also a strict need to determine the distribution of foreign parasites 

within our native fauna as well as to identify their insidious impacts.  A better 

understanding of what represents a natural parasite burden in the native fauna will 

further improve our management of both native and introduced parasites.  Whilst we 

should not disregard either one or the other, we need to realise that foreign diseases 

have the potential to decimate host populations.  Perhaps the best approach is to manage 

and/or control disease, rather than attempt to eliminate parasites and thus risk producing 

naïve and highly susceptible populations. 

 

This is particularly important as the conservation of native species is becoming 

increasingly reliant upon programs of captive breeding and translocations (Atkinson, 

2001; Abbott, 2000; Fischer and Lindenmayer, 2000; Short and Turner, 2000).  The 

potential impact that parasites can have on intensive conservation practices such as 

these, dictates the need to combine options from the fields of ecology, evolution and 

veterinary medicine to effectively manage pathogens and disease in these endangered 

species (Lyles and Dobson, 1993). 
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As conservation efforts become more and more important to the survival of many of our 

unique species, we must realise that forcing animals into dense conditions will 

inevitably have a detrimental effect on the host population and disease will be one of the 

consequences.  There is no point in conserving animal populations unless those 

populations are managed properly to promote their health and continued wellbeing.  

Many attempts are made at keeping animals free from infection, especially in zoos and 

captive breeding facilities.  In many ways attempting to keep animals free of disease can 

be considered a sensible strategy as it should enable animals to survive and reproduce at 

rates close to maximum which would have to be good for the conservation of the 

species.  However, the elimination of parasites and the role they play from a host 

population would be a shortsighted approach to the conservation of the host species. 

 

Infectious disease is a normal, constant and continuing feature in the lives of most 

organisms.  The ability of parasites to regulate the growth of host populations, even in 

the complete absence of other influences such as predation or intraspecific competition, 

has important implications for the overall health of host species (May and Anderson, 

1978).  Pathogens can and do exert important effects on host population dynamics in 

both endemic and epidemic forms (Gulland, 1995).  However, overprotection of a 

species may do more to weaken the population and increase its susceptibility to 

infection than it does to improving survivorship (Cunningham, 1996; Lyles and Dobson, 

1993; Scott, 1988).  As such, any sound, long term approach to disease management 

requires a much better understanding of the dynamic relationship between animals and 

their pathogens than we currently have. 
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As mentioned previously, the limiting factor to research of this kind in the Australian 

fauna is the threatened status of many of our native mammal species.  Because of this, 

the majority of information regarding parasite occurrence in these endangered species 

has generally been extrapolated from closely related species or members of the same 

family.  Studies of native fauna have also traditionally depended on the utilisation of 

road kills and opportunistic sampling as major sources of material for epidemiological 

parasite surveys (Oakwood and Spratt, 2000; Barker et al., 1989; Beveridge and 

Arundel, 1979).  These apparent limitations can be overcome provided a systematic 

approach is taken to sample collection and the correct tools are applied. 

 

The value of the molecular techniques developed and used in the current study are 

evident in the detection of T. gondii, Giardia and Ancylostoma species.  Their robust 

nature coupled with a high level of sensitivity makes them ideal for the investigation of 

parasite occurrence in a wide range of host species and biological samples.  The 

published sequence information available for a wide range of helminth and protozoan 

parasites and the relative ease with which these techniques can be developed and 

applied to different developmental stages provides new avenues for the low impact, 

comprehensive study of parasites in both common and endangered species with a 

minimum of interference. 

 

The fluctuation of T. gondii detected in feral cats in the present study highlights the 

importance of extended sampling regimes.  The ability to sample individuals and/or 

populations repeatedly without any adverse effects can provide a wealth of information 

on seasonal and temporal variation in parasite prevalence.  This level of understanding 

of the host-parasite relationship can help predict when populations or individuals may 
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be most at risk of infection and allow preventative measures to be put in place, 

ultimately leading to the effective management of threatened or vulnerable populations. 

 

The long-term management of native fauna in Western Australia has already addressed 

the direct impacts of introduced predators and competitors by attempting to control their 

numbers in areas of particular conservational value.  With regard to the feral cat, the 

current study has highlighted the importance of human activities in facilitating the 

persistence of both high densities of feral cats and a variety of their parasites in the 

Australian environment.  Effective control of the feral cat to minimise its potential 

impact on established and reintroduced populations of native fauna needs to address the 

presence of resource “hotspots” in the landscape, of both anthropogenic and natural 

origin. 

 

Control of the definitive host only is not necessarily sufficient to break parasitic life 

cycles, as evidenced by the potential maintenance of T. gondii in host species via 

vertical transmission.  Additionally, the correct management of potential resource-rich 

“islands” would eliminate or at least minimise the transmission of several parasite 

species such as Ancylostoma spp., S. erinaceieuropaei, and G. spinigerum from feral 

cats to the wildlife, whilst monitoring programs can help protect the native fauna from 

diseases such as toxoplasmosis.  In particular, captive breeding and translocation 

programs should avoid the use of individuals that have a history of T. gondii infection to 

minimise the risk of stress-induced mortalities due to reactivated toxoplasmosis as well 

as preventing the potential spread of T. gondii to “clean” populations. 
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Clearly, management practices that effectively reduce or eliminate the scavenging 

potential for cats at rubbish tips and similar sites throughout Australia will not only help 

to minimise the transmission of feline pathogens in the environment, they will also 

enhance the control of feral cats.  The importance of such management will only 

intensify as the number of conservation and reintroduction programs operating 

throughout Australia continues to increase. 
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